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Abstract—The aim of this work was to find an analytical
expression describing the b-matrix spatial distribution (BSD) in
diffusion tensor imaging, obtained by means of simple calibration
to a water isotropic phantom.

The bivariate second degree polynomial function was fitted
for the complete set of spatially distributed b-matrix elements
derived through measurements on a 3 Tesla clinical scanner.

Smooth, noise free b-matrices were obtained with clear pat-
terns of systematic errors. Diffusion tensor eigenvalues were
derived with much better accuracy than for previous BSD
calibration. The proposed approach does not require many
averages during the acquisition of the phantom and thus can
shorten the BSD calibration.

I. INTRODUCTION

D
IFFUSION Magnetic Resonance Imaging (dMRI) which
appeared in the eighties and quickly developed towards

Diffusion Tensor Imaging (DTI) [1] [2], has found number
of clinical applications. It became very successful tool for
neurological structural and functional imaging [3]. However,
DTI is intrinsically prone to the numerous artifacts [4], which
makes any quantitative comparison of the images obtained by
different scanners questionable.

In order to calculate a diffusion tensor one has to acquire
series of images, each with a different diffusion sensitizing
gradient applied. The gradients can differ in both magnitude
and orientation. Information about diffusion gradient schemes
is stored in a b-matrix. The most common way of deriving
the b-matrix is an approximated analytical calculation of each
element. However, the applied diffusion gradients interact with
other magnetic field gradients applied during the imaging
sequence and thus the resultant gradients differ from what was
expected. Variations of the magnetic susceptibility across the
sample volume can also affect the b-matrix [5].

Several methods to partially solve such problems were
proposed. Some of them introduced bipolar gradients which
cancel out the cross-terms between the applied gradients [6],
[7]. The other focused on choosing the best gradient encoding
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scheme [8], [9], [10]. There were also post processing meth-
ods [11] and phantom calibration techniques [12] suggested.

A recent report revealed that for particular imaging sequence
parameters the errors superimposed on the b-matrix have a
systematic character and can be reduced through a calibration
procedure [13]. The solution is based on the derivation of
the b-matrix spatial distribution (BSD) which substitutes the
standard b-matrix, constant for an entire volume. The BSD
method improves the accuracy of diffusion measurements,
but since the calibration is based on a real data, the derived
distribution of the b-matrix is always biased with noise.

In this paper we present a procedure of deriving the noise
free approximation of the actual spatial distribution of the b-
matrices. The results are compared with both standard DTI
and hitherto BSD-DTI.

II. MATERIALS AND METHODS

Standard diffusion tensor imaging of a water isotropic
phantom was performed on a 3 Tesla clinical scanner. Six
diffusion gradient directions were applied and the b-value was
set to 1000 s/mm2. The imaging was done in axial orientation,
25 interleaved slices with voxel size 1x1x3 mm were taken,
with number of averages set to 4. The acquisition was repeated
then for the BSD calibration purposes.

The spatial distribution of the b-matrices was obtained
through simple calibration to water phantom. The experiments
were carried out in stable thermal conditions in temperature
of 21 ◦C. The diffusion tensor eigenvalues for an isotropic
water phantom in constant temperature are all equal and
can be derived theoretically from the Einstein-Smoluchowski
equation [14]:

〈

r2
〉

= 6Dt, (1)

where:
〈

r2
〉

– is a mean square displacement, D – is a diffu-
sion coefficient, and t – is a diffusion time. The off-diagonal
elements of the tensor can be assumed equal to zero, since
they describe the rotations of the diffusion ellipsoid being in
this case spherically symmetrical. With the above assumptions
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Fig. 1. Plot of bivariate polynomial fitted to data. In this case the diffusion gradient was applied solely along the x axis. The expression of the fitted function
is the following: f(x, y) = 992.5− 1.021x− 1.043y + 0.013x2 + 0.004xy + 0.007y2.

Fig. 2. Plot of bivariate polynomial fitted to data. In this case the dominating diffusion gradient was applied along the y axis with a nonzero x component.
The expression of the fitted function is the following: f(x, y) = 208.4− 0.1145x− 0.2833y + 0.0009x2

− 0.0001xy + 0.0017y2.

the spatial distribution of the b-matrix elements for each voxel
can be derived from Stejskal-Tanner equation [15].

ln

(

Sx

S0

)

= −b : D, (2)

where: Sx – is a signal intensity in particular voxel measured
with x diffusion gradient applied, S0 – is a signal intensity in
particular voxel measured without diffusion gradient applied,
b – is a b-matrix in particular voxel, D – is a diffusion
tensor in particular voxel. The colon indicates a generalized
dot product defined as:

b : D =
∑

i,j

bijDij , (3)

where bij and Dij are particular b-matrix and diffusion tensor
elements, respectively.

The complete set of b-matrices derived from the above
formulas consisted of 900 b-maps (25 slices times 6 b-matrix
elements times 6 diffusion gradients).

An 80 x 80 pixel square region of interest (ROI) R1
inscribed in the circle of the phantom’s axial projection was
chosen for the analysis.

Theoretically each element of the b-matrix should be a
scalar value derived from the sum of various quadratic gradient
terms. The number of terms depends on what is really taken
into account in calculating the b-matrix, but the diffusion
gradients are always dominating, because of their relatively
big strength. The influence of the imaging gradients is of
secondary importance. Cross-terms between various types
of gradients may also appear. Due to imperfections of the
gradients, their nonlinearity and interactions between them
the actual b-matrix should be described by a superposition
of quadratic functions instead of a single constant value.

