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Université de Reims Champagne-Ardenne

CReSTIC, France

Email: {michel.herbin, amine.ait-younes, frederic.blanchard }@univ-reims.fr

Abstract—The exploration of a data set consists in grouping
similar data. The classical statistical methods often fail when
there is is no minimal assumption on the clusters. Our approach
is based on the links between data, but the pairwise comparison
between data and the importance of the links depend heavily on
context where data lies. We propose to analyze a dataset through
methods of the social choice theory where data plays both the role
of a candidate and the role of a voter. The candidates are ranked
by the voters and each voter gives a score to each candidate
according to his ranking. We propose one specific election for
each voter based on his preferences. The voters of these elections
have weights computed according to their respective behaviors.
In this approach, the conventional similarity indices between data
are used to define the electoral behavior of each data.

Index Terms—exploratory data analysis, social choice theory,
representatives, vote, data reduction

I. INTRODUCTION

O
NE OF the first steps in the exploration of a data set

consists in grouping similar data. For this purpose, lot of

clustering methods are proposed in literature to detect clusters

within a dataset. The methods often fail when there is neither

a minimal assumption on the clusters nor a minimal model

of the clusters. For instance the classical k-means method [8]

assumes both that data could be grouped around mean values

or mean vectors and that the number of clusters is known. Un-

fortunately the first assumption leads to important constraints

on the shape of the clusters in the data space and this condition

is seldom corroborated. Other approaches of clustering are

based on links between data. The hierarchical agglomerative

clustering methods are probably the most known methods for

exploring the datasets using such links. The links are usually

drawn from pairwise comparisons between data and they are

based on distances or pseudo-distances [4]. But the pairwise

comparison between data and the importance of the links

depend heavily on context where data lies. Indeed the ranges

of values of a comparison index could change when data are

not in the same clusters. In other words, the links could be

well suited to connect two data in one cluster and they are

not adapted for the other clusters. Thus this paper proposes a

new way to define the links between data through the ranks

to overcome this constraint of cluster context.

We propose to analyze a dataset through methods of the

social choice theory where data plays both the role of a

candidate and the role of a voter [5]. The social choice

inspired approach brings a metaphorical meaning that help to

understand the concepts (as in bioinspired or human-inspired

algorithms [10]).

The candidates are ranked by the voters and each voter

gives a score to each candidate according to his ranking. Then

the scores of the voters are aggregated using generally the

sum of scores obtained by the candidates. In the classical

procedure of election, each voter has the same weight in the

aggregation. Thus this procedure is the same for all clusters.

In this paper the election procedures differ from one cluster to

another. We propose one specific election for each voter based

on his preferences (i.e. one election per voter). The voters

of these elections have weights computed by comparison

of their respective behaviors. The weights differ from one

election to another. The links between data are defined using

these elections where each voter selects one candidate for

representing itself within the dataset. The chainings between

the voters and their representatives define data communities.

Thus the partitions of the dataset with these communities give

us a new way to explore the dataset.

The following section describes the procedure of election

that we propose in this paper. It leads to a graph that permit

us to structure the dataset. Then we study and we assess this

method for structuring a dataset. Finally we discuss and we

conclude this work.

II. DATASET AND VOTERS

A. Collective preference

Let Ω be a dataset with n elements:

Ω = {X1, X2, ...Xn}

In the framework of the social choice theory [9] [3], Ω is both

a set of n voters and a set of n candidates. Thus each data is

a voter of Ω and it also becomes an alternative that the other

voters could prefer as a representative in Ω (i.e. an elected

candidate of Ω).

The dataset is provided with a pairwise comparison index

between data. We call D this index. In this paper, we use

Euclidean distance as pairwise comparison index. But we need

only two properties of D. When Xi, Xj , and Xk are three data

in Ω, we should have:

• D(Xi, Xi) ≤ D(Xi, Xj),
• D(Xi, Xj) ≤ D(Xi, Xk) if Xj is more similar to Xi

than Xk is (in other terms : Xj is prefered to Xk by Xi)
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In the following, any pairwise comparison index should respect

these two properties.

With using such a pairwise comparator, each data Xi is

considered as a voter which can rank the other data. The ranks

of Xi are defined between 1 and n. The ranking function is

called RXi
and we have:

• RXi
(Xi) = 1,

• RXi
(Xj) ≤ RXi

(Xk) if D(Xi, Xj) ≤ D(Xi, Xk).

The data Xi is a voter that selects the candidates using RXi

as preference indicator. The vote of Xi is realized with a score

of Borda which is a classical method of social choice theory

[6] [1]. In this paper, the score of Borda given by the voter

Xi to the candidate Xj is defined as:

SXi
(Xj) =

n−RXi
(Xj)

(n− 1)

where Xj is a candidate and Xi is a voter.

