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Abstract—UML state machines and their visual representa-
tions are much more suitable to describe logical behaviors of
system entities than equivalent text based description such as
IF-THEN-ELSE or SWITH-CASE constructions. Although many
industrial tools and research prototypes can generate executable
code from such a graphical language, generated code could be
manually modified by programmers. After code modifications,
round-trip engineering is needed to make the model and code
consistent, which is a critical aspect to meet quality and perfor-
mance constraints required for software systems. Unfortunately,
current UML tools only support structural concepts for round-
trip engineering such as those available from class diagrams. In
this paper, we address the round-trip engineering of UML state-
machine and its related generated code. We propose an approach
consisting of a forward process which generates code by using
transformation patterns, and a backward process which is based
on code pattern detection to update the original state machine
model from the modified code. We implemented a prototype and
conducted several experiments on different aspects of the round-
trip engineering to verify the proposed approach.

I. INTRODUCTION

T
HE so-called Model-Driven Engineering (MDE) ap-

proach relies on two paradigms, abstraction and automa-

tion [1]. It is recognized as very efficient for dealing with

complexity of today’s systems. Abstraction provides simplified

and focused views of a system and requires adequate graph-

ical modeling languages such as Unified Modeling Language

(UML). Even, if the latter is not the silver bullet for all

software related concerns, it provides better support than

text-based solutions for some concerns such as architecture

and logical behavior of application development. UML state

machines (USMs) and their visual representations are much

more suitable to describe logical behaviors of system entities

than any equivalent text based descriptions. The gap from

USMs to system implementation is reduced by the ability of

automatically generating code from USMs [2], [3], [4], [3].

Ideally, a full model-centric approach is preferred by MDE

community due to its advantages [5]. However, in industrial

practice, there is significant reticence [6] to adopt it. On one

hand, programmers prefer to use the more familiar textual

programming language. On the other hand, software architects,

working at higher levels of abstraction, tend to favor the

use of models, and therefore prefer graphical languages for

describing the architecture of the system. The code modified

by programmers and the model are then inconsistent. Round-

trip engineering (RTE) [7] is proposed to synchronize different

software artifacts, model and code in this case [8]. RTE

enables actors (software architect and programmers) to freely

move between different representations [8] and stay efficient

with their favorite working environment.

Unfortunately, current industrial tools such as for instance

Enterprise Architect [9] and IBM Rhapsody[10] only support

structural concepts for RTE such as those available from class

diagrams and code. Compared to RTE of class diagrams and

code, RTE of USMs and code is non-trivial. It requires a

semantical analysis of the source code, code pattern detection

and mapping patterns into USM elements. This is a hard task,

since mainstream programming languages such as C++ and

JAVA do not have a trivial mapping between USM elements

and source code statements.

For software development, one may wonder whether this

RTE is doable. That is, why do the industrial tools not support

the propagation of source code modifications back to original

state machines? Several possible reasons to this lack are (1)

the gap between USMs and code, (2) not every source code

modification can be reverse engineered back to the original

model, and (3) the penalty of using transformation patterns

facilitating the reverse engineering that may not be the most

efficient (e.g. a slightly larger memory overhead).

This paper addresses the RTE of USMs and object-oriented

programming languages such as C++ and JAVA. The main idea

is to utilize transformation patterns from USMs to source code

that aggregates code segments associated with a USM element

into source code methods/classes rather than scatters these

segments in different places. Therefore, the reverse direction

of the RTE can easily statically analyze the generated code

by using code pattern detection and maps the code segments

back to USM elements. Specifically, in the forward direction,

we extend the double dispatch pattern presented in [11].

Traceability information is stored during the transformations.

We implemented a prototype supporting RTE of state-machine

and C++ code, and conducted several experiments on different

aspects of the RTE to verify the proposed approach. To the

best of our knowledge, our implementation is the first tool

supporting RTE of SM and code.

To sum up, our contribution is as followings:

• An approach to round-tripping USMs and object-oriented

code.

• A first tooling prototype supporting RTE of USMs and

C++ code.

• An evaluation of the proposed approach including:

– An automatic evaluation of the proposed RTE ap-

proach with the prototype.
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– A lightweight evaluation of the semantic confor-

mance of the runtime execution of generated code.

