
A connectionist approach to abductive problems:
employing a learning algorithm

Andrzej Gajda, Adam Kups, Mariusz Urbański
Adam Mickiewicz University

in Poznań

ul. Szamarzewskiego 89AB, 60-568 Poznań, Poland

Email: {Andrzej.Gajda, adamku, Mariusz.Urbanski}@amu.edu.pl

Abstract—This paper presents preliminary results of an appli-
cation of artificial neural networks and Backpropagation learning
algorithm to solve logical abductive problems. To represent
logic programs in the form of artificial neural networks CIL2P
approach proposed by Garcez et al. [3] is employed. Our
abductive procedure makes use of translation of a logic program
representing a knowledge base into a neural network, training of
the neural network with an example representing an abductive
goal and translation of the trained network back to the form
of a logic program. An abductive hypothesis is represented as
the symmetric difference between the initial logic program and
the one obtained after training of the network. The first part
of the paper introduces formal description of the tools used to
model the abductive process, while the second part illustrates
our contribution with results of a few computational experiments
and discusses the ways of possible improvements of the proposed
procedure.

I. INTRODUCTION

A
BDUCTION is a kind of reasoning which allows to fill

the gap between a knowledge base Γ and a puzzling

phenomenon φ, unattainable from Γ (cf. [6, 14]). We follow

the algorithmic point of view, according to which an abductive

hypothesis H “is legitimately dischargeable to the extent to

which it makes it possible to prove (or compute) from a

database a formula not provable (or computable) from it as

it is currently structured” [2, p. 88]. A short characteristic of

abduction interpreted along these lines can be found in [9].

Our goal in this paper is to use definite logic programs to

formalise a class of abductive problems and to apply neural

networks as a tool for abductive hypotheses generation.

Definite logic programs are characterised in the first or-

der language [11]. However, in our approach we use only

grounded definite logic programs [3]. Therefore, the formali-

sation of the abductive problems is restricted to the classical

propositional logic.

The connectionist approach that we adopt makes use of

positive partially recurrent one hidden-layer networks. This

is sufficient to deal with definite logic programs as indicated

in [3].

An abductive problem is stated for definite logic programs

and the abductive hypotheses are generated by means of neural

Research reported in this paper were supported by the National Science
Centre, Poland (DEC-2013/10/E/HS1/00172).

networks. Therefore, we use Connectionist Inductive Learn-

ing and Logic Programming System’s (C-IL2P) translation

algorithm proposed by Garcez et al. [3] to translate logic

programs into neural networks. The learning process of the

neural network is aimed at changing it in such a way that the

abductive goal is attained. Subsequently, the neural network is

translated back into a logic program. Differences between the

initial logic program and the one obtained from the trained

neural network may be interpreted as abductive hypotheses

generated in the learning process.
There are a few ways to model abduction using C-IL2P .

Two of them were described in [4] and they employ either

a connectionist modal logic or an neural-symbolic system for

abductive logic program. The approach that we want to present

takes advantage of network learning process (using Backprop-

agation algorithm) and program-to-network and network-to-

program translation algorithms. The main advantage of this

approach in comparison with the two previous ones lies in its

flexibility: abductive hypotheses do not have to be reduced to

the form of propositional formulas (in particular conjunctions

of atoms). At the present stage of our research we consider

only abductive goals represented by atoms, but our approach

allows for any form of an abductive goal (atoms or other

types of formulas). Abduction here can be seen as a process

of training of a network previously obtained from a logical

program. The program represents a knowledge base and an ab-

ductive goal is represented by a training example. The reverse

translation of the trained network allows to obtain abductive

hypotheses. Using this approach abductive hypotheses can be

represented by new logical formulas that are extending initial

knowledge base. However, it is also possible that modifications

or even removal of clauses from a knowledge base will

represent abductive hypotheses (some similarity can be found

in contraction and revision operations in belief revision theory,

e.g. [5]).
In order to better comprehend the stated problem let us

consider the following abductive problem. Suppose that we

established a general medical facts1: “If people suffer from a

fatigue and a fever, then they have a flu”. “If people suffer from

a fever, then they are fatigued”. “If people have a flu, then they

1Please, note that that the presented problem is only a simple toy-example,
advanced medical decision support systems are for example presented in [13,
15]

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 353–362

DOI: 10.15439/2016F484

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 353

are fatigued”. Now, we would like to know what should we

check if we suspect that someone has a flu. Formally, this prob-

lem can be described in the following way: let the knowledge

base be a set of formulas X = {B∧C → A,C → B,A→ B}
and the abductive goal be a formula A, where A means a

person has a flue, B means a person is fatigued and C means

that a person has a fever. We shall go back to this example in

every section.

II. LOGIC PROGRAMS

Definite logic programs are usually formalised in the first

order language. However, for the translation of definite logic

program to neural network it is required for the program

to be grounded. Therefore, grounded definite logic program

consists only of predicates with constants as arguments. This

is the reason for using a simpler language than the first order

language. We characterize definite logic programs following

[3] and similarly to [11].

We use language L, which consists of the following ele-

ments:

• {a1, a2, . . .}— an infinite, countable set of propositional

letters,

• ← — a primitive connective,

• , — a comma.

Atomic formulas are denoted by propositional letters a1,

a2,. . . .

Definition 2.1: Let ai for 0 ≤ i ≤ n be an atomic formula.

Horn clauses are formulas of the form:

hi = ai0 ← ai1 , . . . , ain .