The classical election procedure attributes the sum of the

scores of the voters for each candidate. Thus the candidate

Xj obtains the global score S(Xj) defined by:

S(Xj) =
n∑

i=1

SXi
(Xj)

This procedure leads to nominate the best candidate as the one

with the highest score. But each voter has the same weight

in this overall vote. This overall election does not take into

account that two voters could belong to two different clusters.

In the following, we will change the paradigm. We consider

that each voter has his own election procedure that is adapted

to itself. The following describes the specific procedure for

each voter.

B. Individual preference

Each voter will choose its candidate with its own election

procedure. Let Xi be a voter that chooses the candidates. Each

data Xj is also a voter of the election that Xi proposes. All

the voters of Ω have weights that are specific of the election

procedure of Xi. The weight of Xi itself is equal to one. The

more similar to Xi a voter Xj is, the higher the weight of

Xj is in this election. The weights are based on the similarity

between the voters and the similarities with Xi are used for

the election that Xi proposes.

Let us describe the similarity of the behaviors of two voters.

We consider that two voters Xi and Xj are similar when their

respective ranking function RXi
and RXj

are similar. The

correlation of Spearman [11] is classically used to evaluate

the correlation between ranks. The higher the correlation is

close to 1, the more ranks are correlated. In this paper the

correlation gives us an index of the similarity of the behavior

of two voters. Spearman correlation between Xi and Xj is

defined by:

Cor(Xi, Xj) = 1−
6 ∗

∑n

k=1
(RXj

(Xk)−RXi
(Xk))

2

n3 − n

Cor(Xi, Xj) lies between -1 and 1. We consider that Xi and

Xj have similar behavior when the Spearman correlation is

greater then a positive threshold which is a significance level.

If we call t this level, then Xi and Xj become similar when

Cor(Xi, Xj) ≥ t.

Let wXi
(Xj) be the weight given to the voter Xj for the

election based on the preferences of Xi.

We define this weight by:

wXi
(Xj) = max(0,

Cor(Xi, Xj)− t

1− t
)

The weight lies between 0 and 1. It is equal to zero when Xi

and Xj are not similar.

In the election based on the preferences of Xi, each candi-

date Xj obtains a score ScoreXi
(Xj) defined by:

ScoreXi
(Xj) =

n∑

k=1

wXi
(Xk)× SXk

(Xj)

Thus this election is based on a sum of scores weighted by

the similarity of the voters with Xi. Other voters similar to

Xi participate in the election of the representative of Xi.

C. Communities of voters

The representative of Xi becomes the one which have

the highest score within Ω for the election based on the

preferences of Xi. So each voter Xi has one representative

in Ω elected by the specific election of Xi : RepScore(Xi) .

Score(RepScore(Xi)) =
n

max
k=1

(ScoreXi
(Xk))

We define a graph in Ω where the vertices are the voters

and the edges are the links between the voters and their

representatives. Each connected components of this graph

defines a community of voters. The more we claim a high

correlation between voters, the more the size of communities

is reduced. In other words, the higher the threshold t is close

to 1, the more the communities are small and the number of

communities increases within Ω. These communities give a

data structuration to study a dataset when we have neither

assumption nor model for the clusters.

If the threshold t is close to 1, the representative of each

voter Xi is based only on the preference of Xi. If this threshold

decrease, other voters similar to Xi participate in the election

of the representative of Xi.

Each data Xi has two representatives: the favorite candidate

of Xi and the elected candidate of the local election of Xi.

For each data Xi we define an individual loss indicator, wich

represents the correlation loss between Xi and theses two

representatives. The collective loss indicator for the data is

the sum of all the individual loss.

loss =
n∑

k=1

lossInd(Xk)

lossInd(Xi) =

Cor(Xi, RepS(Xi))− Cor(Xi, RepScore(Xi))

with
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S(RepS(Xi)) = maxk 6=i(SXi
(Xk))

Score(RepScore(Xi)) = maxk 6=i(ScoreXi
(Xk))

III. EXPERIMENTAL STUDY

This section is devoted to the study of our method for

structuring a dataset with a pairwise comparator. First let

us present an example of the different steps of the dataset

structuration with our method. In a second section, we assess

the quality of this structuration using simulated data. Third the

quality is assessed when using one real dataset.

