
Completeness and Consistency of the System

Requirement Specification

Jaroslaw Kuchta

Faculty of Electronics, Telecommunications and Informatics

Gdansk University of Technology

Narutowicza 11/12, 80-233 Gdansk, Poland

Email: qhta@eti.pg.gda.pl

Abstract—Although the System Requirement Specification, as
a first formal and detailed document, is the base for the software
project in classic software methodologies, there is a noticeable
problem of assuring the completeness of this document. The lack
of its completeness causes uncertainty of the project foundations.
This was one of motivations for agile methodologies – if the
SRS cannot be easily validated, if it can change in late project
phases, then get rid of the SRS. Replace formal requirements
with user stories. However user stories are also requirements -
mostly functional requirements. As agile methodologies focus on
functional requirements, it is easy to forget quality requirements.

In this paper we show the impact of quality requirements
analysis on functional requirements exploration. Although in
our experiment we noticed considerable large functional require-
ments increment, we went further and examined the impact of
SRS consistency on its completeness. The research has shown
that the increment of the revealed requirements count may be
almost three times greater, compared to the standard requirement
specification method.

Keywords: system requirements, SRS, quality, completeness,
consistency,

I. INTRODUCTION

Starting the software project, the customers may be uncer-

tain of their expectations, or may simply be unable to imagine

the whole complexity of the software system. The developer’s

task at this very early stage of the project is to reveal as much

of the requirements as is possible. In other words – to assure

the completeness of the System Requirement Specification.

However, there is a noticeable problem with the completeness

of the SRS; with its measurement and event with its definition.

The formal definition for the requirements completeness says

that the SRS is complete when the "responses of the software

to all realizable classes of input data in all realizable classes

of situations is included" [1]. This definition is not very usable,

as we do not know the number of "all realizable classed of

input data" and "all realizable classes of situations". Other

definitions [2] are also unusable. This leads us to the problem:

"how can we be sure that the requirement specification is

complete without knowing what the complete requirement

specification is?" [3]. As it is an impossible situation, we

can not determine the absolute completeness; we may only

define some metrics of a relative completeness (as the relative

increment of the elicited requirements) [4].

The whole system quality depends on the completeness

of the requirement specification. We may find a huge set of

quality metrics in [5]. As we take a close look at these metrics,

we may see that many of them are evaluated relatively to the

number of functions described in the requirement specification.

As we do not know the completeness of the requirement

specification, we cannot be sure about the reliability of these

metrics and the total quality of the system.

The uncertainty of the SRS completeness causes the risk of

the requirements change during the development process [6].

The risk is extremely high in the classic "waterfall" software

development model and it is one of the reasons why the

iterative and incremental models became much more popular

[7]. Often, an "agile" development process is taken [8], when

the requirements are revealed in the user acceptance tests of the

working (but incomplete) system. Although this model goes

well in the normal situations, there may be some rare and

critical conditions, which are hard to reveal based solely on the

customer’s claims. The author’s research has shown, that the

problem of the SRS completeness uncertainty may be resolved

indirectly – with the measurement the SRS consistency. This

measurement (in a graph theory sense) is easy, and has the

large impact on the number of the revealed requirements.

Using this method, the author has achieved the substantial

increment of the requirements (almost three times) compared

to the standard method of the requirement specification.

The term "consistency" has somehow fuzzy meanings in

software engineering: we may understand it as a lack of

contradiction between two, or more, requirements [9][10];

and also as traceability, which means the ability to trace

the requirements to the software solutions [11][12]. In this

paper, we understand consistency as a degree of coupling

between the requirements. To measure the degree of the

internal coupling of the System Requirements Specification,

it must be treated not only as a text document, but also

in some quasi-graph form; where the vertices represent the

requirements, and the edges represent the references between

the requirements. The references between the requirements

should be created when one requirement impedes the other

(e.g. the "data backup" requirement impedes the "data restore"

requirement). These are called "trace" references. They should

also be created when two requirements complement each other

(e.g. "logging in" complements "logging off"). Other logical

references between requirements should be added "manually"

during the requirements specification.