The remainder of this paper is organized as follows: Our

proposed approach is detailed in Section II. The implementa-

tion of the prototype is described in Section III. Section IV

reports our results of experimenting with the implementation

and our approach. Section V shows related work. The conclu-

sion and future work are presented in Section VI.

II. APPROACH

This section presents our RTE approach. At first, it sketches

USM concepts supported by this study. The outline and the

detail of the approach are presented afterward.

A. Scope

A USM describes the behavior of an active UML class

which is called context class. A USM has a number of states

and well-defined conditional transitions. A state is either an

atomic state or a composite state that is composed of sub-

states and has at most one active sub-state at a certain time.

Transitions between states can be triggered by external or

internal events. An action (effect) can also be activated by the

trigger while transitioning from one state to another state. A

state can have associated actions such as entry/exit/doActivity

executed when the state is entered/exited or while it is active,

respectively.

B. Approach outline

Our RTE approach is based on the double-dispatch pattern

presented in [11] for mapping from USM to a set of classes

with embedded code fragments. Fig. 1 shows the outline of our

RTE approach consisting of a forward and a backward/reverse

(engineering) process. In the forward process, a USM is

transformed into UML classes in an intermediate model. The

use of the intermediate model facilitates the transformation

from the USM to code. Each class of the intermediate model

contains attributes, operations and method bodies (block of

text) associated with each implemented operation. The trans-

formation utilizes several patterns which will be presented

later.

When the source code is modified, a syntactic analysis

process belonging to the backward transformation checks

whether the modified code conforms to the USM semantics

(see Subsection II-D3 for the detail of the analysis). This

transformation takes as input the created intermediate model

and the USM to update these models sequentially. While the

forward process can generate code from hierarchical and con-

current USMs, the backward one only works for hierarchical

machines excluding pseudo-states which are history, join, fork,

choice and junction. These features are in future work.

C. From UML state machine to UML classes

This section describes the forward process which utilizes

transformation patterns for states, transitions, and events to

an intermediate model and code. We start by a simple USM
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Fig. 1. Outline of state machine and code RTE
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Fig. 2. An example of USM for tracing table

example in Fig. 2. It consists of two states (Stopped and

Operating), two external events (On and Off ), transitions, and

an initial and a final pseudo state. Listing 1 shows a code

portion generated from the USM following our approach.

Listing 1. A segment of C++ generated code
1 c l a s s C o m p o s i t e S t a t e : p u b l i c S t a t e {

p r o t e c t e d :
3 S t a t e ∗ a c t i v e S u b S t a t e ;

p u b l i c :
5 bo o l d i s p a t c h E v e n t ( Event∗ e v e n t ) {

bo o l r e t = f a l s e ;
7 i f ( a c t i v e S u b S t a t e != NULL) {

r e t = a c t i v e S u b S t a t e −>d i s p a t c h E v e n t ( e v e n t ) ; }
9 r e t u r n r e t | | even t −>processFrom ( t h i s ) ; } }

S t a t e M a c h i n e : : S t a t e M a c h i n e ( C l i e n t ∗ c t x ) {
11 t h i s −>c o n t e x t = c t x ;

s t o p p e d = new Stopped ( t h i s , c t x ) ;
13 o p e r a t i n g = new O p e r a t i n g ( t h i s , c t x ) ;

t h i s −> s e t I n i D e f a u l t S t a t e ( ) ;
15 t h i s −>a c t i v e S u b S t a t e −>e n t r y ( ) ; }

vo id S t a t e M a c h i n e : : s e t I n i D e f a u l t S t a t e ( ) {
17 t h i s −>c o n t e x t −> I n i t i a l i z e ( ) ;

t h i s −>a c t i v e S u b S t a t e = s t o p p e d ; }
19 bo o l S t a t e M a c h i n e : : t r a n s i t i o n ( S topped∗ s t a t e ,

On∗ e v e n t ) {
21 i f ( t h i s −>c o n t e x t −>guard ( e v e n t ) ) {

t h i s −>a c t i v e S u b S t a t e −> e x i t ( ) ;
23 t h i s −>c o n t e x t −>Enab le ( e v e n t ) ;

t h i s −>a c t i v e S u b S t a t e = t h i s −>o p e r a t i n g ;
25 t h i s −>a c t i v e S u b S t a t e −>e n t r y ( ) ;

r e t u r n t r u e ; }
27 r e t u r n f a l s e ; }

bo o l S t a t e M a c h i n e : : t r a n s i t i o n (
29 O p e r a t i n g ∗ s t a t e , Off∗ e v e n t ) {

t h i s −>a c t i v e S u b S t a t e −> e x i t ( ) ;
31 / / no a c t i o n d e f i n e d

t h i s −>a c t i v e S u b S t a t e = NULL;
33 r e t u r n t r u e ; }

c l a s s S topped : p u b l i c S t a t e {
35 p r i v a t e :

