
An Iteration Space Visualizer for Polyhedral Loop
Transformations in Numerical Programming

Marek Palkowski, Wlodzimierz Bielecki
West Pomeranian University of Technology in Szczecin

ul. Zolnierska 49, 71-210 Szczecin, Poland

Email: mpalkowski@wi.zut.edu.pl, wbielecki@wi.zut.edu.pl

Abstract—An iteration space visualizer is presented to analyze
parallelism in loop nests including parallelism in tiled code of
numerical programs. The tool visualizes exact data dependences
available in arbitrarily nested loops as well as tiles generated
with TRACO by means of the transitive closure of a loop nest
dependence graph. Various graphical operations such as rotation,
zooming, coloring and filtering allow for a detailed examination
of dependences, iteration space slices, and shapes of generated
tiles. The visualizer is a built-in TRACO module which collects
results generated with TRACO and it is launched automatically
when TRACO finishes code generation. The visualizer helps
high-performance application developers discover parallelism
available in loop nests and analyze tiled code produced by means
of the polyhedral model.

I. INTRODUCTION

A
UTOMATIC parallelization in numerical programs

has been the topic of research for many decades. In

the majority of cases, the techniques focus on two basic

steps: dependence analysis and program transformations.

Despite the great steps forward in this area, sophisticated

dependences, the construction of loop transformations, and

statement instance mappings are beyond what the programmer

is able to see at first glance [1].

This paper focuses on a graphical support for the automatic

parallelizer and optimizer, TRACO, – the source-to-source

compiler based on the transitive closure of a dependence graph

to transform affine loop nests. A proposed visualizer assists

both experts and non-expert programmers to understand the

results generated with TRACO [2] and code generated by it.

The TRACO visualizer is based on Python scripts which use

wrappers to the Integer Set Library (ISL) [3] and matplotlib

[4]. ISL allows users to manipulate on sets and maps while

matplotlib is a plotting library to produce 2-D figures and

3-D interactive projections. The tool collects and visualizes

data generated by TRACO, for example, dependences, code

fragments to be executed in parallel, and shapes of tiles.

The remainder of the paper is organized as follows. The next

section discusses the basics of the polyhedral model, iteration

space dependence graph and operations to manipulate maps

and sets. Section 3 briefs algorithms implemented in TRACO.

Section 4 explores visualizing functions and theirs capabilities.

Section 5 introduces related work. The last section concludes

the paper.

II. BACKGROUND

In this paper, we deal with affine loop nests where, for

given loop indices, lower and upper bounds as well as array

subscripts and conditionals are affine functions of surrounding

loop indices and possibly of structure parameters (defining

loop index bounds), and the loop steps are known constants.
To implement algorithms, we have chosen the dependence

analysis proposed by Pugh and Wonnacott [5], where depen-

dences are represented by dependence relations. A dependence

relation is a tuple relation of the form [input list]→[output

list]: formula, where input list and output list are the lists of

variables and/or expressions used to describe input and output

tuples, and formula describes the constraints imposed upon

input and output lists and it is a Presburger formula built

of constraints represented by algebraic expressions and using

logical and existential operators [5].
Standard operations on relations and sets are used, such as

intersection (∩), union (∪), difference (-), domain (dom R),

range (ran R), relation application (S′= R(S): e′∈S′iff exists e

s.t. e→e′∈R, e∈S). In detail, the description of these operations

is presented in [5], [3].
The positive transitive closure for a given relation R, R+,

is defined as follows [6] R+ = {e → e′ : e → e′ ∈ R ∨
∃e′′s.t. e → e′′ ∈ R ∧ e′′ → e′ ∈ R+}. It describes which

vertices e′ in a dependence graph (represented by relation R)

are connected directly or transitively with vertex e. Transitive

closure, R∗, describes the same connections in a dependence

graph (represented by R) that R+ does plus connections of

each vertex with itself.
In sequential loop nests, the iteration i executes before j

if i is lexicographically less than j, denoted as i ≺ j, i.e.,

i1 < j1 ∨ ∃k ≥ 1 : ik < jk ∧ it = jt, for t < k.
An ultimate dependence source is a source that is not

the destination of another dependence. Set including all de-

pendence sources,SUDS is calculated as follows: SUDS =
domain(R) − range(R), where a dependence relation R

describes all the dependences in a loop nest.
An (iteration-space) slice is defined as follows. Given a

dependence graph defined by a set of dependence relations,

a slice S is a weakly connected component of this graph, i.e.,

a maximal sub-graph such that for each pair of vertices in the

sub-graph there exists a forward or backward path.
Let IS denotes the loop nest iteration space. A function is

called a schedule if it maps each iteration of IS onto another

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 705–708

DOI: 10.15439/2016F48

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 705

space so that all data dependences available in the loop nest

are preserved. The schedule that maps every x ∈ IS to the

first possible time step allowed by the dependences is called

the free schedule.

