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Abstract—The massive amounts of data processed by in-
formation systems raise the importance of detailed database
performance analysis. Column-oriented data stores are becoming
increasingly popular in big data appliances. This paper identifies
database performance factors on the basis of empirical studies on
a custom implementation. To summarize the research, a simple
performance mathematical model has been created.

I. INTRODUCTION

THIS article is the result of experiments performed on

a custom column-oriented database management system.

Performance studies presented in this paper are a part of a

broader research initiative about an optimization of columnar

data store sharding with the use of a natural computing

algorithms. The research has been overviewed in the previous

FedCSIS conference paper. [1] Performance modeling and dis-

covering what determines a single database’s behaviour is con-

sidered as the first step towards creating a more sophisticated

partitioned database model. Such a model will be a subject

of optimization by metaheuristic algorithms. Columnar data

store performance studies are considered important because

non-relational data stores are gaining popularity and more and

more applications. However, the goal of this research is not

a comparative study of the column-oriented database model

versus other data models, nor CODB custom implementation

versus other columnar data stores. It aims to discover which

factors determine performance and the relationships between

these factors’ impact. Absolute values are considered less

important in this study since it is intended to be a foundation

of the weights (importance) estimation of the specific factors.

The paper is structured as follows. Section II contains a gen-

eral description of a column-oriented database model relatively

to the relational model for the sake of better understanding,

and the custom implementation of columnar data store is intro-

duced. The next section III presents how the performance of a

Java application (specifically a database) can be measured and

expressed. The second half of the article comprises of sections

IV, V and VI, which include assumptions and conclusions

brought on the basis of the experiments’ results.

Because the research and benchmarking is performed on a

custom database management system, the article has relatively

unique character. However, available literature offers examples

of research initiatives driven by similar ideas, such as [2] or

[3]. Since this is a short paper, it presents a general overview

and the most important facts of the research.

II. COLUMN-ORIENTED DBMS

The column-oriented database model has been around for

almost as many years as the most popular, row-oriented

relational model by E.F. Codd [4]. One of the first concepts re-

garding column-oriented storage are transposed files databases

from late 1970s [5].

After an initial rush, columnar databases remained in their

own, narrow niche for more than 20 years, while the rela-

tional model dominated a majority of applications. Relational

model’s strength came from the strong mathematical founda-

tion based on the set algebra and focus on the data consistency

and reliability. Despite this, in the recent decade, alternative

models have gained more interest in the commercial world

with the rise of the non-relational database trend. Databases

that focus on other aspects than traditional Relational Database

Management Systems (RDBMS) started gaining more atten-

tion. This trend has been called the not only SQL or NoSQL

and was one of the outcomes of a rise of interactive, especially

social, web services within the web 2.0 movement. [6] The

most significant developments in the area of columnar data

stores are the C-Store [2] [7] and MonetDB [7].

Viewed from some angles, it can be said the column-

oriented model is essentially only a physical-tier modifica-

tion of the relational model. [3] However, experiments prove

that implementing adequate modifications to the row-oriented

Database Management System (DBMS) storage tier is not

enough to rival the columnar store in some applications [8].

Nevertheless, some column database management systems

offer roughly the same interface as the relational ones, hiding

all the internal differences [9]. Certainly, there are analogies

between fundamental terms of both domains. Keyspace paral-

lels a database from the RDBMS domain. Relational table (or
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relation) is roughly the same as a column family in columnar

stores. Correlation of values with the same key from different

columns in columnar store leads to construction of a tuple,

which is comparative to a record in the relational database.

Despite obvious analogies, there is a fundamental difference

in the storage structure. In row-oriented stores there is a

single data file for the whole table and data is stored in

a tuple-by-tuple manner where tuples are stored column-by-

column. Thanks to this, it is cheap to iterate over records and

read all the values in order to construct a complete tuple.

Moreover, it is cheap to write the whole record at once

by just appending or replacing another entry. However, this

architecture has significant disadvantages too. Firstly, the table

schema is effectively immutable - changing the column set in

a table requires rebuilding the whole data file and all of the

indices. Secondly, iterating through values in a single column

from all the records requires long jumps within a data file,

which involves huge I/O overhead.