TABLE I: Number of communities of voters, number of

unique representatives and loss, using the simple example of

Fig.1 when the threshold t of correlation varies between 0 and

1.

t nbcom nbrep loss
1 0.00 2 4 0.85
2 0.05 2 4 0.85
3 0.10 2 4 0.85
4 0.15 2 4 0.85
5 0.20 2 4 0.85
6 0.25 2 4 0.85
7 0.30 2 4 0.85
8 0.35 2 4 0.77
9 0.40 2 4 0.77

10 0.45 2 4 0.77
11 0.50 2 4 0.78
12 0.55 2 4 0.78
13 0.60 2 5 0.59
14 0.65 2 5 0.59
15 0.70 2 5 0.52
16 0.75 3 8 0.32
17 0.80 3 9 0.23
18 0.85 3 11 0.17
19 0.90 5 14 0.00
20 0.95 5 14 0.00
21 1.00 20 20 0.00

A. Workflow for structuring a dataset

We propose to explore a dataset with 20 simulated data

in dimension 2 (see Fig.1-A). The pairwise comparisons are

based on Euclidean distance. We conduct the overall elec-

tion with a classical Borda’s procedure. This overall election

permits us to propose the best candidate which could be

considered as the representative of the whole dataset (see

Fig.1-B). Then we proceed to the elections based on the

individual preferences for obtaining linking each data with

another one. These links allow to define communities of voters.

The procedure of the election with the individual preferences is

based on a threshold of correlation. Fig.1-C shows the number

of communities when the correlation threshold increases.

The higher the threshold, the higher the number of commu-

nities is. The highest threshold leads to the highest number of

unique representatives. The higher the threshold, the lesser the

losses are (both individual and collective). When the threshold

is equal to 0.5, 0.95 and 0.99 (Fig.1-D, Fig.1-E, Fig.1-F) :

• the number of communities is 2, 5 and 6 (resp.)

• the number of unique representatives is 4, 14 and 15
(resp.)

• the collective loss is 0.78, 0 and 0 (resp.)

This number of communities is less than the number of data.

That gives a new way for the exploration of a dataset.

B. Assessment of the links structuring a dataset

TABLE II: Number of communities of voters, number of

unique representatives and loss, using the three classes of Fig.2

and criterion of assessment when the threshold of correlation

varies between 0 and 1.

t nbcom nbrep loss
1 0.00 3 20 6.99
2 0.05 3 19 6.65
3 0.10 3 19 6.37
4 0.15 3 18 6.49
5 0.20 3 16 6.23
6 0.25 3 17 6.09
7 0.30 3 17 6.00
8 0.35 3 16 6.01
9 0.40 3 16 6.03

10 0.45 3 16 5.95
11 0.50 3 16 5.82
12 0.55 3 17 5.70
13 0.60 3 19 5.47
14 0.65 3 21 5.00
15 0.70 3 24 4.58
16 0.75 3 31 4.04
17 0.80 3 35 3.03
18 0.85 4 47 2.32
19 0.90 7 58 1.37
20 0.95 10 74 0.52
21 1.00 150 150 0.00

In this paper, we place ourselves resolutely in the context

of the exploratory analysis of data without any a priori

assumption on eventual classes, we only use an index of

pairwise comparison. But the use of classes gives the most

classical way to evaluate a structuration of a dataset. So this

paper uses classes to assess only the links that we propose

between data. The detection of classes (i.e. the clustering) is

out of the scope of this paper.
The assessment of our method for structuring a dataset

is performed using a dataset with known classes. Each data

belongs to one class and it has the label of its class. Using

our structuration each data is also linked to a representative in

the dataset. A data is well represented when its own label is

equal to the label of its representative. In such case the link

between a voter and its representative remains inside a class

of the dataset. We propose a structuration of the dataset with

graphs. The vertices of the graph are labeled and the edges

are labeled when their extremities have the same label. We

compute the number of the labeled edges.
The percentage of such edges could assess the quality of

the structuration through a graph. Unfortunately the classes

are unknown in the first step of data exploration. Thus we

propose to use the loss indicator instead of this percentage of

labeled links.
The higher is this quality criterion and the lower the number

of communities is, then the better the structuration is.
Table II gives the values of this criterion when the threshold

of correlation lies between 0 and 1. The dataset is simu-

lated in dimension 2 (see Fig.2) and the number of detected
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Fig. 1: Twenty simulated data in dimension 2 (A), the overal election selecting one representative (B) and elections based on

individual preferences leading to several communities whose number depends on the correlation threshold (C). 2, 5, and 6

communities respectively obtained with a correlation threshold equal to 0.5, 0.95, 0.99 (D, E, F).

communities of voters is displayed when the threshold of

correlation between voters increases from 0 to 1. Fig.2 gives

also three examples of the communities when the threshold is

respectively equal to 0, 0.5 and 0.9.