III. THE TRACO COMPILER

TRACO allows us to generate parallel code. Parallelization

is based on extracting synchronization-free slices or produc-

ing and applying the free-schedule. An approach to extract

synchronization-free slices takes two steps [2]. First, for each

slice, a representative statement instance is defined (it is

the lexicographically minimal statement instance from all the

ultimate sources of a slice). Next, slices are reconstructed

from their representatives and code scanning these slices is

generated.

In order to find representatives of slices, we build a relation,

RUSC that describes all pairs of the ultimate dependence

sources being transitively connected in a slice. The relation

is constrained with the intersection of the sets R∗(e) and

R∗(e′) : (R∗(e) ∩ R∗(e′)) which guarantees that vertices e

and e′ are transitively connected, i.e., they are the sources of

the same slice.

Next, set, Srepr, containing representatives of each slice is

found as Srepr = SUDS - range(RUSC). Then the remaining

sources of this slice can be found by applying the relation

(RUSC)* to set Srepr. A set, representing slice elements, is

formed by applying R* to the sources of a slice. To generate

code, we apply the CLooG library [7] or ISL [3] to the set

comprising statement instances of independent slices.

To parallelize loop nests which expose a single

synchronization-free slice, time partitioning is applied.

The algorithm, presented in paper [8], allows us to generate

the free schedule and next fine-grained parallel code; all

statement instances of a time partition can be executed in

parallel, while partitions are enumerated sequentially.

Given relations R, representing all dependences in a loop

nest, we calculate Rk, where Rk = R ◦R ◦ ...R
︸ ︷︷ ︸

k

, ”◦” is the

composition operation. Given set UDS comprising all loop

nest statement instances that are ready to execution at time

k=0, each vertex, belonging the set Sk = Rk(UDS) - R+ ◦
Rk(UDS), is connected in the dependence graph, defined by

relation R, with some vertex(ices) represented by set UDS with

a path of length k. Hence at time k, all the statement instances

belonging to the set Sk can be scheduled for execution and it

is guaranteed that k is as few as possible.

Tiling is a very important iteration reordering transfor-

mation for both improving data locality and extracting loop

nest parallelism. TRACO allows users generate parallel tiled

code by means of algorithms based on the transitive closure

of a dependence graph [2]. First, we form rectangular set

TILE(II,B) including iterations belonging to a parametric tile

as follows TILE(II, B) = {[I] | B*II +LB ≤ I ≤ min(B*(II

+1) + LB -1, UB) AND II ≥ 0}, where vectors LB and UB

include the lower and upper loop index bounds of an original

loop nest, respectively; diagonal matrix B defines the size

of a rectangular original tile; elements of vectors I and II

represent the original loop nest indices and the identifiers of

tiles, respectively; 1 is the vector whose all elements are equal

to 1.

TRACO, instead of program transformations represented

by a set of affine functions, one for each statement, uses

the transitive closure of a loop nest dependence graph to

carry out corrections of original rectangular tiles so that all

dependences of the original loop nest are preserved under the

lexicographic order of target tiles. This may lead to changing

shapes of original rectangular tiles; target tiles can be of an

arbitrary shape which is affected with dependences available

in a loop nest. Recognizing shapes from a mathematical

representation of target tiles can be difficult. The visualizer

helps recognize what are tile shapes. After code generation,

the visualizer forms a graphical representation of the iteration

space, dependences, and target tiles.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

j

i
s1

s2

Fig. 1. Iteration space and dependences of Example 1 (n=4); statement
instances are marked with the red circles and green triangles.