The atomic formula ai0 from the definition of the Horn

clause is called the head of the Horn clause hi and will be

denoted as head(hi). Similarly, the set of atomic formulas

{ai1 , . . . , ain} forms the body of the Horn clause hi and will

be denoted as body(hi). It is possible that the body of a Horn

clause contains no atoms. Such Horn clauses will be called

facts.

Atomic formulas and Horn clauses are the only well-formed

formulas we use.

Definition 2.2: The set of well-formed formulas is defined

in the following way:

Form = {f | f = ai or f = hj}.

Definition 2.3: Let hi for 1 ≤ i ≤ n be a Horn clause. A

definite logic program is denoted by P and defined as follows:

P = {h1, . . . , hn}.

Definition 2.4: Let P be a definite logic program. We define

the set of all atoms that occur in P in the following way:

BP = {ai | for every hk ∈ P and for every

aj ∈ body(hk): ai = head(hk) or ai = aj}.

BP is called Herbrand base of program P .

We are now going to define Least Herbrand model of a

definite logic program P which in turn will be used in the def-

inition of logical consequence of a definite logic program P .

Definition 2.5: A mapping v : Form 7→ {true, false} is a

valuation defined as follows:

• for every atomic formula ai: either v(ai) = true or

v(ai) = false,

• for every Horn clause hi: v(hi) = true iff v(head(hi)) =
true or for at least one aj ∈ body(hi): v(aj) = false.

Definition 2.6: Let P be a definite logic program, BP

a Herbrand base of P and v a valuation. An (Herbrand)

interpretation of a program P w.r.t. v is a set IP of all atoms

in BP that are mapped by v to true:

IP(v) = {ai | ai ∈ BP and v(ai) = true}.

Atoms that do not belong to the interpretation IP are

mapped to false.

Definition 2.7: Let P be definite logic program, hi be a Horn

clause that belongs to P and IP a Herbrand interpretation of

P w.r.t. valuation v. Model of P is defined as follows:

mP =df IP(v) such that for every hi ∈ P: v(hi) = true.

It follows from the definition 2.7 that models of definite

logic program P are of the form of sets of atoms. Therefore,

we can establish a hierarchy over those models and use it to

define the smallest model of P .

Definition 2.8: Let S be a set. Function c : S → N returns

the number of elements in the set S.

Definition 2.9: Let P be a definite logic program and mP a

model of P . By mmin
P

we denote a minimal model of P and

define it in the following way:

mmin
P =df mP such that for every m′

P : c(mP) ≤ c(m′

P).

Definition 2.10: Let P be a definite logic program and mP

a model of P . By MP we denote the least Herbrand model

of P and defined it in the following way:

MP =df mP such that for every m′

P 6= mP :

c(mP) < c(m′

P).

Now we are going to define Immediate Consequence Opera-

tor denoted as TP . It „provides the link between the declarative

and procedural semantics of P” [11, p. 37]. Related definitions

concerning lattices are standard, therefore they are included in

the Appendix.

Definition 2.11: Let P be a definite logic program and IP
an interpretation. The mapping TP : 2BP 7→ 2BP is defined

as follows:

TP(IP) =df {head(hi) | hi ∈ P and for all aj ∈ body(hi):

aj ∈ IP}.

Proposition 2.1: Let P be a definite logic program. Then

the mapping TP is continuous.

Proposition 2.2: Let P be a definite logic program and IP be

an interpretation. Then IP is a model for P iff TP(IP) ⊆ IP .

Theorem 2.3: Let P be a definite logic program. Then

MP = lfp(TP) = TP ↑ ω.

Proofs of the propositions 2.1, 2.2 and theorem 2.3 are

described in [11, p. 37–38].

354 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Definition 2.12 (Logical consequence of P): Let P be a

definite logic program and MP be a least Herbrand model

of P . Atom ai is a logical consequence of P iff it belongs

to MP :

P � ai iff ai ∈MP .

Definition 2.13: Let P be a definite logic program and MP

the least Herbrand model of P . ai is an atom and is called the

abductive goal for P (denoted by GP) if it fulfils the following

criterion:

GP =df ai such that ai /∈MP .

Coming back to the abductive problem given in the Intro-

duction, observe that the knowledge base can expressed as a

logic program P = {A ← B,C;B ← C;B ← A} and the

least Herbrand model MP = ∅ (because TP ↑ (∅) = ∅) does

not contain fact A, which is the abductive goal. This means

that A is not entailed by P .

III. NEURAL NETWORKS

Definition 3.1: We use the following language LN to

describe neural networks:

• {i1, . . . , in, . . .} — an infinite, countable set of symbols

for input neurons,

• {h1, . . . , hn, . . .} — an infinite, countable set of symbols

for hidden layer neurons,

• {o1, . . . , on, . . .} — an infinite, countable set of symbols

for output neurons,

• {n1, . . . , nn, . . .} — an infinite, countable set of symbols

for meta variables representing any neuron,

• {n1, . . . , nn, . . .}— an infinite, countable set of symbols

for labels of neurons which are not associated with an

atom from L,

• label — an identification symbol for a neuron,

• t — a label denoting truth neuron,

• tn — a label denoting hidden layer neuron reserved for

truth neuron,

• g(x), h(x) — neuron activation functions,

• x ∈ R — a weighted sum of the input signals for the

neuron,

• Amin ∈ R — a value computed by algorithm [3, p. 48–

50],

• Af
min ∈ R — Amin enlarge factor,

• θi ∈ R — threshold of a neuron,

• θa ∈ R — threshold of additional neurons,

• β ∈ R — steepness of neuron activation function (used

only for bipolar semi-linear activation functions),

• W ∈ R — a weight computed by the algorithm [3, p. 48–

50],

• W f ∈ R — W enlarge factor,

• r ∈ R — a variable,

• l ∈ N — the number of additional hidden layer neurons

per each neuron in the output layer.