Position Papers of the Federated Conference on Computer

Science and Information Systems pp. 265–269

DOI: 10.15439/2016F468

ACSIS, Vol. 9. ISSN 2300-5963

c©2016, PTI 265



There may be several types of requirements: functional

requirements, data requirements, and quality requirements.

Some of the quality requirements touch the reliability of

the system. System reliability depends on the resolution if

critical situations which impede the functional requirements.

Detection of unresolved critical situations (i.e. not resolved

with functional requirements) leads to the assumption that

some functional requirements may be missing. However, this

assumption must be confirmed (or denied) in the detailed

analysis of the SRS.

II. MEASURING THE SRS COMPLETENESS AND

CONSISTENCY

To evaluate the SRS quality we need a set of precise and

objective metrics. Traditionally, when an SRS document is

text written, we may count some specific weak phrases (as

"adequate", "not limited to") [13]. Having the SRS document

stored in the quasi-graph form, we defined other metrics of

the SRS completeness and consistency.

A. Metrics and Measures

We distinguished metrics and measures in quality measure-

ment. We treat a metric as a quality factor to be measured,

and a measure as a method of the measurement. We divided

measures between direct or indirect measures. We counted

direct measures directly in the document quasi-graph storage;

and we calculated indirect measures using some formulas.

Every direct measure results in some absolute number counted

directly by simple graph analysis (e.g. the number of "trace"

references). These we called objective measures, as they may

be objectively evaluated. Objective measures, although easy

to evaluate, are insufficient to express a complete document

quality. Some human analysis is needed to reveal the missing

requirements, or to find inconsistent ones. The values resulting

from this analysis are called expert measures, as the document

review must be done by and expert. The review of the SRS

should contain a list of missing requirements and a list of

quality remarks to already defined requirements. As expert

measures are less reliable than objective ones, the usage of

expert measures is minimized. Two expert measures are used

in this paper: one for completeness and one for consistency.

Indirect measure expression usually divides two direct measure

results. The result value is scaled from zero to one. Zero

means the worst result and One means the best (ideal) result.

When the numerator measure gives the number of "negative"

elements (e.g. missing elements), then the function for an

indirect measure is defined by a formula:

F (m,n) = Floor(1−m/n, 2)

where the Floor function rounds the first argument towards

zero (with the precision of two decimal digits); m and n are

direct measures. Rounding towards zero is needed as the result

value of 1.0 can only appear in the ideal situation (e.g. no

missing elements).

If one metric is evaluated with several measures, some

aggregate function is needed, e.g. a weighted mean function:

Avg(m1,m2, ...mn) =
w1m1 + w2m2 + ...+ wnmn∑

i
wi

where m1,m2, ...mn are component measures, and

w1, w2, ...wn are their weights respectively.

Some other terms used in metrics and measures definitions

(below) need explanation. These terms are: element, meta-

class, relationship, reference and solution. An element means

an item of the software project (e.g. the system requirement).

Each element has its meta-class, which describes its possible

and required properties and relationships (e.g. FunctionalRe-

quirement is one of the meta-classes). Relationships are not

only references, which are meaningful only in the development

process, but also associations meaningful in the runtime.

Solution means here an element, or a set of elements, defined

with a "trace" reference as the elaboration of some element.

B. SRS Completeness Metrics and Measures

Proposed metrics of the SRS Completeness (CP) are: For-

mal Completeness (FCP), Semantic Completeness (SCP) and

Reference Completeness (RCP) – see fig.1. Formal Complete-

ness (FCP) involves Template Completeness Factor (TCPF)

and Definition Completeness Factor (DCPF). First factor

(TCPF) tells us, how completely a template of the document

is filled. We count the number of elements required by a

document template (the number of required meta-classes), and

search missing ones. Second factor (DCPF) represents the

number of elements with incomplete definition (with one, or

more, properties required by meta-classes missing).