S t a t e M a c h i n e ∗ a n c e s t o r ;
37 p u b l i c :

v i r t u a l bo o l p r o c e s s E v e n t ( On∗ e v e n t ) {
39 r e t u r n a n c e s t o r −> t r a n s i t i o n ( t h i s , e v e n t ) ; }

}
41 c l a s s On : c l a s s Event {

p u b l i c :
43 processFrom ( S t a t e ∗ s t a t e ) {

s t a t e −>p r o c e s s E v e n t ( t h i s ) ; }
45 }
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c l a s s O p e r a t i n g : p u b l i c S t a t e {
47 p r i v a t e :

S t a t e M a c h i n e ∗ a n c e s t o r ;
49 p u b l i c :

vo id o n E n t r y A c t i o n ( ) {
51 c o n t e x t −>P r e p a r e ( ) ; }

vo id o n E x i t A c t i o n ( ) {
53 c o n t e x t −>D i s a b l e ( ) ; }

}

1) Transformation of states: Each state of the USM is

transformed into a UML class. A state class inherits from

a base class, namely, State (the detail of this class is not

shown due to space limitation). State defines a reference to the

context class, a process event operation for each event, state

actions (entry/exit/doActivity). A bidirectional relationship is

established between a state class and the state class associated

with the containing state. For example, the USM example,

considered as a composite state, has attributes typed by classes

associated with its contained states, Stopped and Operating in

Listing 1, lines 12-13. Inversely, attributes named ancestor

(line 36) and typed by StateMachine in the classes Stopped

and Operating are used to associate with the parent state.

A composite state class, which inherits from a base com-

posite class (line 1), has an attribute activeSubState (line 3)

indicating the active sub-state of the composite state and a

dispatchEvent operation (line 5), which dispatches incoming

events to the appropriate active state.

The dispatchEvent method implemented in the base com-

posite state class delegates the incoming event processing to

its active sub-state (line 8). If the event is not accepted by the

active sub-state, the composite state processes it (line 9).

2) Transformation of events: Each event is transformed

into a UML class (see lines 41-45 in Listing 1). An event

can be either a CallEvent, SignalEvent or TimeEvent (see the

UML specification for definitions of these events). An event

class associated with a CallEvent inherits from a base event

class and contains the parameters in form of attributes typed

by the same types as those of the associated operation. The

operation must be a member of the context class (a component

as described above). For example, a call event CallEventSend

associated with an operation named Send, which has two

input parameters typed by Integer, is transformed into a class

CallEventSend having two attributes typed by Integer. When

a component receives an event, the event object is stored in

an event queue.

A signal event enters the component through a port typed

by the signal. The implementation view of this scenario de-

pends on the mapping of component-based to object-oriented

concepts. In the following, we choose the mapping done

in Papyrus Designer [12]. In this mapping, the signal is

transferred to the context class by an operation provided by the

class at the associated port. Therefore, the transfer of a signal

event becomes similar to that of CallEvent. For example, a

signal event containing a data SignalData arrives at a port p

of a component C. The transformation derives an interface

SignalDataInterface existing as the provided interface of p.

SignalDataInterface has only one operation pushSignalData

whose body will be generated to push the event to the

event queue of the component. Therefore, the processing of a

SignalEvent is the same as that of a CallEvent. In the following

sections, the paper only considers CallEvent and TimeEvent.

A TimeEvent is considered as an internal event. The source

state class of a transition triggered by a TimeEvent executes

a thread to check the expiration of the event duration as in

[13] and puts the time event in the event queue of the context

class.

3) Transformation of transitions and actions: Each action

is transformed into an operation in the transformed context

class. Entry/Exit/doActivity actions have no parameters while

transition actions and guards accept the triggering event object.

doActivity is implicitly called in the State class and executed

in a thread which is interrupted when the state changes.