These issues are addressed by column-oriented architecture.

In a classical approach with explicit record ID storage [7], each

column is a sequence of id-value pairs stored in a separate

file. Database schema is flexible, columns can be freely added

or removed and if a given record does not have value in a

given column, it does not take any space to record such an

information. Iteration over every value in a column is simple,

so that columnar stores are effective in terms of generating

aggregations, summaries and other read-intensive applications

[3] [9]. But this schema also has a significant drawback. It

is expensive to collect all the distinctive elements of a record

altogether. Such an operation requires searching of all the data

types (columns).

Taking this into consideration, in a domain of columnar

data stores, a concept of the record does not actually exists.

At the lower tiers of the system, there is no such concept

and a specific values in a record can be associated to others

only by matching the row id. This is the most fundamental

conceptual difference between the two models. The columnar

model storage is organized around pieces of information of

the same type, not of the same entity.

This paper relies solely on the CODB database management

system. The implementation has been partially reviewed in [1].

Database logic is comprised of execution of a set of processes

touching a physical storage tier. A given part of an algorithm

is considered as a significant in terms of performance when

its execution time or resource consumption depends on any

external factor. For example, looking for a value in the value

storage file depends on a number of currently stored values in

the set, whereas appending new value in some cases does not,

in case when it is performed at EOF (end of file - the very last

possible offset in a file), given that the EOF can be obtained

instantly from the filesystem. In order to decrease space waste

and speedup operations, a concept of storage maps has been

implemented. Storage maps are responsible for keeping track

of free space chunks. When any operation needs to allocate

a bit of space, it asks the storage map first, and jumps to

EOF only if free space does not offer an adequate fragment.

For the same reason, a key storage data file operates on value

hashes instead of actual values. Hashing overhead is orders of

magnitude lesser than the potential overhead caused by moving

around bigger pieces of data.

III. PERFORMANCE ANALYSIS

A very important aspect of a performance measurement is

an overhead. In conformity with common sense and intuition,

it must be predictable and have a minimal possible impact on

the measurement’s result.

Another critical concern, when it comes to software per-

formance measurement, is concurrency and parallelism. In a

classical, single-threaded sequential program execution, the

matter is trivial. The execution time is proportional to a cycle

per instruction (CPI) value, whereas CPI is an inversion of

the instructions per cycle (IPC) value with constant, known

cycle time. [10] In multi-threaded or parallel conditions none

of these assumptions are true. At the time of writing this paper,

the test CODB system operates in a single thread for the most

of the time. The only multi-threaded parts are Java parallel

streams used for processing some of the internal collections.

This does not affect database logic, which is discussed in this

paper. Taking this into consideration, sequential processing

measurement techniques were used.

There are many execution parameters which can be mea-

sured. For the sake of the research, the following parameters

were chosen: execution time, CPU workload and a heap size.

Such a selection lets us to take two important perspectives

of the system’s performance: the user view (time-oriented)

and the system view (resource-oriented). The user perspective

is connected to considering system as efficient, it determines

system’s capacity as well. The faster requests are processed,

the more of them can be handled in a unit of time. This

aspect is particularly important in interactive applications,

requiring fast responses for a massive amount of requests.

A fundamental time metric is the execution time. The other

perspective, a system one, is resource-oriented. Resource is a

part of a system, which serves for the other elements of the

same system. [11]

Metric is defined as a way to determine whether a system

has given property or not and to what extent. Specifically, in

the performance engineering domain, metrics provide informa-

tion about performance parameters with regards to time and

amount of computational work. Application context is crucial

for interpretation of a metric’s result. For time-sensitive appli-

cations, like real-time systems, time domain is fundamental,

whereas applications processing huge volumes of data will put

a pressure on throughput, regardless of resource usage.