Semantic Completeness (SCP) uses an expert measure –

Missing Semantic Element Count (MSEC). The missing el-

ements must be listed by an expert revising the document. To

get the value scaled from Zero to One we must divide MSEC

not only by the Total Semantic Element Count (TSEC), but by

the sum of TSEC and MSEC.

Reference Completeness (RCP) depends on two measures.

First; a solution completeness factor (SLCF), evaluates the

"trace" references leading to the "solutions". Second; an inter-

nal reference factor (IRFF), evaluates all missing references,

that are required by the elements’ meta-classes.

C. Consistency Metrics and Measures

Consistency of the SRS (CS) depends on two metrics:

Formal Coherence (FCH) and Semantic Consistency (SCS)

– see fig. 2.

Formal Coherence (FCH) is measured using graph-theory.

When the document (SRS) is represented in a quasi-graph

form, nodes represent project elements (requirements) and

edges represent relationships (references). Although the ref-

erences are directed, we evaluate Weak Coherence Factor

(WCHF), which is appropriate for undirected graphs (edge

direction is examined while measuring correctness – beyond

this paper). WCHF is based on Weak Coherence Count

(WCHC), which means a count of subgraphs which are

266 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



Fig. 1. Completeness metrics and measures

internally coherent, but mutually separate. Besides WCHF, we

may also evaluate Relationship Strength Factor (RSTF), which

represents the number of bridges in the graph (i.e. references

which solely join two parts of the graph).

Semantic consistency (SCS) depends on Semantic Consis-

tency Factor (SCF), which is measured by an expert. The

expert must judge if the semantic elements (requirements) are

consistent with other elements, and mark inconsistent ones.

Fig. 2. Consistency metrics and measures

III. EXPERIMENT

A set of metrics and measures for completeness and consis-

tency (shown above) was implemented in the IQuest system,

which evaluated not only completeness and consistency, but

also correctness, understandability, modifiability and verifia-

bility. However we focus in this paper on the completeness

and consistency, as these metrics showed the most interesting

coincidence.

The IQuest system allowed us to import a sample SRS

document written in Microsoft Office document format as

an object-based requirements model where each requirement

became an object and these objects were linked with refer-

ences entered by a requirement manager. We used this object

model to evaluate the consistency of a sample requirement

specification. The IQuest system evaluated objective quality

measures automatically, however an expert had to entered few

data to evaluate the expert measures.

A. Evaluating the Quality of a Sample SRS Document

The sample SRS document for a Web Supermarket was

elaborated for the research. The specification was presented as

the set of requirement specification tables (see fig. 3). Note that

references used to evaluate the SRS consistency are marked

with ‘#’

Fig. 3. Example of the functional requirement

Three incrementing versions were prepared and their qual-

ity was evaluated. The completeness was decided (for the

research) to be the most important factor for requirements

specification. The correctness and consistency were decided

to be less important and the importance of other metrics was

only supplementary. The weights of 40, 20, 20, 10, 5, and

5 were assigned to the quality factors. All the metrics were

scaled from 1 (worst) to 6 (best).

The objective measures was not only ones which led to new

requirements definition. In the second version also a business

expert was asked to find out missing requirements.

B. First version – no quality requirements defined

First version of the SRS document was prepared very

thoroughly – as much as 69 functional requirements were spec-

ified. Although the quality requirements were not specified,

its quality was evaluated. No expert was asked for evaluation

because the specification was not finished at that moment. The

results are shown in the tab. I.

As no quality requirements were specified, the low value of

completeness agreed with expectations.

JAROSŁAW KUCHTA: COMPLETENESS AND CONSISTENCY OF THE SYSTEM REQUIREMENT SPECIFICATION 267



TABLE I
QUALITY RESULTS OF THE FIRST VERSION OF THE SPECIFICATION

Metric Weight Value

Completeness 40 3.1

Consistency 20 5.8

Correctness 20 6

Understandability 10 5

Modifiability 5 5.95

Verifiability 5 5.8

Total quality 4.65

C. The second version – quality requirements consideration

Based on the first SRS, the next version with 36 quality

requirements was developed. The quality requirements were

revealed according to the template presented by table II. Ex-

ceptional, critical and breakdown situations were deliberated

for reliability. For each such situation, a functional requirement

was specified to prevent, or fix, this situation. That resulted

in 99 new functional requirements. The results of the quality

evaluation for the second version are shown in table III.