OnEntryAction and OnExitAction - abstract methods in the

base state class State - are called by the entry and exit methods,

respectively. Lines 50-53 in Listing 1 show how these methods

are overwritten by the Operating class. Prepare and Disable,

implemented in the context class, are called in these methods,

respectively.

A transition is transformed into an operation taking as input

the source state object and the event object similarly to DD.

Transitions transformed from triggerless transition which has

no triggering events accept only the source state object as a

parameter. For example, the Enable action in the example is

created in the context class and called by the transition method

in lines 19-26. The guard guard is implemented as a method

in the context class and called in line 21.

D. Reverse engineering from code to USM

This section describes the backward process.

1) Method Overall: The overall method for backward trans-

formation is shown in Fig. 3. The modified code is first

analyzed by partly inspecting the code syntax and semantics

to guarantee that it is reversible. There are cases in which

not all code modifications can be reversed back to the USM.

The analysis also produces an output (output2) whose format

is described later. If the intermediate model or the original

USM is absent (the lower part of Fig. 3), a new intermediate

model and a new USM are created from the UML model.

In the contrary, the previous code taken, for instance, from

control versioning systems is also semantically analyzed to

have its output (output1) (the upper part of Fig. 3). Output1

and Output2 are then compared with each other to detect actual

semantic changes which are about to be propagated to the

original model.

Due to space limitation, we only show how to reconstruct

(create) a new USM from the modified code.

2) Illustration example: To give an overview how the back-

ward works, Fig. 4 presents a partition for mapping from the

code segments generated from the example in Fig. 2 to actual

USM concepts. Each partition consists of a code segment

and the corresponding model element which are mapped in

the backward direction. For example, the Stopped class in
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Fig. 3. Overall method for reversing code to state machine

code is mapped to the state Stopped of the state machine.

The method transition is mapped back to the corresponding

transition whose source state and triggering event are the input

parameters’ types of the method.

3) Semantic Analysis: The output of the semantic analysis

contains a list of event names, a list of state names, a list of

transitions in which each has a source state, a target state, a

guard function, an action function and an event represented in

so called abstract syntax tree (AST) transition [15]. For exam-

ple, Fig. 5 presents the EMF [14] representation of transitions

in a C++ AST in which IStructure and IFunctionDeclaration

represent a structure and a function in C++, respectively. Each

state name is also associated with an ancestor state, an entry

action, an exit action, a default sub-state and a final state. The

output is taken by analyzing the AST. The analysis process

consists of recognizing different patterns. Table I shows the

main patterns including state, transition and event.

Algorithm 1 Semantic Analysis

Input: AST of code and a list of state classes stateList

Output: Output of semantic analysis

1: for s in stateList do

2: for a in attribute list of s do

3: if a and s match child parent pattern then

4: put a and s into a state-to-ancestor map;

5: end if

6: end for

7: for o in method list of s do

8: if o is onEntryAction || o is onExitAction then

9: analyzeEntryExit(o);

10: else if o is processEvent then

11: analyzeProcessEvent(o);

12: else if o is setInitDefaultState & s is composite then

13: analyzeInitDefaultState(s);

14: else if o is timeout & s is a timedstate then

15: analyzeT imeoutMethod(o);

16: analyzeProcessEvent(s, o);

17: end if

18: end for

19: end for

Algorithm 1 shows the algorithm used for analyzing code

semantics. Due to space limitation, analyzeEntryExit, an-

alyzeProcessEvent, analyzeInitDefaultState, analyzeTimeout-

Method and analyzeProcessEvent are not presented but they

basically follow the pattern description as above. In the first

step of the analysis process, for each state class, it looks for

an attribute typed by the state class, the class containing the

attribute then becomes the ancestor class of the state class. The

third steps checks whether the state class has an entry or exit

action by looking for the implementation of the onEntryAction

or onExitAction, respectively, in the state class to recognize

the Entry/Exit action pattern. Consequently, event processing,

initial default state of composite state and time event patterns

are detected following the description as above.

4) Construction of USM from analysis output: If an in-

termediate model is not present, a new intermediate model

and a new USM are created by a reverse engineering and

transformation from the output of the analysis process. The

construction is straightforward. At first, states are created.

Secondly, UML transitions are built from the AST transition

list. Lastly, action/guard/triggering event of a UML transition

is created if the associated AST transition has these.

For example, assuming that we need to adjust the USM

example shown in Fig. 2 by adding a guard to the transition

from Operating to the final state. The adjustment can be done

by either modifying the USM model or the generated code.

