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Abstract—This paper describes a method for spatial tracking
of a strapdown device that can be used for design of human-
computer interfaces. Inertial Measurement Unit (IMU) is used to
obtain 6-dof position exploiting the so-called ZUPT technique by
the means of the Kalman Filter. Additional corrections of position
are done using magnetometer readings in the presence of static
magnetic field induced by permanent magnet that overshadow
geomagnetic field. This correction allows us to overcome drifting
errors of integration of IMU readings. We have also presented
comparisons of different models for magnetic field reconstruction
that is crucial for this system.

I. INTRODUCTION

H
UMAN-Computer interfaces that uses hand gestures,
object manipulation or any other pervasive technology

always require position tracking subsystem. Recent develop-
ments in micro-electro mechanical systems (MEMS) enables
researchers to build new wearable, position aware devices by
utilization of miniaturized and low-power sensing devices. For
example, inertial sensors are commonly used for construction
of 6-dof (orientation and position) spatial tracking systems [1],
[2]. Nevertheless, precision of such sensing devices is still
very low, therefore it is needed to adopt more complex
computations and signal filtering techniques. In this paper,
we present an inertial position tracking system that uses
additional correction by positioning in magnetic field induced
by permanent magnet. Previous works exploited an array of
magnetic sensors to unambiguously estimate position, while
we propose a data fusion algorithm that uses just one magnetic
sensor along with inertial sensor.

Data fusion algorithms are used commonly with inertial
devices—in order to estimate orientation of the sensor, state-
of-the art filter [3] integrate angular rate (obtained from
gyroscope) in order to calculate rough quaternion rates and
then uses gravitational force (obtained by accelerometer) to
correct roll and pitch angles. Finally, magnetometer readings
are exploited to correct yaw angle. The best known algorithm
that can be used in this setup for position estimation exploits
the so-called “zero-velocity” update (ZUPT). Second integral
of acceleration outputs position with accumulative error. Addi-
tional statistics are used to test if the sensor is still—velocity,
therefore, should be zero (most of the time it is not and one
can use this information to correct position). This technique
was proposed in [4] for inertial navigation using foot-mounted

inertial measurement unit. We have extended the technique
introducing Magnetic Update (MUPT) that introduces small
correction of position if the sensor is exposed to magnetic
field. In presented setup properties of magnetic field must be
known beforehand, basing on extensive calibration procedure.

Contribution of this paper is as follow: (1) design and
evaluation of position tracking system by fusion of inertial
and magnetic sensing in the presence of magnetic field in-
duced by permanent magnet, (2) evaluation of magnetic field
reconstruction techniques, (3) positioning algorithm in that use

II. RELATED WORK

Measurements of magnetic field have long been used in
the problem of spatial tracking. Starting with the problem
of locating buried magnet, one solution [5] used measure-
ments of magnetic field generated by beacon device. In 1979
Raab et al. [6] proposed a complete system for relative
position and orientation tracking using active 3-axis magnetic
dipole source. Technique was further described and analysed
on simulated data by Raab [7]. Similar methods are now
used in commercial tracking solutions like Polhemus Fastrack

or gaming controller Razer Hydra. Although these methods are
useful in some situations, power requirements and high weight
of magnetic coils disqualify it in context of wearable devices,
with exception of specific usages as described in [8]. Since
the advent of MEMS inertial and magnetic sensors, many
solutions have been proposed for problem of position and ori-
entation tracking using fusion of inertial and passive magnetic
measurements [9], [10], [11]. Unfortunately, inertial systems
suffer from systematic error accumulation. It is common [12],
[13] to address this problem with ZUPT, as proposed in [4].
Although, as pointed out in [14], this solution suffers from
many drawbacks and its usefulness is limited.

Geomagnetic field measurements are also susceptible to er-
rors such as interference from ferromagnetic mass and electric
devices. Zachmann tried correcting magnetic measurements by
gathering calibration samples of magnetic field in a volume
of tracking space [15]. Some authors tried using these dis-
tortions for detection and low accuracy tracking of metallic
objects [16], [17]. Magnetic field produced by permanent
magnets locally overshadow earth’s, thus extensive research
have been done on reverse problem of tracking permanently
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magnetised markers with relation to magnetometer and (most
often) arrays of magnetometers [18], [19], [20], [21].

