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Abstract—In the article a new insight into an optimal con-
trol problem of the multistage processes has been given. The
multistage descriptor processes with differential-algebraic con-
straints are under considerations. The new representation of
the descriptor model has been presented. Moreover, the new
structures to represent the differential state variables, algebraic
state variables, control function, as well the global parameters
have been introduced. The generalized description enables the
unified representation of a broad group of the multistage pro-
cesses with differential-algebraic relations and indicates on the
physical interpretation of the process variables.

Index Terms—optimal control, descriptor systems, DAE sys-
tems, generalized description approach.

I. INTRODUCTION

IN THE article some new aspects of the multistage descrip-

tor control systems and their unified representation have

been discussed. The control and optimization of the technolog-

ical processes with the differential-algebraic constraints have

nowadays a great importance [12], [18], [19]. Therefore, one

of main aims of the presented considerations is to emphasize

the applicability of the obtained theoretical results.

The multistage technological processes are often designed

in technology, especially in biotechnology [1], [9], [10], [11],

chemical engineering [4], [8], as well as in environmental

engineering [13], [14], [15].

The presence of a large number of successive stages is a

characteristic feature of the modern technological processes.

This reflects a complexity, as well as an arrangement of

the designed processes. Therefore, the large number of the

state variables, control functions and other process parameters

needs a generalized description of the multistage systems. The

generalized process description can enable us to unify the new

control algorithms design.

The large-scale technological systems should be flexible to

change their configurations, as well as to be open for necessary

modifications. These requirements indicate a one of the new,

unified process description approach, which can enable the

process to develop.

To design the methodology, which allows us the integration

of the additional stages within the process, is a task that

requires the specific theoretical basis preparation. The general-

ized description methodology is the main result of the carried

out considerations.

The rest of the paper has been organized in the following

way. In Section II the general optimal control problem with

the multistage differential-algebraic constraints has been for-

mulated. In Section III the generalized description approach

for the multistage DAE system has been proposed. Then, in

Section IV, the generalized description approach has been

illustrated with the three-stage chemical process. In Section

V the presented considerations have been concluded.

II. STATEMENT OF THE OPTIMAL CONTROL PROBLEM

The origin of the considerations about the multistage de-

scriptor processes analysis are connected with two articles

[16] and [17]. The assumptions and algorithms proposed in

these articles are treated as the mile stones in control and

optimization of the multistage technological processes. The

observed progress in the control algorithms has been presented

in details in three monographs [2], [3], [5].
In this section the most important features of the optimal

control problem with the multistage differential-algebraic

constraints have been given.

Assumption 2.1: The multistage process are consisted on

the N successive stages, where N is the known number and

N ∈ N .

Assumption 2.2: [6] Each stage can be described by the

system of the differential-algebraic equations. The index of

the DAEs system is not greater than 1.

Moreover, to simulate, optimize and control a process, the

time range has to be known.

Assumption 2.3: The range of the process time duration is

known a priori and

t ∈ [t0 tF ]. (1)

According to the Assumptions 2.1 and 2.3, the time domain

of the each considered stage can be defined separately.

Definition 2.1: The time domain of the stage number i =
1, · · · , N can be defined as

ti ∈ [ti0 tiF ]. (2)
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In the stage number i and during the time domain ti the

process is governed by the set of the differential-algebraic

equations.

Assumption 2.4: [7] At the stage number i, the process is

governed by the set of the differential-algebraic relations

ẏi(t) = F i(yi(t), zi(t),ui(t),p, ti)
0 = Gi(yi(t), zi(t),ui(t),p, ti)

(3)

where i = 1, · · · , N is the number of the stage considered,

yi(t) ∈ Rn
yi is a differential state variable, zi(t) ∈ Rn

zi

is an algebraic state variable and ui(t) ∈ Rn
ui denotes the

unknown control function. The independent variable (e.g.

time or length of the chemical reactor) is denoted as t ∈ R.

Definition 2.2: The relations in (3) are defined as follows

F i : Ry
i

×Rz
i

×Ru
i

×Rp ×R → Ry
i

(4)

and

Gi : Ry
i

×Rz
i

×Ru
i

×Rp ×R → Rz
i

. (5)

The minimized process performance index, which can be

treated as the measure of the control quality, is defined as

follows

minui(t),i=1,···,N Q

=
∑N

i=1

∫ ti
F

ti
0

L(yi(ti), zi(ti),ui(ti),p, ti)dt

+E(yN (tNF ), zN (tNF ), tNF ).

(6)

III. THE GENERALIZED DESCRIPTION APPROACH

In this section we would like to propose the new generalized

description approach for the multistage differential-algebraic

processes. The presented methodology extends the proposition

from the article [16].

Definition 3.1: The particular differential state vector

for the i-th stage yi is consisted from all the differential

state variables in the whole process. The differential state

variables, which are constant during the i-th stage, are equal

to their initial values.

The particular differential state vector is characteristic for the

each stage and for the i-th takes the form

yi(t) =







yi1(t)
...

yin
yi
(t)






∈ Rn

yi . (7)

Therefore, the particular differential state vector for the each

stage has the same size. Moreover, the particular differential

state vectors can be combined together to form the differential

state matrix.

Definition 3.2: The differential state matrix is formed by

the particular differential state vectors is the following way

Y(t) = [y1(t) · · · yN (t)], (8)

where yi(t), i = 1, · · · , N denotes the particular differential

state vectors.

The properties of the differential state matrix:

1) The number of the differential state matrix rows is equal

to the size of the particular differential state vector.

Therefore, the number of the differential state variables

can be identified.

2) The number of the differential state matrix columns is

equal to the number of the process stages.