In case of modifying code, the associated transition function

in Listing 1 is edited by inserting an if statement which

calls the guard method implemented in the context class. The

change detection algorithm adds the transition function into

the updated list since it finds that the source state, the target

state and the event name of the transition is not changed. By

using mapping information in the mapping table, the original

transition in the USM is retrieved. The guard of the original

transition is also created.

III. IMPLEMENTATION

The proposed approach is implemented in a prototype exist-

ing as an extension of the Papyrus modeler [15]. Each USM

is created by using the state machine diagram implemented

by Papyrus to describe the behavior of a UML class. Low-

level USM actions are directly embedded in form of a block

of code written in specific programming languages such as

C++/JAVA into the USM. C++ code is generated by the

prototype but other object-oriented languages can be easily

generated. The code generation consists of transforming the

USM original containing the state machine to UML classes

and eventually to code by a code generator following the

proposed approach. The code generator can generate code for

hierarchical and concurrent USMs. In the reverse direction,

code pattern detection is implemented as described in the

previous section to analyze USM semantics. If the generated

code is modified, two options are supported by the prototype

to make the USM and code consistent again. One is to create

a new model containing the USM from the modified code in

the same Eclipse project and the other one is to update the

original USM by providing as input the intermediate model

and the original model. At the writing moment, the prototype

does not support the reverse of concurrent USMs and pseudo

states, which are history, join, fork,choice, and junction.

IV. EXPERIMENTS

In order to evaluate the proposed approach, we answer three

questions stated as followings.

RQ1: A state machine sm is used for generating code. The

generated code is reversed by the backward transformation to

produce another state machine sm’. Are sm and sm’ identical?
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StateMachine

Stopped

Operating
/entry Prepare

/exit Disable

/Initialize

On[x == 0]

/ Enable
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class StateMachine:public CompositeState {

private:

Stopped* stopped; Operating* operating; public:

bool transition(Stopped* state, On* event);

bool transition(Operating* state, Off* event);

void setIniDefaultState();}

class Stopped: public State{

private:

StateMachine* ancestor;

public:

virtual bool processEvent(On*event){

return this->ancestor 

->transition(this,event);}

}

class Operating: public State {

private:

StateMachine* ancestor;

public:

virtual bool processEvent(Off* event) {

return this->ancestor->transition(this,event); }

virtual void onEntryAction() {

this->context->Prepare();}

virtual void onExitAction() {

this->context->Disable();}}

void StateMachine::setIniDefaultState(){

this->context->Initialize();

this->activeSubState = stopped;

this->activeSubState->entry();

}

bool StateMachine::transition(Stopped*state,On*event){

if(this->context->guard(event)){

this->activeSubState->exit();

this->context->Enable(event);

this->activeSubState = this->operating;

this->activeSubState->entry();

return true;}

return false; }

bool StateMachine::transition(

Operating*state,Off*event){

this->activeSubState->exit();

//no action defined 

this->activeSubState = NULL;

return true; }

Fig. 4. USM element-code segment mapping partition

TABLE I
PATTERN RECOGNITION FOR REVERSE ENGINEERING GENERATED CODE

Pattern Description

State A state class inherits from the base state class or the composite base state class. For each state class, there must exist exactly one attribute
typed by the state class inside another state class. The latter becomes the ancestor of the state class.

Composite
state

A composite state class (CSC) inherits from the base composite state. For each sub-state the CSC has an attribute typed by the associated
sub-state class. The CSC also implements a method named setInitDefaultState to set its default state. The CSC has a constructor is used for
initializing all of its sub-state attributes at initializing time.

Entry
action

If a state has an entry action, its associated state class implements onEntryAction that calls the corresponding action method implemented in
the context class. Activity and exit patterns are recognized in the same way.

Event
processing

If a state has an outgoing transition triggered by an event, the class associated with the state implements the processEvent method having only
one parameter typed by the event class transformed from the event. The body calls the corresponding transition method of the ancestor class.

CallEvent A call event class inherits from the base event class. The associated operation is found if the types of attributes of the event class match with
the types of parameters of one method in the context class. A signal event is treated as a CallEvent as previously described.

TimeEvent A transition is triggered by a TimeEvent if the state class associated with its source state implements the timed interface. The duration of the
time event is detected in the transition method whose name is formulated as "transition" + duration.