Despite expectation, completeness increased very little

(from 3.1 to 3.65). Two explanations were discovered by the

detailed result analysis (see table IV). First, it is impossible

to achieve high completeness without filling the template

completely (FCP). Second, the Reference Completeness (RCP)

grew, but not satisfying. Despite intensive work, about 30%

of elements were left without solution.

D. Third version – consistency consideration

In the third version, the formally "unresolved" goals; ad-

vantages, needs, tasks and problems, were deliberated. The

emphasis was laid on increasing consistency. Some of the ana-

lyzed elements had already solutions in the form of functional

requirements, but 30 new requirements had to be specified.

The results of quality evaluations are shown in table V.

Although the increment of the consistency was very small

(from 5.85 to 5.9), the completeness grew from 3.65 to 5.2.

The main reason was the growth of Reference Completeness

(RCP) from 4.44 to 5.9.

E. Relationship between consistency and completeness

Fig. 4a presents consistency impact on completeness in the

three versions of the specification. This impact is significant

(not only) in a mathematical aspect. More important is the im-

pact of consistency on the number of functional requirements.

As you can see (rys. 4b), this number grew about 3 times (from

69 to 198). It means that without quality evaluation and with-

out consistency increment about 2/3 of functional requirements

would be omitted and the requirements specification would be

incomplete.

IV. CONCLUSIONS AND FURTHER RESEARCH

Consistency measurement of the Software Requirement

Specification requires a quasi-graph representation of this

document; with nodes representing requirements, and edges

representing references between requirements. The document

TABLE II
THE STRUCTURE OF QUALITY REQUIREMENTS PART OF SRS

TABLE III
QUALITY RESULTS OF THE SECOND VERSION OF SPECIFICATION

Metric Weight Value

Completeness 40 3.65

Consistency 20 5.85

Correctness 20 5.9

Understandability 10 5.3

Modifiability 5 6

Verifiability 5 5.8

Total quality 4.9

TABLE IV
DETAIL COMPARISON OF THE COMPLETENESS EVALUATION FOR THE

FIRST AND THE SECOND VERSION

Symbol Metric or measure v.1 v.2

CP Completeness 3.1 3.65

FCP Formal Completeness 4.5 5

TCPF Template Completeness Factor 0.75 0.87

MTEC Missing Template Element Count 2 1

RTEC Required Template Element Count 8 8

DCPF Definition Completeness Factor 0.94 0.92

IDEC Incomplete Defined Element Count 19 45

TDEC Total Defined Element Count 375 578

SCP Semantic Completeness - 5.95

SECF Semantic Element Completeness Factor - 0.99

MSEC Missing Element Count - 3

TSEC Total Specified Element Count 375 578

RCP Reference Completeness 4.05 4.44

SLCF Solution Completeness Factor 0.62 0.7

MSLC Missing Solution Count 65 71

RSLC Required Solution Count 176 242

IRFF Internal Reference Factor 0.99 0.99

MIRC Missing Internal Reference Count 1 5

RIRC Required Internal Reference Count 260 577

268 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



TABLE V
QUALITY RESULTS OF THE THIRD VERSION OF SPECIFICATION

Metric Weight Value

Completeness 40 5.2

Consistency 20 5.9

Correctness 20 6

Understandability 10 5.9

Modifiability 5 6

Verifiability 5 5.9

Total quality 5.6

Fig. 4. Consistency impact to completeness (a) and to the number of
functional requirements (b) in the three versions of the specification. Dotted
line at (a) shows the expected impact.

template defines permitted and required elements that should

appear in the document. A set of objective measures may be

defined to automate evaluation of the quality of the document.

These objective measures are supplemented with expert mea-

sures, which are evaluated in the document review process.