In the literature of the subject there is no generally-adopted

standard on performance metrics. They are rather ad hoc,

defined for each application or class of applications. However,

there are common types of metrics used, compliant with two

major perspectives mentioned earlier. In this research, the

following metrics have been used: Response time [ms] - the

total time of a request execution; Throughput (capacity) - the

number of requests completed in a given time unit; Resource
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consumption [MB] - the highest JVM heap size during the test

execution. In terms of scalability, the most important metric

is the capacity.

A custom, configurable workload generator has been used.

It enabled the configuration of the following aspects of the

generated requests:

• read/write requests ratio;

• data granularity: defined or random size of entries;

• data entropy: a number of generated values or a unlimited

randomness;

• whether the generated requests should touch many

columns or not;

CODB Benchmark application configures a dedicated log-

gers for the sake of collecting execution time, throughput

and heap measurements. Measurement data is written in CSV

(comma-separated values). Execution time is calculated as a

difference between two consecutive System.nanoTime()

invocations, one just before measured method invocation and

one just after. JVM heap consumption is measured using the

java.lang.Runtime class.

IV. PERFORMANCE FACTORS

This section presents a set of factors which are suspected

to impact on database performance. They were chosen based

on expertise, but do not necessarily have a real, significant

influence. Verification of these suspicions is the key objective

of benchmarking.

First category of performance factors are the universal

factors, related to data processed by a database, but unrelated

to specific technology concerns.

Read and write operations ratio can determine a lot of

performance-impacting elements. Firstly, write operations re-

quire synchronization effort. For obvious reasons, insert, up-

date or delete requests imply I/O operations, which need to be

enqueued and buffered on many tiers of the system down to

the physical layer, where they are really executed.

Assuming a constant amount of data to be written; fewer,

big portions are expected to be processed faster than a larger

number of small portions. With the use of a benchmark, it

needs to be measured to what extent such a prediction is true.

Due to CODB storage file structure, which is essentially a

RLE-like-compressed structure, entropy is predicted to have

a significant influence on performance of the system. RLE,

or run-length encoding, is a simple way of data compression

based on substitution of numerous occurrences of a term with

a single instance and a number value which represents the

number of occurrences. The lesser the entropy is, the better

performance should be, because as stated before, when a single

column is discussed, appending a new entry with an already

existing value may require as little as increasing a single 8B

counter and writing a 16B key.

Requests are issued by multiple threads, but the threshold

on which synchronization and context switching between

threads becomes bigger than concurrency performance gain is

unknown. Benchmarking may provide a reasonable empirical

information regarding how many threads is too many and,

specifically, how that number is related to the CPU’s core

number and the CPU’s hyper threading capabilities.

Besides the technology-independent factors, performance

can be affected by technology-specific components. From the

wide variety of candidates, two were chosen for the research

as potentially having the biggest impact on results.

The Java Virtual Machine platform, and thus the Java

programming language, memory model is based on indirect

memory management. The application does not allocate and

release the memory occupied by the objects on its own, but it is

done implicitly by the JVM within a part of the memory called

the heap. A critical component of the memory management

facility in Java is the garbage collector, a module responsible

for removing unused objects from heap. According to the offi-

cial documentation [12], the HotSpot JVM v.1.8 provides four

garbage collector implementations: serial, parallel, concurrent

mark-sweep (CMS) and G1.

As CODB is executed on the JVM, it’s state may (or

may not) have an impact on performance. For example, some

internal data collections or buffers are expanded exponentially,

so that at the beginning (cold state) it will happen more

frequently than later (hot VM). Hot tests are performed by

issuing 1000 write/read requests before starting measurement.

After the warm-up all the database internal structures are

cleared in order to avoid performance impact by having pre-

filled collections or buffers.

V. RESULTS AND DISCUSSION

Each test was performed 4 times and consisted of issuing

50 000 requests. Tables I, II and III present the measurement

results. In all the tables, extreme values which are to be

discussed further are highlighted. Every table header contains

information about what values are desired (low or high).

Each section in result tables contains results with different

values of a single factor. Unless a given factor is tested, the

following values were stated as defaults for each test: parallel

garbage collector, hot JVM, r/w ratio = 0.5, low entropy and

two columns in use.