Transition Transition methods are implemented in the ancestor class, which is the class associated with the composite state owning the source state of the
transition. The first parameter of the methods is the class representing the source state. The second parameter is the triggering event. Methods
associated with triggerless transitions do not have a second parameter. The body of external and internal transition methods contains ordered
statements including exiting the source state, executing transition action (effect), changing the active state to the target or null if the target is
the final state, and entering the changed active state by calling entry. The body can have an if statement to check the guard of the transition.

Effect/
guard

Transition actions and guards are implemented in the context class.

ASTTransition IFunctionDeclarat...IStructure

[0..1] action

[0..1] guard[0..1] sourceState

[0..1] event

[0..1] targetState

Fig. 5. Transitions output from the analysis

In other words: whether the code generated from USMs

model can be used for reconstructing the original model. This

question is related to the GETPUT law defined in [16].

RQ2: RQ1 is related to the static aspect of generated code.

RQ2 targets to the dynamic aspect. In other words, whether

the runtime execution of code generated from USMs by the

generator is semantic-conformant [17]?

This section reports our experiments targeting the three

questions. Two types of experiments are conducted and pre-

sented in Subsections IV-A and IV-B, respectively.

Original Model Code

Reversed Model Reverse

Genration

Comparison

1

2

3

Fig. 6. Evaluation methodology to answer RQ1

A. Reversing generated code

This experiment is targeting RQ1. Fig. 6 shows the ex-

perimental methodology to answer RQ1. The procedure for

this experiment, for each original UML model containing a

state machine, consists of 3 steps: (1) code is generated from

an original model, (2) the generated code is reversed to a

reversed model, and (3) the latter is then compared to the

original state machine.

Random models containing hierarchical state machines are

automatically generated by a configurable model generator.

The generator can be configured to generate a desired average

number of states and transitions. For each model, a context
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TABLE II
THREE OF MODEL RESULTS OF GENERATION AND REVERSE:

ABBREVIATIONS ARE ATOMIC STATES (AS), COMPOSITE STATES (CS),
TRANSITIONS (T), CALL EVENTS (CE), TIME EVENTS (TE)

Test ID AS CS T CE TE Is reverse correct?

1 47 33 234 145 40 Yes

2 42 38 239 145 36 Yes

.. .. .. .. .. .. Yes

300 41 39 240 142 37 Yes

class and its behavior described by a USM are generated. Each

USM contains 80 states including atomic and composite states,

more than 234 transitions. The number of lines of generated

C++ code for each machine is around 13500. Names of the

generated states are different. An initial pseudo state and a final

state are generated for each composite state and containing

state machine. Other elements such as call events, time events,

transition/entry/exit actions and guards are generated with

a desired configuration. For each generated call event, an

operation is generated in the context class which is also

generated. The duration is generated for each time event.

Table II shows the number of several types of elements in

the generated models, including the comparison results, for 3

of the 300 models created by the generator. We limited our-

selves to 300 models for practical reasons. No differences were

found during model comparison. The results of this experiment

show that the proposed approach and the implementation

can successfully do code generation from state machines and

reverse.

B. Semantic conformance of runtime execution

a) Bisimulation for semantic-conformance: To evaluate

the semantic conformance of runtime execution of generated

code, we use a set of examples provided by Moka [18]. Moka

is a model execution engine offering Precise Semantics of

UML Composite Structures [17]. Fig. 7 shows our method. We

first use our code generator to generate code (Step (1)) from

the Moka example set. Step (2) simulates the examples by

using Moka to extract the sequence (SimTraces) of observed

traces including executed actions. The sequence (RTTraces)

of traces is also obtained by the runtime execution of the

code generated from the same state machine in a Step (3).

The generated code is semantic-conformant if the sequences

of traces are the same for both of the state machine and

generated code [19]. The current version of Moka does not

support simulation for TimeEvent and history pseudo states,

we therefore leave experiments for TimeEvent as future work.