Definition 3.2: Input neurons are tuples of the form:

ii =df 〈label, g(x), A
m
min〉

where:

• label — a symbol of the represented atom form P ,

• g(x) = x,

• Amin ∈ R — if g(x) ≥ Amin then label is mapped to

true,

• the output signal of the neuron is equal to g(x).

Definition 3.3: Truth neuron is an input neuron with the

following properties:

• label = t,
• g(x) = 1.

Definition 3.4: Hidden layer neurons are tuples of the form:

hi =df 〈label, h(x), θh, A
m
min〉

where:

• label — ni associated with clause hi from P ,

• h(x) = 2

1+e−β(x−θh) − 1,

• θh ∈ R,

• Amin ∈ R — if h(x) ≥ Amin then label is mapped to

true,

• the output signal of the neuron is equal to h(x).

Definition 3.5: Output neurons are tuples of the form:

oi =df 〈label, h(x), θo, A
m
min〉

where:

• label — a symbol of the represented atom form P ,

• h(x) = 2

1+e−β(x−θo) − 1,

• θo ∈ R,

• Amin ∈ R — if g(x) ≥ Amin then label is mapped to

true,

• the output signal of the neuron is equal to h(x).

Definition 3.6: Let i1, . . . , in be input neurons. By NI we

denote the set of all input neurons:

NI = {i1, . . . , in}.

Definition 3.7: Let h1, . . . , hn be input neurons. By NH we

denote the set of all hidden layer neurons:

NH = {h1, . . . , hn}.

Definition 3.8: Let o1, . . . , on be input neurons. By NO we

denote the set of all output neurons:

NO = {o1, . . . , on}.

Definition 3.9: Let NI , NH and NO be the set of all input,

hidden and output neurons respectively. By N we denote the

set of all neurons:

N = NI ∪NH ∪NO.

Definition 3.10: Let ii, ik and hj , hl were input and hidden

layer neurons respectively. By Ci→h we denote the set of

the connections from input to hidden layer neurons. The

connection runs from the first neuron in the tuple to the second:

Ci→h = {〈ii, hj〉, . . . , 〈ik, hl〉}.

Definition 3.11: Let hi, hk and oj , ol were hidden layer

and output neurons respectively. By Ch→o we denote the set

ANDRZEJ GAJDA ET AL.: A CONNECTIONIST APPROACH TO ABDUCTIVE PROBLEMS: EMPLOYING A LEARNING ALGORITHM 355

of the connections from hidden layer to output neurons. The

connection runs from the first neuron in the tuple to the second:

Ch→o = {〈hi, oj〉, . . . , 〈hk, ol〉}.

Definition 3.12: Let oi and ij were output and input neurons

respectively. By Cr we denote the set of the recursive connec-

tions from output to input neurons. The connection runs from

the first neuron in the tuple to the second:

Cr = {〈oi, ij〉 | oi(label) = ij(label)}.

Definition 3.13: Let ni, nk, nj , nl be neurons. By Ca we

denote the set of the additional connections. The connection

runs from the first neuron in the tuple to the second:

Ca = {〈ni, nj〉, . . . , 〈nk, nl〉}.

Definition 3.14: C is the set of all connections in the

network:

C = Ci→h ∪ Ch→o ∪ Cr ∪ Ca.

Definition 3.15: Let ni, nj be neurons. The function w :
C → R establishes the weight of the connection between two

connected neurons:

• if 〈ni, nj〉 ∈ Cr then w(〈ni, nj〉) = 1,

• if 〈ni, nj〉 ∈ Ca then w(〈ni, nj〉) ∈ [−r, 0) ∪ (0, r],
• otherwise w(〈ni, nj〉) = Wm.

Definition 3.16: Let ni, nj be neurons. The set of all weights

is denoted by W . It consists of the tuple, where on the first

and second place are connected neurons and on the third the

weight of the connection:

W = {〈ni, nj , w(ni, nj)〉 | 〈ni, nj〉 ∈ C}.

Definition 3.17: Neural network denoted by N is a tuple:

N =df 〈N , C,W〉.

Definition 3.18: Let P be a definite logic program and

GP an abductive goal. By TP→N we denote the transla-

tion from P to N w.r.t. the set of predetermined factors

{l, Af
min,W

f , β, θa, r}:

TP→N(〈P, {l, Af
min,W

f , β, θa, r}〉) =df 〈P,N〉,

N is obtained from P in the following way:

1) Calculate the following values by means of the algorithm

[3, p. 48–50]:

• Amin,

• W .

2) Calculate the following values:

• Am
min = Amin +Af

min,

• Wm = W +W f .

3) For every atom ai ∈ BP an input neuron ii is added

to the set of input neurons NI . Properties of each input

neuron are the following:

• label = ai.

4) For every clause hi ∈ P , if body(hi) 6= ∅ then a hidden

layer neuron hi is added to the set of hidden layer

neurons NH . Properties of each hidden layer neuron are

the following:

• label = ni,

• θo is computed as in the algorithm [3, p. 48–50].

5) For every atom in ai ∈ BP an output oi neuron is

added to the set of output neurons NO. Properties of

each output neuron are the following:

• label = ai,
• if ai ∈ Bh

P
then θo is computed as in the algorithm

[3, p. 48–50], otherwise θo = θa.