Testing environment was: Intel Core i7-4600U CPU with

12GB DDR3-1600 RAM and SSD drive with the ext4 filesys-

tem. The operating system was a 64-bit GNU/Linux 4.2.0 with

Oracle HotSpot 64-bit JVM v1.8.0-74. Benchmark was started

using Maven Exec Plugin.

Garbage collector implementation has very low impact on

request execution time. Results for all the implementations

are similar and of similar stability (almost the same standard

deviation). Serial GC performed the best, probably because of

relatively low data volume and single threaded testing. Stop-

ping a single thread is less harmful in terms of performance

than stopping multiple threads. For heap usage levels GC has

an obviously fundamental impact, although some patterns are

visible here. Parallel GC achieved the lowest minimum heap

size of as little as 15MB. This result probably is an outlier, be-

cause of distance from all the other implementations and needs

a deeper investigation. The highest standard deviation also may

be skewed by one or more outliers. Differences in terms of
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TABLE I
BENCHMARKING RESULTS: REQUEST EXECUTION TIME (THE LOWER THE BETTER)

Factor Name Min[ms] Max[ms] Avg[ms] Std deviation Impact

GC type

serial 0.004 186.739 0.060 0.483

low
parallel 0.004 189.110 0.067 0.654
CMS 0.004 188.975 0.059 0.485
G1 0.004 188.600 0.059 0.633

JVM state
hot 0.004 189.110 0.067 0.654

immaterial
cold 0.004 189.188 0.0623 0.816

Read/write ratio
only reads 0.002 11.171 0.006 0.036

high50% writes 0.004 189.110 0.067 0.654
only writes 0.027 189.935 0.087 0.728

Data entropy
low 0.004 189.110 0.067 0.654

high
high 0.001 30.246 0.060 0.306

Multicolumn
yes 0.004 189.110 0.067 0.654

low
no 0.004 183.657 0.062 0.480

TABLE II
BENCHMARKING RESULTS: HEAP USAGE (THE LOWER THE BETTER)

Factor Name Min[MB] Max[MB] Avg[MB] Std deviation Impact

GC type

serial 29.50 425.52 116.16 81.96

high
parallel 14.98 417.96 124.32 103.20

CMS 28.97 347.42 141.60 76.67
G1 30.25 266.02 135.67 64.61

JVM state
hot 14.98 417.96 124.32 103.20

high
cold 17.73 236.70 93.38 62.57

Read/write ratio
only reads 61.77 125.05 93.40 28.80

high50% writes 14.98 417.96 124.32 103.20
only writes 17.04 373.58 139.91 97.91

Data entropy
low 14.98 417.96 124.32 103.20

high
high 14.12 142.84 58.10 48.46

Multicolumn
yes 14.98 417.96 124.32 103.20

high
no 14.89 300.54 89.75 67.85

TABLE III
BENCHMARKING RESULTS: THROUGHPUT (THE HIGHER THE BETTER)

Factor Name Min[req/sec] Max[req/sec] Avg[req/sec] Std deviation Impact

GC type

serial 10518 18237 12771 2373

moderate
parallel 6986 17600 11475 3125
CMS 8492 18608 12891 2707
G1 8834 18924 13286 2825

JVM state
hot 6986 17600 11475 3125

low
cold 5920 18975 12095 3380

Read/write ratio
only reads 41400 50000 47850 3724

high50% writes 6986 17600 11475 3125
only writes 5491 14693 9617 3153

Data entropy
low 6986 17600 11475 3125

low
high 10455 13940 12045 1337

Multicolumn
yes 6986 17600 11475 3125

low
no 8699 16381 12277 2708

maximum and average recorded usage are much more stable.

Execution with the serial GC consumed the highest amount

of memory, which seems to be a trade-off of its simplicity

and speed. In terms of request processing throughput, Serial

GC has the best minimum recorded throughput, but the true

winner is the G1 GC, which offered the highest maximum

result and the highest average throughput. Results are similar

and the impact is relatively low, though.