IV. APPLYING THE TRACO VISUALIZER

Let us consider the example from paper [9] presented below:

// Example 1.

for(i=0; i<=n; i++)

for(j=0; j<=n; j++){

a[i][j] = a[i][j] + b[i-1][j];//s1

b[i][j] = a[i][j-1 * b[i][j]; //s2

}

Figure 1 shows the iteration space and dependences for

Example 1 generated with the visualizer. Analyzing this figure,

we can discover that coarse-grained parallelism represented

with synchronization-free slices is available in the considered

loop nest (9 threads when n=4), but slices are load imbalanced.

We also can see that there exist fine-grained parallelism, i.e.,

exist time partitions: for each value of index j, we can execute

all instances of statement s2 in parallel for all values of index

i, then all instances of statement s1. Visualization helps to

706 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

0 2 4 6 8 10

0

2

4

6

8

10

i

j

Fig. 2. Dependences, tiles of the size 2x2, and slices for Example 2.

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

0
1

2
3

4
5

6
7

i

j

Fig. 3. Dependences, tiles of the size 4x4 and the schedule for Example 3.

discover parallelism available in Example 1 and what is the

type of parallelism.

For Example 2 below

// Example 2.

for(i=0; i<=9; i++)

for(j=0; j<=9; j++)

a[j+4][j+1]=a[i+2*j+1][i+j+3];

Figure 2 depicts the iteration space with dependences. The

loop tiling algorithm, implemented in TRACO, moves iteration

[1,5] from tile [0,2] to tile [0,4] because it is the destination

of the dependence whose source belongs to iteration [0,8]. For

this example, TRACO is able to find three independent slices

whose elements are tiles.

The iteration space with dependences for Example 3 is

illustrated in Figure 3. Original rectangular tiling is preserved

for this example. The figure shows tiles which are executed

according to the free schedule. Time partitions are marked by

different colors starting with the three independent green tiles.

// Example 3.

for(i=0; i<=15; i++)

for(j=0; j<=15; j++)

a[i][j] = a[i+1][i]+a[i+1][j];

Figure 4 illustrates dependences and tiles for the loop nest

below in the 3D space.

// Example 4

for(k=0; k<=15; k++)

for(i=0; i<=15; i++)

for(j=0; j<=15; j++)

a[i][j][k] = a[i+1][j-1][k];

0
2

4
6

8
10

12
14

16 0

2

4

6

8
10

12
14

16

0

2

4

6

8

10

12

14

16

i

j

k

Fig. 4. Dependences and tiles of the size 2x2 for Example 4.

We use also a 3D projection to visualize 2D tiles for the

arbitrary nested loops of Example 5, see Figure 5. The third

axis indicates numbers of statements in the loop nest.

// Example 5

for(i=0; i<=15; i++){

for(j=0; j<=15; j++)

a[i][j] = a[i+1][j-1];

for(j=0; j<=i; j++)

b[i][j] = b[i][j+1]+a[i][0]; }

Figure 6 presents four independent slices whose elements

are tiles for Example 6, the Planckian distribution. A 3D-

projection reveals synchronization-free parallelism after appro-

priate rotating.

// Example 6 - Planckian distribution, loop=n=7

for (l=1 ; l<=loop ; l++)

for (k=0 ; k<n ; k++){

y[k] = u[k] / v[k];

w[k] = x[k] / (exp(y[k]) -1.0);

}

Summing up, we can conclude that visualization allows the

programmer to find suitable loop transformations and discover

available parallelism or code optimization.

MAREK PALKOWSKI, WLODZIMIERZ BIELECKI: AN ITERATION SPACE VISUALIZER FOR POLYHEDRAL LOOP TRANSFORMATIONS IN NUMERICAL PROGRAMMING707

0 2 4
6

8
10

12
14

16 0.0

0.2

0.4

0.6

0.8

1.0

0

2

4

6

8

10

12

14

16

i

j

s1

s2

Fig. 5. Dependences and tiles of the size 4x4 for Example 5.

0 1 2 3 4 5 6 7 0.10.2
0.30.4

0.50.6
0.70.8

0.9

0

1

2

3

4

5

6

7

l

k

s1

s2

Fig. 6. Dependences and tiles of the size 2x2 for Example 6.

V. RELATED WORK

Popular polyhedral libraries and compilers provide interface

to visualization. The PolyLib tool [10] projects loop iteration

domains by means of the VisualPolylib. LooPo [11] visualizes

loop dependences before and after automatic parallelization.