6) For GP , name = ‘gGP ’ (letter ‘g’ is added to the

propositional letter assigned to atom GP) and:

• if GP /∈ BP then:

– an input neuron is added to the set of input

neurons NI where: label = name,

– an output neuron is added to the set of output

neurons NO where: label = name, θo = θa,

• otherwise:

– label fields in neurons associated with GP in

input and output set of neurons are changed to

name.

7) Truth neuron t is added to the set of input neurons NI .

8) A hidden layer neuron is added to the set of hidden layer

neurons NH with the following properties:

• label = tn,

• θh = 0.

9) For each neuron in the set of output neurons NO add l

additional neurons to the hidden layer with the properties

(the overall number of the additional neurons is: k =
l · c(NO)):

• label = ani, where i ∈ [1, k],
• θh = 0.

10) Generate the set of all neurons N .

11) For every hi ∈ P:

• for every aj ∈ body(hi) add a tuple 〈ij , hi〉 to the

set Ci→h, where ij(label) = aj ,

• for ak = head(hi):

– if body(hi) = ∅ then add tuple 〈ht, ok〉 to the set

Ch→o, where ht(label) = tn and ok(label) = ak,

– otherwise add tuple 〈hi, ok〉 to the set Ch→o,

where ok(label) = ak.

12) For every oi ∈ NO add tuples 〈hj , oi〉 to the set Ca,

where hj(label) = ank. Every output neuron oi should

be connected with l additional hidden neurons that are

assigned to it2.

13) For every oi ∈ NO: add tuples 〈ht, oi〉 to the set Ca if :

• ht(label) = tn and

• 〈ht, oi〉 /∈ Ch→o.

2For example: we have 2 output neurons and we set the number of
additional neurons per output neuron l = 2. In this case we establish
connections between the first two additional hidden layer neurons with the
first output neuron, and the other two additional hidden layer neurons with
the second output neuron.

356 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

i-A

i-B

i-C

i-t

o-A

o-B

o-C

Fig. 1. A diagram of a neural network generated for the program in Example
1. The input neurons are labelled i-X , where X is a letter referring to an
atom in the body of a clause, and output neurons are labelled o-Y , where
Y refers to an atom in the head of a clause. The rest of the neurons are
hidden layer units which represent possible clauses. Red color represents an
abductive goal (fact A), purple color represents formula A ← B,C, green
color represents formula B ← C, blue color represents formula B ← A.
Yellow color represents the abductive hypothesis obtained for the problem (a
fact C).

14) For every ii ∈ NI , for every hj ∈ NH : add tuple 〈ii, hj〉
to the set Ca if:

• hj(label) 6= tn or

• 〈hj , oz〉 /∈ Ch→o, where ii(label) = oz(label).

15) Generate the set of recursive connections Cr.

16) Generate the set of all connections C.

17) Generate the set of all weights W .

18) Generate the neural network N.

The result of the application of the above procedure to

the logic program obtained from the exemplary problem is

depicted in Fig. 1.

Definition 3.19: Let N be a neural network. By TN→P we

denote the translation from N to P:

TN→P(N) =df 〈N,P〉,

where P is obtained from N by using the pedagogical ap-

proach described in [3, Chapter 5].

Using the naive version of pedagogical approach we simply

map input neurons into output neurons in the following way:

for each output neuron we check all combinations of input

values for all input neurons relevant for this output neuron.

In the case of the activation of the considered output neuron

we associate the atom represented by this neuron with the

following clause hi: head(hi) is the considered atom and the

body consists of the atoms represented by input neurons which

were set to 1.0 and the negated atoms represented by input

neurons that were set to −1.0. For example for output neuron

with label = C with only one relevant input neuron with

label = A, if it is the case that for the considered input

neuron g(x) = 1.0 and for the output h(x) > Amin then we

obtain the clause C ← A; analogically, if it is the case that for

the considered input neuron g(x) = −1.0 and for the output

h(x) > Amin then we obtain the clause C ← nA (where nA
means negated A). The set of clauses extracted from a neural

network is minimized by means of the the Quine-McCluskey

algorithm [7, 12].

The results of learning and translation of the running

example are presented in Section VI-A.

IV. ABDUCTION

Traditionally abduction can be seen as a process of search-

ing for explanations of a problem during which additional in-

formation is obtained (see [1, p. 74] on abductive explanatory

characterization styles). Formally speaking, whenever we have

some knowledge base K and abductive goal A , the abduction

leads to generation of some additional formulas h1, . . . , hn,

that are not present in K, but which together with formulas in

K enable derivation of A. In the approach presented in this

paper, this does not necessarily has to be the case. It is possible

that after a training of the network which represents logical

program/knowledge base with an example that represents an

abductive goal, translation of the trained network back to the

form of logical clauses will change the initial program in

other ways than just extending it. It may happen that some

formulas will be modified (e.g. by removing or adding some

atoms in the body of some clauses) or they can be even

removed from the initial program (it is probably a matter of

discussion whether it is a desirable phenomenon or not). In our

approach each such modification can be seen as an abductive

hypothesis, hence the term hypothesis gain somewhat dynamic

character. This approach is more flexible than the traditional

one and allows more interesting conceptual applications for

the abduction, in particular accomodating substantial revisions

of the initial knowledge base (see abductive schematics in

[2, p. 47]). The general scheme of the proposed procedure

is depicted in Fig. 2.