The vast impact of consistency on completeness can be

noticed while evaluating quality of the SRS document. Con-

sistency does not guarantee completeness, but it may help to

reveal much more requirements than using traditional methods.

Basing on this preliminary study we prepared the next

experiment. At the first part of the experiment we collected

about 50 SRS documents from developers which used the

proposed method. Next we gave the same project subjects for

other developers using agile methods. We plan to compare

the number of functionalities discovered with traditional and

with agile methods. However the results will be available after

several months.

REFERENCES

[1] “Ieee guide for software requirements specifications,” IEEE Std 830-

1984, pp. 1–26, Feb 1984. doi: 10.1109/IEEESTD.1984.119205
[2] A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh,

G. Kincaid, G. Ledeboer, P. Reynolds, P. Sitaram, A. Ta, and M. The-
ofanos, “Identifying and measuring quality in a software requirements
specification,” in Software Metrics Symposium, 1993. Proceedings., First

International, May 1993. doi: 10.1109/METRIC.1993.263792 pp. 141–
152.

[3] T. Shell, “System function implementation and behavioral modeling: A
systems theoretic approach,” Systems Engineering, vol. 4, no. 1, pp. 58–
75, 2001. doi: 10.1002/1520-6858(2001)4:1<58::AID-SYS6>3.0.CO;2-
Z. [Online]. Available: http://dx.doi.org/10.1002/1520-6858(2001)4:
1<58::AID-SYS6>3.0.CO;2-Z

[4] R. S. Carson and T. Shell, “Requirements completeness: Absolute or
relative? comments on "system function implementation and behavioral
modeling"[syst eng 4 (2001), 58-75],” Systems Engineering, vol. 4,
no. 3, pp. 230–231, 2001. doi: 10.1002/sys.1019. [Online]. Available:
http://dx.doi.org/10.1002/sys.1019

[5] S. H. Kan, Metrics and Models in Software Quality Engineering, 2nd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2002. ISBN 0201729156

[6] E. Knauss and C. E. Boustani, “Assessing the quality of software require-
ments specifications,” in 2008 16th IEEE International Requirements

Engineering Conference, Sept 2008. doi: 10.1109/RE.2008.29. ISSN
1090-705X pp. 341–342.

[7] R. Pressman, Software Engineering: A Practitioner’s Approach, 6th ed.
New York, NY, USA: McGraw-Hill, Inc., 2005. ISBN 0077227808,
9780077227807

[8] S. Ambler, Agile Modeling: Effective Practices for eXtreme Program-

ming and the Unified Process. New York, NY, USA: John Wiley &
Sons, Inc., 2002. ISBN 047127190X

[9] “Ieee recommended practice for software requirements
specifications,” IEEE Std 830-1998, pp. 1–40, Oct 1998. doi:
10.1109/IEEESTD.1998.88286

[10] D. Zowghi and V. Gervasi, “On the interplay between consistency,
completeness, and correctness in requirements evolution,” the Journal

of Information and Software Technology, Volume 45, Issue, vol. 14, p.
2003, 2003.

[11] T. T. Moores and R. E. M. Champion, “Software quality through the
traceability of requirements specifications,” in Software Testing, Reliabil-

ity and Quality Assurance, 1994. Conference Proceedings., First Inter-

national Conference on, Dec 1994. doi: 10.1109/STRQA.1994.526392
pp. 100–104.

[12] G. Kotonya and I. Sommerville, Requirements Engineering: Processes

and Techniques, 1st ed. Wiley Publishing, 1998. ISBN 0471972088,
9780471972082

[13] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt, “Automated analysis
of requirement specifications,” in Proceedings of the 19th International

Conference on Software Engineering, ser. ICSE ’97. New York, NY,
USA: ACM, 1997. doi: 10.1145/253228.253258. ISBN 0-89791-914-9
pp. 161–171. [Online]. Available: http://doi.acm.org/10.1145/253228.
253258

JAROSŁAW KUCHTA: COMPLETENESS AND CONSISTENCY OF THE SYSTEM REQUIREMENT SPECIFICATION 269