3) The differential state matrix indicates the stages, in

which the chosen differential state variable has the

same physical interpretation.

In the same way like the differential state matrix, the

algebraic state matrix can be formed

Z(t) = [z1(t) · · · zN (t)], (9)

the control matrix

U(t) = [u1(t) · · · uN (t)], (10)

as well as the matrix of the parameters constant in the

time

P ≡ p. (11)

The differential state matrix, the algebraic state matrix, the

control matrix, as well as the matrix of the parameters constant

in the time can be used to define the multistage descriptor

process

Ẏ(t) = F(Y(t),Z(t),U(t),P, t)
0 = G(Y(t),Z(t),U(t),P, t)

(12)

where

F : RnY ×RnZ ×RnU ×RnP ×R → RnY = RnY ×RN ,
(13)

G : RnY ×RnZ ×RnU ×RnP ×R → RnZ = RnZ ×RN ,
(14)

and t denotes the duration time of the whole considered

process

t ∈ [t0 tF ]. (15)

The generalized system description has been used to obtain

the new form of the optimal control problem of three-stage

chemical process .

IV. APPLICATION IN THE MULTISTAGE PROCESS

The matrix-based approach for the multistage DAE systems

description has been applied to model of the three-reactor

process (Fig. 1). The considered system is consisted of two

chemical reactors and a mixing stage between them [16].

At the beginning, the first reactor is loaded with the substrate

A with the volume 0.1 m3 and concentration 2000 mol/m3.
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Due to reactions, which take a place in the system, the products

B and C are obtained according to the scheme

2A → B → C. (16)

Additionally, the first reactor was equipment with a heating ex-

changer, which can be used to control the process temperature

and in this way - to influence the trajectories of the process

variables. The concentrations of the substrate and products are

changing in the following way

ĊA = −2k1(T )C
2
A (17)

ĊB = 2k1(T )C
2
A − k2(T )CB (18)

ĊC = k2(T )CB (19)

with the kinetics constraints

k1(T ) = 0.0444 exp(−2500/T ) (20)

and

k2(T ) = 6889.0 exp(−5000/T ). (21)

Then, in the mixing stage at the time t02, the component B of

concentrations C0
B = 600mol/m3 and some volume S is added.

Therefore, the volume and concentrations of the substrates are

changing, so the following relations are satisfied

V2CA(t
2
0) = V1CA(t

1
F ) (22)

V2CB(t
2
0) = V1CB(t

1
F ) + SC0

B (23)

V2CC(t
2
0) = V1CC(t

1
F ) (24)

where V1 is the volume of substrates loaded at the beginning

of the first reactor. Therefore, the volume V2 in the second

reactor is given by

V2 = V1 + S (25)

The volume S is a decision parameter with

0 ≤ S ≤ 0.1(m3) (26)

After the mixing stage, the substrates are loaded into the

last reactor, where three reactions are taking a place

B → D (27)

B → E (28)

2B → F (29)

In the 2nd reactor, the reactions take place under isothermal

conditions. The state variables are changing in the following

way

ĊA = 0 (30)

ĊB = −0.02CB − 0.05CB − 2× 4.0× 10−5C2
B (31)

ĊC = 0 (32)

ĊD = 0.02CB (33)

ĊE = 0.05CB (34)

ĊF = 4.0× 10−5C2
B (35)

The decision variables are the profile of the temperature

T (t), the duration time of the reactions in each stage, and the

amount S of component B, which is added at the mixing step.

The process is aimed to maximize the amount of the product

D at the output of the 2nd reactor

max
t1,t2,S,T (t)

V2CD(t2) (36)

subject to the constraints on the temperature profile

298 ≤ T (t) ≤ 398(K), t1 ∈ [t10 t1F ]. (37)

According to the presented methodology, the three-stage

technological process can be rewritten in the generalized

matrix form. There are six state variables, which indicate the

appropriate concentrations

y(t) =

















yA(t)
yB(t)
yC(t)
yD(t)
yE(t)
yF (t)

















. (38)

The particular vector of the state variables takes the form

y1(t1) =

















y1A(t
1)

y1B(t
1)

y1C(t
1)

y1D(t10)
y1E(t

1
0)

y1F (t
1
0)

















, (39)

y2(t2) =

















y2A(t
2
0)

y2B(t
2
0)

y2C(t
2
0)

y2D(t20)
y2E(t

2
0)

y2F (t
2
0)

















, (40)

y3(t3) =

















y3A(t
3
0)

y3B(t
3)

y3C(t
3
0)

y3D(t3)
y3E(t

3)
y3F (t

3)

















. (41)

Therefore, the matrix of the state variables for the considered

process takes the form

Y(t) = [y1(t1) y2(t2) y3(t3)]. (42)

The control function is constructed in a similar way

u(t) =





T (t)
S
C0



 . (43)

u1(t1) =





T (t)
0
0



 . (44)
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Fig. 1. The three-stage chemical process.

u2(t2) =





0
S
C0



 . (45)

u3(t3) =





0
0
0



 . (46)

and finally

U(t) = [u1(t1) u2(t2) u3(t3)]. (47)

V. CONCLUSION

In the presented article the considerations about the

new generalized description approach for the multistage

technological processes with the differential-algebraic

constraints were discussed. Therefore, the proposed approach

was characterized by some important features:

a) the general and simple schematic multistage processes

description,

b) the physical interpretation of the process variables,

c) easy modification of the process by addition of new

elements to the model,

d) integration of processes developed according to different

standards,

e) indication the successive stage of the process by the

matrix-based structure of the process variables.

From the presented reasons, the carried out theoretical

considerations possess a significant practical application. Thus,

the generalized description approach has been used to obtain

the new form of the three-stage chemical process model.
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