The actual character of the b-matrix may be expected to be
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TABLE I
COMPARISON OF THE MEAN EIGENVALUES AND THEIR STANDARD

DEVIATIONS OBTAINED BY MEANS OF THE THREE APPROACHES. THE

IMPROVEMENT FACTOR KSD IS EQUAL TO THE RATIO OF STANDARD

DEVIATION OF STANDARD DTI TO THE SD OF A PARTICULAR APPROACH.

Experiment D [mm2/s] sd [mm2/s] Ksd

DTI 1.9822× 10−3 5.73× 10−5 1.00
BSD 1.9984× 10−3 5.42× 10−5 1.05
A-BSD 1.9973× 10−3 3.92× 10−5 1.46

described by a superposition of quadratic functions instead of
a single constant value.

In order to fit a second order bivariate polynomial function:

f(x, y) = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2, (4)

to all the 900 ROIs, a python script using least-squares fitting
procedure was written.

The initial b-matrix values within the ROIs were substituted
with values derived from the fitted functions. Eventually,
diffusion tensors were calculated in three ways:

1) Standard DTI - using single b-matrix, constant in the
entire ROI.

2) BSD - incorporating spatial distribution of the b-matrix,
derived directly from the calibration procedure.

3) Actual BSD (A-BSD) - with usage of b-matrix spatial
distribution derived from the fitted polynomial. The
tensors were calculated for a circle ROI R2 inscribed
in the R1 used for the fitting.

III. RESULTS

The calculated diffusion tensors were diagonalized with
LU decomposition method in order to obtain the eigenvalues.
For each of the 25 slices mean eigenvalue in R2 and its
standard deviation were calculated. The results for selected
slices together with the improvement factors Ksd are presented
in table I. Mean eigenvalues are quite similar for all the three
approaches, however, standard deviations differ. The lowest
value of sd, which indicates the best accuracy, was obtained
for the A-BSD approach using the fitting procedure.

Plots of exemplary bivariate polynomial fits obtained for two
different gradient directions are depicted in figures 1 and 2,
respectively. The first corresponds to the diffusion gradient
applied solely in x direction, whereas the latter, to the stronger
component in y direction and weaker, nonzero component in x.

Two dimensional maps of the fitted b-matrices for selected
slices are depicted in figures 3 and 4.

IV. DISCUSSION AND CONCLUSIONS

The described procedure resulted in a noticeable improve-
ment of the diffusion tensor eigenvalues homogeneity for
the isotropic water phantom. The analysis was done in axial
direction in which distortions in b-matrices are the smallest,
accordingly to the previous studies [13] [16]. Thus also the Ksd

improvement factor is relatively small. However, fitting the b-
matrix data to the bivariate polynomial function decreases the

Fig. 3. Two dimensional map of b-matrix elements corrected with fitted
bivariate polynomials. Each row represents one of the diffusion gradient
directions, and each column is a b-matrix element in order: bxx, byy, bzz,
bxy, bxz, byz. The maps correspond to the middle slice, positioned in the
isocenter of the scanner. The scale ranges from −50 s/mm2 to 50 s/mm2.
The map is differential, i.e. from each element standard, constant bij-value
was subtracted.

Fig. 4. Two dimensional map of b-matrix elements corrected with fitted
bivariate polynomials. Each row represents one of the diffusion gradient
directions, and each column is a b-matrix element in order: bxx, byy, bzz,
bxy, bxz, byz. The maps correspond to the 25 slice, the farthest from the
isocenter of the scanner. The scale ranges from −50 s/mm2 to 50 s/mm2.
The map is differential, i.e. from each element standard, constant bij-value
was subtracted.

mean eigenvalue standard deviation to the approximately one
third of the sd obtained through hitherto BSD calibration.

The analyzed dataset is characterized by a relatively high
noise level, due to only 4 averages. Application of the fitting
procedure visibly smooths the b-matrix spatial distribution and
emphasizes the shape of the systematic errors. Figures and the
equations of the fitted functions show that a3 coefficient is an
order of magnitude bigger than a5 when the gradient direction
was set along x axis and on the contrary the a5 coefficient
is an order of magnitude bigger than a3 when the gradient
is directed mostly along the y axis. The linear coefficients of
the fits are also not negligible. It corresponds to the already
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discussed in this paper theoretical underpinning of the b-
matrix. Complicated, by number of terms which are difficult to
take into account in the analytical derivations (including cross-
terms), the structure of the b-matrix in the presented approach
is revealed in its final shape through an experiment.

The two dimensional maps of the b-matrix elements depict
the shape and intensity of the systematic errors. Comparison
of figures 3 and 4 confirms the best homogeneity of the b-
matrices in the isocenter of the scanner (most of the terms
in figure 3 are close to yellow color corresponding to the
assumed standard value of bij element), and intensification of
the distortions while moving towards the edges of the scanner
(fig 4.).

In conclusion the presented method improves the BSD
approach to DTI further. It enables one to derive noise-free
spatial maps of b-matrices even from a dataset with relatively
high noise level. This gives hope for shortening the BSD
calibration time. Second degree bivariate polynomials turn out
to define well the b-matrix elements according to the theory.

The presented approach successfully excludes the system-
atic errors affecting the accuracy of diffusion tensor derivation
and opens the path for truly quantitative diffusion tensor
measurements independent of a chosen scanner and imaging
sequence.
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