TABLE III: Number of communities of voters, number of

unique representatives and loss, using the three classes of Fig.3

and criterion of assessment when the threshold of correlation

varies between 0 and 1.

t nbcom nbrep loss
1 0.00 1 74 35.49
2 0.05 1 70 32.88
3 0.10 1 69 30.32
4 0.15 1 72 28.65
5 0.20 1 69 26.90
6 0.25 1 70 24.89
7 0.30 1 74 23.56
8 0.35 4 79 21.55
9 0.40 4 75 19.58

10 0.45 3 76 17.25
11 0.50 3 82 15.09
12 0.55 5 92 11.73
13 0.60 7 101 9.50
14 0.65 7 107 7.94
15 0.70 11 118 6.54
16 0.75 13 128 5.27
17 0.80 14 134 3.99
18 0.85 19 149 3.10
19 0.90 25 166 1.96
20 0.95 36 186 0.88
21 1.00 380 380 0.00

In the following we simulated a dataset with three classes

that are hardly distinguishable because of their shapes and their

overlapping. The dataset (n = 380) is simulated in dimension

2 with three uniform distributions in two rectangular crowns

with 200 and 80 data and one rectangle with 100 data (see

Fig.3). The number of voter communities is displayed when

the threshold of correlation between voters increases from 0

to 1. Fig.3 gives also three examples of the communities when

the threshold is respectively equal to 0.5, 0.8 and 0.99,

• the number of communities is 3, 14 and 71 (resp.)

• the number of unique representatives is 82, 134 and 212
(resp.)

• the collective loss is 15.09, 3.99 and 0.11 (resp.)

the number of communities are respectively equal to 8, 16

and 106. In such a case the classical clustering methods fail to

detect meaning clusters. Indeed classical clustering methods

are often based on statistics such as means or medoids.

They use these statistics to determine the clusters and they

make the assumption that data could be well represented with

such statistics. Unfortunately these statistical approaches are

unadapted in this case. Table III gives the values of our

assessment criterion when the threshold of correlation lies

between 0 and 1.

C. Assessment with real data

We use the databases from Machine Learning Repository

of UCI [2] to assess our method with real data. Iris is the

classical database that has 150 iris plants with 4 attributes and

three clusters. Table IV gives the results we obtain with this

dataset. Fig.4 displays the number of voter communities and

the percentage of labeled links when the correlation threshold

increases from 0 to 0.99, and the loss indicator.

IV. DISCUSSION AND CONCLUSION

In this paper we describe and we implement a method for

exploring a data set. The main originality of this method lies in

44 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016
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Fig. 2: Simulated data with three classes (three multinomial distributed subsamples)
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Fig. 3: Simulated data with three uniform distributions in two rectangular crowns of respectively 200 and 80 data and one

rectangle of 100 data. The three classes are hardly distinguishable with classical clustering methods.

the definition of links between data. These links are based on

a local election mechanism with individual preferences that

connects each data to another data designated by the local

election process. In this approach, the conventional similarity

indices between data are used to define the electoral behavior

of each data. As the preferences of the users in a recommender

system, the voters then have weights corresponding to the

similarity of electoral behaviors. However this approach by

recommender systems is not used in this paper and the

robustness of our method when data is incomplete or imperfect

could be studied in future work.

Another important contribution of this work is to reduce the

size of a data set from the exploration of a set of n data to

a set of p communities where p is much smaller than n. This

approach of dimensionality reduction has the advantage that it

makes no assumption about the shape or the exact number of

communities. It thus constitutes a preliminary step to a more

meaningful clustering and it leads to select a more suitable

method for the exploring dataset. This extension of our work

could also be involved in further work.
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Fig. 4: Iris Data (n = 150) with three classes of 50 data in dimension four. Top : data projections in dimension two using

sepal width and sepal length and detection of communities when the correlation threshold is equal to 0.5 and 0.95. Bottom

: Number of voter communities and the percentage of labeled links when the correlation threshold increases from 0 to 0.99,

and the loss indicator

TABLE IV: Number of communities of voters, number of

unique representatives and loss, using the three classes of

the Iris data (see Fig.4) and criterion of assessment when the

threshold of correlation varies between 0 and 1.

t nbcom nbrep loss
1 0.00 2 11 11.33
2 0.05 2 11 10.57
3 0.10 2 11 10.23
4 0.15 2 11 9.64
5 0.20 2 11 9.25
6 0.25 2 11 8.56
7 0.30 2 12 8.14
8 0.35 2 12 7.58
9 0.40 2 12 7.51

10 0.45 2 12 7.11
11 0.50 2 15 6.51
12 0.55 3 17 6.06
13 0.60 4 18 4.90
14 0.65 4 17 4.27
15 0.70 4 18 3.33
16 0.75 4 18 2.83
17 0.80 6 20 2.67
18 0.85 6 25 1.94
19 0.90 6 33 1.34
20 0.95 7 46 0.46
21 1.00 150 150 0.00

We are currently working on application for sensor network

data analysis.
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graphe de représentants : une approche inspirée de la théorie du choix so-
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