For example, Fig. 8 (a) shows a USM example with trigger-

less transitions (autotransitions) T3. The USM contains two

states, Waiting, which is the initial state, and Incrementing,

which increases an integer number from 0 to 5 by using the

effect of T3. The latter also has a guard checking whether

the number is less than 5. The increase is executed after the

USM receives an event named start to transition the initial

state Waiting to Incrementing. Suppose that executions of the

effects of T3 and T4 produce traces <T3> and <T4> (by using

State machine

Code

Traces 1

Traces 2

Runtime executionMOKA
Code 

generation

1

c

Simulation2

Execution3

Fig. 7. Semantic conformance evaluation methodology

Machine

Wait
S1

S21

/exit OpaqueBehavior S21Exit

/exit OpaqueBehavior S1Exit

End

T4
Another/

OpaqueBehavior: T4Effect

T5

T2

Start

T3

Continue/

OpaqueBehavior: T3Effect
T21

T22Continue/

OpaqueBehavior: T22Effect

T1T1

T21

T22Continue/

OpaqueBehavior: T22Effect

T2

Start

T5
T3

Continue/

OpaqueBehavior: T3Effect

T4
Another/

OpaqueBehavior: T4Effect

Machine

Waiting

Incrementing

T1

T3

[count<5]/
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T3

[count<5]/

count>>;

std::cout<<I<T3>I;

(a) (b)

Fig. 8. Self-triggerless transition and event processing example

MOKA, e.g.), respectively. Due to the guard of T3, the effect

of T3 is executed five times followed by an execution of the

effect of T4. After the completion of the USM, the obtained se-

quence of traces is <T3><T3><T3><T3><T3><T4> (since

the Incrementing state does not have an entry, exit, or a

doActivity, only the transition effect T3 produces traces). The

sequence RTTraces obtained by the runtime execution must be

equivalent. RTTraces is obtained by simply printing logging

information for each action (effect).

Within our scope as previously defined 30 examples of the

Moka example set are tested. SimTraces and RTTraces for each

case are the same. This indicates that, within our study scope,

the runtime execution of code generated by our generator can

produce traces semantically equivalent to those obtained via

simulation.

After experimenting with our code generator, we compare

our results to the observed traces obtained by executing code

generated Umple [20]. We find that the obtained traces in case

of Umple are not UML-compliant in triggerless transitions and

some cases of event processing. Specifically, for the example

in Fig. 8 (a), code generated by Umple only produces <T3>

as the trace sequence. Umple does not support events which

are accepted by sub-states and the corresponding composite

state as in Fig. 8 (b) in which both S1 and S21 accept the

event Continue. As the processing event example in Fig.

8 (b), assuming that there is an event Continue incoming

to the state machine which has a current configuration (S1,

S21) as current active states. While, according to the UML

specification, the incoming event should be processed by the

inner states of the active composite/concurrent state if the inner

states accept it, otherwise the parent state does. Therefore, the

next configuration should be (S1, final state) and the T22Effect

effect of the transition T22 should be executed.

b) Finite state machine: In addition to the experiment

using MOKA, we evaluate the semantic-conformance by using

deterministic finite state machines (FSMs). The latter is a
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Fig. 9. FSM experiment method

mathematical model of computation and also a simplified

version of UML state machine. In this experiment, we use

FSMs for recognizing input symbols. Each FSM contains

many atomic states. The active state of the FSM can be

changed following the acceptance of an input symbol. Fig. 9

shows our method to experiment. For each FSM, we create an

equivalent USM. Each input symbol of the FSM is considered

as an event of the USM. We use the FSM simulator in [21] to

generate and simulate FSMs. For each FSM, a list of observed

states is recorded as output (out1) of the simulation for each

symbol list. The latter is also the input of the generated code

runtime execution of the equivalent USM which produces an

output out2. We then compare out1 and out2.

We limit the number of FSMs to 20 and the number of

symbol list for each FSM to 30 for practical concerns. 600

sequences of states obtained by the simulation and a same

number of sequences taken by the runtime execution are

respectively compared and found being equal. This results

that our code generation approach can produce semantic-

conformant code in case of FSM.

V. RELATED WORK

Our work is motivated by the desire to reduce the gap

between and synchronize artifacts at different levels of ab-

straction, model and code in particular, in developing reactive

systems. Specifically, the usage of USMs for describing the

logical behavior of complex, reactive systems is indispensable.

In the following sections, we compare our approach to related

topics recorded in the literature.

A. Implementation and code generation techniques for USMs

Implementation and code generation techniques for USMs

are closely related to the forward engineering of our RTE.