The abductive procedure begins in the left upper corner

of the scheme presented in Fig. 2. The knowledge base is

represented by the definite logic program P and there is a

fact φ which cannot be derived from the knowledge base. The

fact φ is of the form of an atom ai and the abductive problem

is represented by the fact that ai /∈MP .

The first step of the abductive procedure is the translation of

the P to a neural network N. The first step of the translation

is obtained by means of the algorithm developed by Garcez

in [3, p. 49]. The difference is that we add all atoms from the

BP along with the ai to the input (NI) and output (NO) layer

of the N (steps 3 and 5 in TP→N). In case of absence of the

facts in P , we also add a truth neuron t (which gives always

1 on the output) to NI (step 7 in TP→N). The hidden layer

ANDRZEJ GAJDA ET AL.: A CONNECTIONIST APPROACH TO ABDUCTIVE PROBLEMS: EMPLOYING A LEARNING ALGORITHM 357

Logic

program

P

Neural network

N

Trained

neural network

N′

Changed

logic program

P ′

TP→N

Backpropagation

training

TN→P

Difference

dP(P,P
′)

Fig. 2. A scheme of the abductive procedure

(NH) is modified in the following way: we add tn neuron,

which is reserved only for t neuron from NI , and a number

of additional atoms per clause and ai (steps 8 and 9 in TP→N).

The set of all connections from input to hidden layer (Ci→h)

is enriched by the additional connections running from every

atom in NI to NH with the exception of t and tn neurons.

There is a unique connection between t and tn. Additional

connections do not double the connections obtained by the

previous step. We also forbid additional connections from

input to the hidden layer neurons that are connected with an

output neuron with the same label as the neuron from input

layer. In other words, additional connections cannot allow

to formulate formulas of the form A ← A. There are also

additional connections added to the set of connections from

hidden to output layer (Ch→o). Those connections run from

additional neurons assigned to the particular clause from P
to the neuron which represents the head of the concerned

clause. The neuron tn from the hidden layer connects with

every neuron from output layer, except for the neuron which

represents the fact φ denoted by ai. The function w gives every

additional connection a random value from the range [−r, r]
(with the exception of 0).

After the whole neural network N is completed, the training

begins with the use of the standard backpropagation algorithm.

The training set consists of only one element: a table with all

input atoms set to −1 and all output atoms set to 1. Error

calculation is performed after N achieves the stable state.

Trained neural network N′ is then translated back to logic

program P ′. We define the difference between P and P ′ as

dP(P,P
′).

Definition 4.1: Let P and P ′ were a definite logic programs.

The difference between P and P ′ is denoted by dP(P,P
′):

dP(P,P
′) = (P ′ \ (P ∩ P ′)) ∪ (P \ (P ∩ P ′)).

The change of the logic program defined as a symmetric

difference is interpreted as a set of abductive hypotheses.

Definition 4.2: Let P be a definite logic program and

N a neural network obtained from P by the translation

TP→N. Let us further assume that N′ is obtained from N

by backpropagarion training described above. After translation

of the N′ to P ′ by translation TN→P the set of abductive

hypotheses HP can be defined in the following way:

HP = dP(P,P
′).

V. IMPLEMENTATION

To implement the ideas given above, we have decided to

use Framsticks software [10] — a versatile tool which among

its many merits, gives the possibility to perform computational

experiments concerning artificial neural networks. Framsticks

platform is equipped with an advanced scripting language that

easily enables any kind of experiment. This, together with an

advanced network simulator, makes it a suitable tool for the

research presented in our article. Apart from that, the software

was already used in computational experiments concerning

logical abduction [8, 9].

The whole implementation can be seen as a general frame-

work consisting of scripts representing operations described

earlier in the text. Hence, the whole abduction experiment can

be represented as the knowledge flow between different scripts

which is schematically depicted in Fig. 2.

The first important part implemented is the algorithm of

translation of the default logic programs into one-hidden layer

neural networks described in Sect. IV.

Next, Backpropagation algorithm with momentum has been

programmed as it was not available in Framsticks software

that is mainly focused on evolutionary optimisation. Finally,

the algorithm translating (trained) neural networks into logic

programs, described in Sect. IV has been also implemented.

The whole learning procedure, however, has been modified

(in comparison to the standard application of Backpropagation

algorithm) and adapted to the needs of the presented research.

The training set for any abductive problem consists of only

one training example which in its input part contains only

−1.0 values. This represents the situation where the operator

TP starts from the bottom of the lattice of all possible

interpretations of P . The values in the output part are now

selected arbitrarily (apart from the value related to the neuron

representing an abductive goal, which is always set to 1.0),

but as mentioned later in Sect. VII solving this issue is one

of the immediate future tasks. The scheme of learning is

also modified as each change of the weights is based on

the error calculation performed after the network achieves

stable state (after several cycles of signal propagation). The

network-to-program translation is implemented using the brute

force approach (sometimes called pedagogical, which is of

exponential complexity with respect to the number of input

neurons), that is inefficient, especially for more complicated

problems. However, as complexity-reducing approaches may

be associated with lack of completeness and soundness of

the translation [3, Chapter 5] and a general view on the

abductive process is needed at the moment, we have decided

to temporarily pay the price of the computational cost. The

future plans include reduction of complexity of the used

methods. Yet another issue related to the network-to-program

358 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Fig. 3. A learning error chart for the Example 1.

translation is that it demands several stages of processing of

the obtained clauses. In the present approach the first stage of

translation may result in obtaining redundant information (e.g.

two formulas of the form A← B,¬C and A← B,C can be

obtained, which should be reduced to A← B).