Finally, in 2015 Kortier et al. [22] explored a system for
tracking neodymium magnet paired with accelerometer and
gyroscope with respect to array of four magnetometers in
parallel with inertial sensor.

We propose a system where magnetometer is coupled with
inertial sensors in a package and tracking is carried out with
respect to neodymium magnet.

III. MODELLING VECTOR FIELD OF A PERMANENT

MAGNET

In order to obtain the position of magnetic sensor in the
presence of static magnetic field the straightforward idea is
to use a model of the magnetic field and match the empirical
measurement (obtained by magnetometers) to the theoretical
one. The idea is to construct error function that will be
minimized in order to find position of the sensor (or array
of the sensors). This idea was investigated in many papers,
e.g. [19], [21]. The technique requires finding a method for
determining theoretical value of magnetic vector field.

More formally, we are searching for a function P such that

PΘm
s
(x, y, z) = ~B, (1)

where ~B is a vector of magnetic induction in given position
(x, y, z) ∈ R

3 and Θm
s is an orientation of the sensing device s

in the magnet frame of reference m (one can understand it as
a transformation from sensor frame of reference to magnet
frame of reference).

Magnetic induction vector in our case consists of three com-
ponents: geomagnetic field ~Bgeo, field of permanent magnet
~Bmag and ferromagnetic part considered as environment noise
~Benv. Therefore,

~B = ~Bmag + ~Bgeo + ~Benv. (2)

For strong magnets, however, we can omit environmental and
geomagnetic component, hence ~B ≈ ~Bmag.

The model of the magnetic field is difficult to calculate in
real time, so we are looking for some approximation of it.
For this reason, we have investigated and compared different
techniques: (1) dipole model, (2) integration from Maxwell
equations using finite element method (FEM) simulators, and
(3) field interpolation on empirical (and sparse) sampling.
These methods are described below.

A. The Magnetic Dipole

Magnetic field of strong magnet can be approximated using
magnetic dipole model [23]:

~B~µ(~r) =
1

‖~r‖5
(

3(~µ~r)~r − ~µ‖~r‖2
)

, (3)

where µ is a magnetic dipole moment (that characterize
magnetic field source) and ~r is a vector from the magnetic
dipole source to the observation point. It is important to note
that, since we assume that magnetic field source is infinitely

small point, this model is accurate only when ‖~r‖ ≫ rm
(where rm is a size of magnet).

We can rewrite Eq. (3) into components to obtain formulas
that characterize components of ~B =: [Bx, By, Bz]:

Bx = 3|µ| zy

(x2+y2+z2)
5

2

,

By = 3|µ| zx

(x2+y2+z2)
5

2

,

Bz = |µ| 2(x
2
−y2)−z2

(x2+y2+z2)
5

2

.

(4)

From Equation (4) we see that in order to use the above
model, we must carry out a calibration of the magnet (find
the magnetic dipole moment µ for a particular magnet). This
characteristic is included in the documentation that came with
the magnet, nevertheless, we have found this parameter in
the experimental section by defining an error function and
making its optimization. In order to find this parameter, only
one measurement in some known position is needed.

Usage of magnetic dipole moment for defining position
estimation error function enables us to carry out the gradient
function in analytical form. That makes minimization very fast.

B. Magnetostatic simulation using FEM

FEM (Finite Element Method) is a method of integrating
differential equation used to find approximate solutions of
many physical models. In our context it is used to solve
the Maxwell equations. Magnetic dipole moment, which is a
parameter for this FEM model, was calculated by experiment.
The boundary conditions were chosen at far distance from field
source in the manner that changing them will not affect the
magnetic field in region of interest.

We used QuickField1 library, that outputs the exact
solution at some points and interpolates the rest. The position
of the points are optimized.

C. Interpolation of a vector field

In this section, we propose a fast method to approximate the
magnetic field using empirical readings—our magnetic field
calibration procedure.

The method described below is based on measurements of
magnetic field ~B at predetermined positions in the vicinity of
the magnet, and then determining the interpolating function for
any point in the area of interest D. For this purpose, we used
the Delaunay triangulation (DT). The idea of this method is
to find simplex, inside which there is a point of interest, and
then counting the weighted sum of the vertices of the simplex
(on which empirical measurement is known).

More formally, suppose we have made n measurements of

magnetic field ~̂B(pi), i = 1, . . . , n, in points pi := (xi, yi, zi),
i = 1, . . . , n.