Switch/if is the most intuitive technique implementing a

"flat" state machine. The latter can be implemented by either

using a scalar variable [2] and a method for each event or

using two variables as the current active state and the incoming

event used as the discriminators of an outer switch statement

to select between states and an inner one/if statement, respec-

tively. The double dimensional state table approach [3] uses

one dimension represents states and the other one all possible

events. The behavior code of these techniques is put in one

file or class. This practice makes code cumbersome, complex,

difficult to read and less explicit when the number of states

grows or the state machine is hierarchical. Furthermore, these

approaches requires every transition must be triggered by at

least an event. This is obviously only applied to a small sub-set

of USMs.

State pattern [4], [3] is an object-oriented way to implement

flat state machines. Each state is represented as a class and

each event as a method. Separation of states in classes makes

the code more readable and maintainable. This pattern is

extended in [22] to support hierarchical-concurrent USMs.

However, the maintenance of the code generated by this

approach is not trivial since it requires many small changes in

different places.

Many tools, such as [10], [9], apply these approaches to

generate code from USMs. Readers of this paper are recom-

mended referring to [23] for a systematic survey on different

tools and approaches generating code from USMs.

Double-dispatch (DD) pattern in [11] in which represent

states and events as classes. Our generation approach relies on

and extends this approach. The latter profits the polymorphism

of object-oriented languages. However, DD does not deal

with triggerless transitions and different event types supported

by UML such as CallEvent, TimeEvent and SignalEvent.

Furthermore, DD is not a code generation approach but an

approach to manually implementing state machines.

B. Round-trip engineering

Our RTE is related to synchronization of model-code and

models themselves that a large number of approaches support.

This paper only shows the most related approaches.

Model-code synchronization

Commercial and open-source tools such as [9], [10] only

support RTE of architectural model elements and code. Sys-

tematic reviews of some of these tools are available in [24].

Some RTE techniques restrict the development artifact to

avoid synchronization problems. Partial RTE and protected

regions [25] aim to preserve code changes which cannot

be propagated to models. This approach separates the code

regions that are generated from models from regions which

are allowed to be edited by developers. This form of RTE is

unidirectional only and does not support iterative development

[26] Our approach does not separate different regions but

supports a semantic code analysis in the reverse direction.

Fujaba [27] offers an RTE environment. An interesting

part of Fujaba is that it abstracts from Java source code to

UML class diagrams and a so-called story-diagrams. Java

code can also be generated from these diagrams. RTE of

these diagrams and code works but limited to the naming

conventions and implementation concepts of Fujaba which are

not UML-compliant.

Model synchronization

RTE of models is tackled by many approaches categorized

by its model transformation from total, injective, bi-directional

to partial non-injective transformations [7]. Techniques and

technologies, such as Triple Graph Grammar (TGG) [28]

and QVT-Relation [29], allow synchronization between source

and target elements that have non-injective mappings. These

techniques require a mapping model to connect the source

and target models which need to be persisted in a model store
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[30]. Mappings between USMs and code in our approach are

non-bijective. We only use simple tables for storing tracing

information.

Differently from other approaches, ours is specific to RTE

of USMs and code. The goal is to provide a full model-

code synchronization supporting for rapidly, iteratively, and

efficiently developing reactive systems.

VI. CONCLUSION

This paper presented a novel approach to RTE from USMs

to code and back. The forward process of the approach is

based on different patterns transforming USM elements into an

intermediate model containing UML classes. Object-oriented

code is then generated from the intermediate model by existing

code generators. In the backward direction, code is analyzed

and transformed into an intermediate whose format is close

to the semantics of USMs. USMs are then reconstructed from

the intermediate format.

The paper also showed the results of several experiments

on different aspects of the proposed RTE with the tooling

prototype. Specifically, the experiments on the correctness

and semantic conformance of code using the proposed RTE

are conducted. Although, the reverse direction only works

if manual code is written following pre-defined patterns, the

semantics of USMs is explicitly present in generated code and

easy to follow/modify.

While the semantic conformance of code generated is crit-

ical, the paper only showed a lightweight experiment on this

aspect. A systematic evaluation is therefore in future work.

We will also compare our code generation approach with

commercial tools such as Rhapsody and Enterprise Architect.

Furthermore, as evaluated in [7], the approach inheriting from

the double-dispatch trades a reversible mapping for a slightly

larger overhead. For the moment, the approach does not

support RTE of concurrent state machines and several pseudo-

states. Hence, future work should resolve these issues.
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