The JVM state variable shows a little impact on performance

in both time-oriented metrics. It has much higher impact on

the heap usage levels, but that would probably make sense -

the longer the program is running, the higher is heap usage.

In connection with similarly low standard deviation, it brings

a conclusion that the JVM state is not very important for the

performance. In general, technology-specific factors turned out

to have much less impact on a database performance.

When it comes to the data oriented metrics, their impact

is much more visible in performance results. Read-write

ratio, according to intuition, showed that read operations are

performed much faster than write operations. A clearly visible

pattern is present in both time-oriented metrics. Starting from

the 50% share of write operations, results are stable. This

may represent the logarithmic dependency. In terms of heap

usage, 100% read pattern showed surprisingly high minimum

recorded usage, which may be an outlier. The highest max-

imum usage was registered for 50-50 pattern. Probably the

pattern here is the higher diversity of objects, the higher

memory usage is. This requires a further investigation, but

is not very important in the research context. Relatively low

standard deviation in time-oriented metrics shows that results
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are quite stable.

Data entropy presents very interesting case in the request

execution time results. The request processed in 0.001ms may

be a previously discussed corner case with the insertion of a

new instance of already existing value that requires to only

append 16B and increment a single long variable. Enriching

the execution time log with additional information about

request type would help to verify this prediction. High entropy

resulted also in a very good maximum request processing

time. The reason is probably again an appending at EOF. High

entropy tests also proved to have much more stable result than

low entropy tests. In terms of heap usage, pattern is similar,

high entropy has much better and much more stable results.

Throughput metric repeats discoveries from request execution

time, as these metrics are related to each other, in a sense. The

entropy results are surprising, and require a deeper data mining

in order to bring more specific conclusions on its impact.

The last analyzed variable was a multi-column vs. single-

column mode. Single column mode showed better results in all

of the metrics, although the impact on request execution time

results is relatively low. Influence on throughput is moderate,

whereas the highest impact is put on the heap usage levels.

Standard deviations are similar, but relatively high.

In the context of a horizontal scalability, especially impor-

tant for this research, data-oriented observations are viable.

An optimum case of a single-column with a high entropy and

a relatively low share of write operations emerges from the

results.

VI. PERFORMANCE MODEL

In order to produce the mathematical model, chosen factors

presented in sections IV and V needs to be converted to a

mathematical value. The model is necessary to estimate a per-

formance of a database instance with the specific parameters.

This is the first approach to a simplified model and it is to

be refined in subsequent work. Weights are determined on

the basis of impact displayed in tables I and III. Weights

sum must be equal to 1. Other variables were considered

immaterial and thus are not present in the formula. Garbage

collector implementation also was skipped, as its impact on

time-oriented metrics is much lower than data-oriented factors.

P metric estimates database instance performance, the higher

is the better.

P = 0.2 ∗MC + 0.4 ∗ E + 0.4 ∗
1

ln(RW + 1.1)
(1)

MC represents a single- or multi-columnar mode. At the

moment it is defined as a binary factor with values of 0 for

a multicolumn, and 1 for a single column mode. In future

research the MC factor may need to be refined to a functional

form, depending on the number of columns involved. E takes

a values from range [0, 1] where 0 is using the same value

all the time and 1 means a total randomness. RW is a ratio

between the read and write operations, in range [0, 1] where

0 is the read only and 1 write only. Taking everything into

consideration, P metric can take values from range approx

[1.35, 4.80]. The lowest value is a write-only, multi-column

instance with a low entropy, whereas the highest is achieved

for a single-column read-only instance with a high entropy.

This model will be validated and enhanced during the further

work.

VII. SUMMARY

This paper is the very first phase of a performance analysis

of column-oriented database management system. Column-

oriented databases were described in details, in relation to

the popular relational model. Some of the CODB imple-

mentation details were presented, putting special emphasis

on the data layout. Then, performance engineering concerns

were reviewed along with performance metrics. Consecutively,

different components, both technological and data-originated,

with potential influence on performance results were discussed

and verified. Finally, a first approach to a database mathemati-

cal performance model was created and discussed, on the basis

of the results.
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