The 3D iteration space visualizer [12], [1] allows programmers

to visualize and manipulate 3D dependence graphs, and to

select a desired iteration space to start automatic parallelization

search based mainly on unimodular transformations.

Clint [13] translates manipulations back to the polyhedral

representation and ultimately transforms code to match visu-

alization. This tool seems to be the most advanced visualizer

and corresponds to extended versions of classical loop trans-

formations (reordering, shifting, interchange, fusion, splitting,

index set splitting, grain, reversal, skewing, tiling etc.).

The islplot1 and Linpy tools [14] are based on islpy2,

a Python wrapper around Sven Verdoolaeges isl [3], the

library for manipulating sets and relations of integer points

bounded by linear constraints. Both the libraries are based

on the matplotlib framework. Given the fact that TRACO

1http://tobig.github.io/islplot/
2https://documen.tician.de/islpy/

is implemented also by means of the islpy interface, we

considered these libraries for the presented approach. Islplot

allows us to draw 2D maps and sets directly from islpy classes.

However, domains of unions in isplot are drawn as separated

figures. Therefore, we draw 2D polygons of tile points building

convex hulls by means of Jarvis’ March. Moreover, islplot is

not integrated with matplotlib in 3D and provides only one

function to draw sets in WebGL. Hence, for solids we used

the interface provided by LinPy, which allows us to build the

Polyhedron object from its constraints.

VI. CONCLUSION

Visualization of results of a dependence analysis and

TRACO transformations carried out assists the development

of parallel numerical programs. The approach complements

analytical methods used in traditional automatic parallelizing

compilers. Furthermore, the tool is helpful to investigate the

use of interactive visualization for learning parallelization and

the polyhedral model. In future, we plan to provide more

interactive functions to the visualizer using event handling and

object picking provided by matplotlib. We are going also to

use the approach in order to design algorithms of arbitrary

shaped tiles.

REFERENCES

[1] Y. Yu and E. H. D’Hollander, “Loop parallelization using the 3d iteration
space visualizer,” J. Vis. Lang. Comput., vol. 12, no. 2, pp. 163–181,
Apr. 2001.

[2] M. Palkowski, T. Klimek, and W. Bielecki, “Traco: An automatic loop
nest parallelizer for numerical applications,” in Computer Science and

Information Systems (FedCSIS), Sept 2015, pp. 681–686.
[3] S. Verdoolaege, “Integer set library - manual,” Tech. Rep., 2011.

[Online]. Available: www.kotnet.org/∼skimo//isl/manual.pdf,
[4] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In

Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.
[5] W. Pugh and D. Wonnacott, “An exact method for analysis of value-

based array data dependences,” in Sixth Annual Workshop on Program-

ming Languages and Compilers for Parallel Computing. Springer-
Verlag, 1993.

[6] Wayne Kelly et al., “The omega library interface guide,” College Park,
MD, USA, Tech. Rep., 1995.

[7] C. Bastoul, “Code generation in the polyhedral model is easier than
you think,” in PACT’13 IEEE Intern. Conf. on Parallel Architecture and

Compilation Techniques, Juan-les-Pins, 2004, pp. 7–16.
[8] W. Bielecki, M. Palkowski, and T. Klimek, “Free scheduling for state-

ment instances of parameterized arbitrarily nested affine loops,” Parallel

Computing, vol. 38, no. 9, pp. 518–532, Sep. 2012.
[9] A. Lim, G. I. Cheong, and M. S. Lam, “An affine partitioning algo-

rithm to maximize parallelism and minimize communication,” in In

Proceedings of the 13th ACM SIGARCH International Conference on

Supercomputing. ACM Press, 1999, pp. 228–237.
[10] V. Loechner, “PolyLib: A library for manipulating parameterized

polyhedra,” 1999. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.9.8197

[11] M. Griebl, “Automatic parallelization of loop programs for distributed
memory architectures,” 2004.

[12] Y. Yu, “A 3d-java tool to visualize loop-carried dependences,” in
Applications, Proceedings of the International Conference ParCo’99.
College Press, 1999, pp. 17–20.

[13] O. Zinenko, C. Bastoul, and S. Huot, “Manipulating visualization, not
codes,” in International Workshop on Polyhedral Compilation Tech-

niques 2015 (IMPACT), 2015, p. 8.
[14] Mines Paristech, “Linpy documentation release 1.0,” 2014.

708 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