VI. RESULTS

This section presents preliminary results for two toy-

example problems. The first example is presented in more

detailed way to demonstrate how the procedure works and

it concerns the problem provided in the introduction.

A. Example 1

The knowledge base for the Example 1 is P = {A ←
B,C;B ← C;B ← A} and the abductive goal is a fact A.

According to the procedure described in Sect. IV, the network

obtained after translation of P is extended to contain additional

hidden-layer nodes and connections to enable generation of

new concepts in the knowledge base. To perform learning we

prepared a training example in which every input neuron sends

a signal of value −1.0 and every output value should be equal

1.0.

The learning procedure is a modified version of a Back-

propagation algorithm, as mentioned earlier and in Sect. IV to

let the network compute the fix point of the program.

The learning error is presented in Fig. 3. As it can be

seen the error was minimized rather quickly (after a bit more

than 60 epochs), which is not surprising as the training set

contained only one example.

The translation of the network back to the form of a logical

program resulted in the following set of formulas Pt = {A←
B,C;B ← nC,A, t;B ← C, nA, t;B ← C,A, t;C ←
nA, nB, t;C ← nA,B, t;C ← A, nB, t;C ← A,B, t},
where t stand for truth and n is a negation (which at this

stage may be interpreted as negation as a failure — however

it is removed during reduction of the obtained logic program).

Further reduction of the obtained set of formulas resulted in

the set Ptr = {A ← B,C;B ← C;B ← A;C}. This means

that the initial knowledge base was extended by a fact C,

which is an abductive hypothesis for the problem.

B. Example 2

Example 2 demonstrates an effect of increase of the number

of hidden neurons (which represent the potential concepts

that can be learned by a network, see Sec. IV) and the role

of the initial state of the network (represented by randomly

initiated weights of the additional connections). In order to

preliminarily examine these effects we performed the abduc-

tive procedure several times with other parameters fixed. The

knowledge base is P = {A ← B;A ← C;D ← E;C ←
E;B ← C} and an abductive goal is a fact A. The training

example in the output part contained only 1.0 values. The

most frequent program obtained from a network containing

one additional hidden neuron per each output neuron is Pt1 =
{A ← B;A ← C;D ← E;C ← E;B ← C;E} — which

means that the abductive hypotheses is E. The most frequent

definite logic3 program obtained from the trained networks

with 17 additional hidden-layer neurons per output neuron is

Pt2 = {A ← B;A ← C;D;C;B ← C;E}. This means

that the abductive hypothesis is: E and change of formulas

D ← E and C ← E into respectively D and C. This example

illustrates two phenomenons. Firstly, the knowledge base can

be modified during the learning process: for example clause

D ← E has been strengthened into a fact D. Secondly, the

number of hidden-layer neurons can influence the obtained

solutions for abductive problems. These two observations in

turn mean, that a size of hidden layer represents a “reasoning

potential” of a network and may possibly be used later to

control the quality of obtained hypotheses. In the presented

exemplary result, a greater number of the hidden neurons

resulted in the lowered quality of the obtained hypothesis: this

is because, D does not help with the derivation of A and the

hypothesis contains redundancy as A can be derived from both

E and C. Moreover, C can be derived from E. This lowers

the internal minimality of the hypothesis, understood as non-

derivability of one of the subformula of the hypothesis from

another. Note, however, that the increased number of neurons

is not completely unpromising, as the best solution (obtained

most frequently for networks with the lower number of hidden

neurons) also appeared in the set of possible solutions, but

much less often.

Interestingly, further analyses revealed one more interesting

issue related to the increased number of hidden neurons and

connections. Apparently, in the larger networks the abductive

processes became more sensitive to the initial state of the con-

nections (with randomly initialized weights). The repetitions

of the abductive experiments resulted in establishing different

abductive hypotheses and this diversity was bigger than in the

case of the network with lower number of neurons. The knowl-

edge bases obtained from the subsequently trained networks

with the larger number of neurons were represented i.a. by the

3In this work we purposely left out of analysis other kinds of logic
programs, however the most frequent program obtained with these set of
parameters was actually a general logic program.

ANDRZEJ GAJDA ET AL.: A CONNECTIONIST APPROACH TO ABDUCTIVE PROBLEMS: EMPLOYING A LEARNING ALGORITHM 359

following sets of formulas: {A ← B;A ← C;D ← E;C ←
E;B;E}, {A ← B;A ← C;D → E;C;B;E}. These few

results preliminarily demonstrate that random initialization

of the network which is capable of acquiring new concepts

(due to the additional hidden neurons and connections), may

influence the degree of modification of the initial knowledge

and the quality of the abductive hypotheses.

VII. SUMMARY AND FUTURE WORK

In this paper we presented an attempt at synthesizing

formal description of abductive problems with connectionist

methodology based on work of Garcez et al. [3]. Contrary to

the received approaches to the problem of logical abduction,

we decided to employ Backpropagation algorithm to search for

abductive hypotheses. The results of such experiments show

that training of an artificial neural network can indeed be a

method of filling a gap between a knowledge base and an

abductive goal.

The neural networks obtained according to the presented

procedure can be further used to solve real life problems

as classifiers (just like traditional artificial neural networks

are usually used) – examples of such applications of C-

IL2P are presented in [3, Chapter 4]. Apart from that, the

trained networks can be used as massively parallel deduction

systems to solve logical problems. Yet another advantage of

the presented approach, which at the same time distinguishes

it from often discussed, pure logical accounts, is that it offers

broad and flexible definition of the abductive hypothesis.

The obtained hypotheses can either be additional formulas

extending the initial knowledge base or some modifications

done to the knowledge base. Finally, such methodology can

be used for modelling abduction as a cognitive process, by

combining connectionist structures, resembling in the limited

sense the human brain, with rigours of the formal logic. The

flexibility of the concept of the abductive hypothesis is likely

to increase the accuracy of such modelling.

One of the interesting observations obtained at this pre-

liminary stage of the currently presented research is the joint

influence of the size of the trained network and its initial state

on the obtained abductive hypotheses. While such observa-

tions may seem a little vague, more advanced computational

experiments and quantitative analyses are currently under

way. Among them, interesting research task is examination

of the influence of the different parameters of the networks

(i.e. biases of the additional neurons, initial weights of the

additional connections, etc.) and parameters of training process

(e.g. a form of the training example, value of learning rate

or momentum) on the resulting knowledge. Research on the

influence of interaction of these parameters with characteristics

of the considered problems (e.g. a number of clauses in

the knowledge base, a number of propositional variables,

some more sophisticated structural traits) on the resulting

knowledge (understood as a logic program obtained from the

trained neural network) is also possible. This kind of research

demands development of some measures of similarity between

different knowledge bases, which is an interesting issue in

itself and gives possibility of performing quantitative multi-

dimensional analyses of the results of abductive process.

In the nearest future a number of improvements to the

existing implementations are also in order. Among them,

the most pending ones are: a decrease of computational

complexity of the network-to-program implementation and

intelligent automatic translation of an abductive goal into the

form of a training example. This encompasses formulation of

the training example in such a way that knowledge base is

properly represented.

The further plans concern extension of our methodology to

include more types of logic programs in order to introduce

a negation, default or classical, into the researched abductive

problems. The introduction of a negation will require even

more sophisticated approach to generation of training exam-

ples containing representations of abductive goals. Addition-

ally, as it is straightforward for our methodology, we would

like to introduce the abductive goals in the form of formulas

more complex than single atoms.

To solve the issue concerning generation of training ex-

amples a computational approach may be employed. The

computational experiments may concern analysis of the impact

of the desirable output values on the obtained modifications

of the knowledge base. The potential results may shed light

on how to construct an initial training example to properly

reflect an abductive goal alongside desired concepts from the

knowledge base.

Finally, a well-established abduction research requires em-

ployment of some quality-control mechanisms to obtain ef-

ficient abductive hypotheses. This goal is partially achieved

in the presented approach heuristically, by removal of some

unwanted connections, careful generation of the training ex-

amples and (possibly) by imposing restrictions on the size

of the trained network. However, employment of some more

sophisticated quality criteria is still a pending issue. An

interesting approach concerning application of multi-criteria

dominance relation [8, 9] to evaluate already generated abduc-

tive hypotheses gives the possibility to perform a comparative

study with the methodology presented in this paper.

APPENDIX

Definition 7.1: A binary relation R on a set is called a

partial order when it is reflexive, transitive and antisymmetric.

We will denote a relation which is a partial order by �. A

set S with a partial order � is called a partially ordered set.

Definition 7.2: Let S be a set with a partial order � and

x ∈ S. We define the following:

• x is a minimum of S if for all elements y ∈ S: x � y.

• x is a maximum of S if for all elements y ∈ S: y � x.

Minimum and maximum of a set S are unique, if they exist,

and will be denoted as inf(S) and sup(S) respectively.

Definition 7.3: Let S be a set with a partial order � and

R ⊆ S. We define the following:

• An element x ∈ S is an upper bound of R if for all

elements y ∈ R: y � x.

360 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

• An element x ∈ S is an lower bound of R if for all

elements y ∈ R: x � y.

• An element x ∈ S is least upper bound of R if x is an

upper bound of R and x � z for all upper bounds z of

R.

• An element x ∈ S is greatest lower bound of R if x is

an lower bound of R and z � x for all lower bounds z
of R.

The least upper bound and the greatest lower bound of a

set R are unique, if they exist, and will be denoted as lub(R)
and glb(R) respectively.

Definition 7.4: Let S be a partially ordered set and R ⊆ S.

We call S a complete lattice if lub(R) and glb(R) exist for

every R ⊆ S.

Definition 7.5: Let S be a complete lattice and R ⊆ S. We

call R directed if every finite subset of R has an upper bound

in R.

Definition 7.6: Let S be a complete lattice, x and y be

elements of S, and T : S → S be a mapping. The following

holds:

• T is monotonic if T (x) � T (y), where x � y.

• T is continuous if for every directed subset R of S:

T (lub(R)) = lub(T (R)).

The collection of all Herbrand interpretations of a definite

logic program P , which is 2BP , forms a complete lattice under

the partial order of set inclusion. The top and the bottom ele-

ment of 2BP is BP and ∅ respectively. There can be described

a continuous and monotonic mapping from 2BP to 2BP which

will serve in finding the least Herbrand model of P . The

procedure is based on fixpoints of mappings on the set 2BP .

Definition 7.7: Let S be a complete lattice and T : S → S
be a mapping. An element x ∈ S is the least fixpoint of T if

x is a fixpoint of T (i.e. T (x) = x) and for all fixpoints y of

T : x � y. An element x ∈ S is the greatest fixpoint of T if

x is a fixpoint of T and for all fixpoints y of T : y � x.

The least fixpoint of T and the greatest fixpoint of T will

be denoted as lfp(T) and gfp(T) respectively.

Proposition 7.1: Let S be a complete lattice and T : S → S
be monotonic. T has lfp(T) and gfp(T).

The proof of the theorem 7.1 is described in [11, p. 28].

Now we want to define ordinal powers of T . The definition

is based on properties of ordinal numbers described in [11,

p. 28–29] or [3, p. 26].

Definition 7.8: Let S be a complete lattice and T : S → S
be monotonic. Then we define:

T ↑ 0 = inf(S);
T ↑ α = T (T ↑ (α− 1)), if α is a successor ordinal;

T ↑ α = lub(T ↑ β | β ≺ α), if α is a limit ordinal;

T ↓ 0 = sup(S);
T ↓ α = T (T ↓ (α− 1)), if α is a successor ordinal;

T ↓ α = glb(T ↓ β | β ≺ α), if α is a limit ordinal.

Proposition 7.2: Let S be a complete lattice and T : S → S
be continuous. Then lfp(T) = T ↑ ω.

The ω in theorem 7.2 denotes the first infinite ordinal. Proof

of the theorem 7.2 is described in details in [11, p. 30].

REFERENCES

[1] Atocha Aliseda. Abductive Reasoning. Logical Inves-

tigations into Discovery and Explanation. Springer,

Dordrecht, 2006. doi: 10.1007/1-4020-3907-7.

[2] Dov M. Gabbay and John Woods. The Reach of

Abduction. Insight and Trial. Elsevier, 2005. doi:

10.1016/S1874-5075(05)80034-8.

[3] Artur S. d’Avila Garcez, Krysia Broda, and Dov M.

Gabbay. Neural-symbolic learning systems: foundations

and applications. Springer Science & Business Media,

2002. doi: 10.1007/978-1-4471-0211-3.

[4] Artur S d’Avila Garcez, Dov M Gabbay, Oliver Ray, and

John Woods. Abductive reasoning in neural-symbolic

systems. Topoi, 26(1):37–49, 2007. doi: 10.1007/

s11245-006-9005-5.

[5] Peter Gärdenfors. Belief Revision. Tracts in Theoretical

Computer Science 29. Cambridge University Press, 2003.

doi: 10.1017/CBO9780511526664.

[6] Jaakko Hintikka. Abduction — inference, conjecture,

or an answer to a question? In Socratic Epistemol-

ogy. Explorations of Knowledge-Seeking by Questioning,

pages 38–60. Cambridge University Press, 2007. doi:

10.1017/CBO9780511619298.003.

[7] Tarun Kumar Jain, Dharmender Singh Kushwaha, and

Arun Kumar Misra. Optimization of the quine-mccluskey

method for the minimization of the boolean expressions.

In Fourth International Conference on Autonomic and

Autonomous Systems (ICAS’08), pages 165–168. IEEE,

2008. doi: 10.1109/ICAS.2008.11.

[8] M. Komosinski, A. Kups, and M. Urbański. Multi-

criteria evaluation of abductive hypotheses: towards effi-

cient optimization in proof theory. In Proceedings of the

18th International Conference on Soft Computing, pages

320–325, Brno, Czech Republic, 2012.

[9] M. Komosinski, A. Kups, D. Leszczyńska-Jasion, and

M. Urbański. Identifying efficient abductive hypotheses

using multi-criteria dominance relation. ACM Trans-

actions on Computational Logic, 15(4), 2014. doi:

10.1145/2629669.

[10] Maciej Komosinski and Szymon Ulatowski. Framsticks

web site, 2016. http://www.framsticks.com.

[11] John Wylie Lloyd. Foundations of logic programming.

1993. doi: 10.1007/978-3-642-83189-8.

[12] Edward J McCluskey. Minimization of boolean func-

tions. Bell system technical Journal, 35(6):1417–1444,

1956. doi: 10.1002/j.1538-7305.1956.tb03835.x.

[13] Noel Pérez, Miguel Angel Guevara, Augusto Silva, Isabel

Ramos, and Joana Loureiro. Improving the perfor-

mance of machine learning classifiers for breast cancer

diagnosis based on feature selection. In M. Paprzycki

M. Ganzha, L. Maciaszek, editor, Proceedings of the

2014 Federated Conference on Computer Science and

Information Systems, volume 2 of Annals of Computer

Science and Information Systems, pages 209–217. IEEE,

2014. doi: 10.15439/2014F249. URL http://dx.doi.org/

ANDRZEJ GAJDA ET AL.: A CONNECTIONIST APPROACH TO ABDUCTIVE PROBLEMS: EMPLOYING A LEARNING ALGORITHM 361

10.15439/2014F249.

[14] P. Thagard. Abductive inference: From philosophical

analysis to neural mechanisms. In A. Feeney and

E. Heit, editors, Inductive reasoning: Cognitive, math-

ematical, and neuroscientific approaches, pages 226–

247. Cambridge University Press, Cambridge, 2007. doi:

10.1017/cbo9780511619304.010.

[15] Agnieszka Wosiak and Danuta Zakrzewska. On inte-

grating clustering and statistical analysis for supporting

cardiovascular disease diagnosis. In M. Ganzha, L. Ma-

ciaszek, and M. Paprzycki, editors, Proceedings of the

2015 Federated Conference on Computer Science and

Information Systems, volume 5 of Annals of Computer

Science and Information Systems, pages 303–310. IEEE,

2015. doi: 10.15439/2015F151. URL http://dx.doi.org/

10.15439/2015F151.

362 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