Let us consider the division of space R
d on (d+1)-simplices

{σj := σ
(

{pik}
Kj

k=0

)

}j∈J , where σ({pl}
L
l=1) is the simplex

determined by vertices pl, l = 1, . . . , L, such that:

• for k 6= l, k, l ∈ J , intersection of simplices σk ∩ σl is
either a common wall of σk and σl, or is empty,

1http://www.quickfield.com/

106 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016



• the interior of the circumscribed sphere on any simplex
σj does not contain any point {pi}ni=1.

Our area of interest D is the sum of all the above simplices. In
the present context we only consider the division of R2 and R

3,
therefore, we can informally say that Delaunay triangulation
divides the space into triangles and tetrahedrons, respectively,
such that none of these objects is deformed (i.e. do not contain
“very sharp” angles). A popular method for determining trian-
gulation is based on the dual space (we show an example for
R

2): we consider the projection (px, py) 7→ (px, py, p
2
x + p2y)

and then calculate the convex hull of this set of points. Then
the corresponding points will create DT.

Let ~BDT (p) denotes the magnetic induction vector calcu-
lated by Delaunay interpolation at point p contained in the
convex hull of pi. For determining ~BDT DT uses barycen-
tric coordinates {λk}

d+1
k=1 of p with respect to {pik}

d+1
k=1. In

conclusion, we can represent it as a linear combination

~̂BDT (p) =
d+1
∑

k=0

λk
~̂B(pik) (5)

such that
∑d+1

k=1 λk = 1 and λ1, . . . , λd+1 ≥ 0, where points
pik are vertices of simplex σ such that p ∈ σ. It is worth noting
that calculation of coefficients λk for point p = (px, py) in R

2

(and, analogically, in R
3) using reference points p1, p2, p3, is

limited to determining the solution of the following system of
equations





p1x p2x p3x
p1y p2y p3y
1 1 1









λ1

λ2

λ3



 =





px
py
1



 . (6)

From the computational complexity point of view, the most
expensive operation is finding a simplex, inside which the
point is located. To do this, one can apply a hierarchical
decomposition of simplices, which represents collection of
simplices in the form of binary search tree. Asymptotic cost
of finding simplex is, therefore, O(log n), however, because
of need for preprocessing and higher storage requirements,
such representation may be not suitable for implementation on
small microprocessors. Best alternative seems to be a classic
walking algorithm [24]. As noted in [25], Mücke shows [26]
that careful use of walking algorithm can bring down expected
time close to O(n1/4) (for d = 3).

D. Magnetic Field Reconstruction

In order to check its reliability our methodology was as
follows: we recorded vectors of magnetic induction in many
places on common plane and compared it with the theoretical
model. In this section, we will present experimental result of
reconstruction of magnetic field.

The magnetic field was generated by arrangement of three
cylindrical neodymium magnets (⊘ = 22 [mm], h = 10 [mm],
direction of magnetization was along shorter axis). According
to specification, at the distance of 0.7 [mm] in the direction of
magnetization the magnetic field strength was ≈ 0.380 [T].
Measurement was performed with MEMS magnetometer
LSM303D, that is able to measure magnetic field of maximum

Fig. 1: Experimental setup.
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Fig. 2: Magnetic field by Delaunay triangulation. Red arrows
depicts empirical measurements whereas blue arrows represent
symmetrical reflection of those.

strength of ±1.2 [mT] with 16 bits resolution (values with 16
meaningful bits). See Fig. 1 for our experimental setup.

At the beginning, we checked properties of the field with
magnets arranged in the above manner.

We’ve done several experiments, in order to show that
magnetic field around the cylinders is symmetrical. Moreover,
several experiments have been performed to check the accu-
racy of different models. Geomagnetic field was measured
beforehand and discarded from both calibration dataset and
test dataset. Experimental station is illustrated in Fig. 1.
Table III-D shows the results of different tests.

Test 1 was divided into several subtest: Iq, IIq, IIIq, IVq,
r<20, r>=20. It consists of measurements when magnet was
not rotated.

Test 2, 3 and 4 consists of measurements with magnet
rotated along magnetization axis by 90, 180 and 270 degrees,
respectively, without changing its location. Each test consisted
of 54 measurements in places which were different than
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TABLE I: Comparison of magnetic field reconstruction using different models.

∡ ~Be
~Bm [deg] 10

−2|B| [gauss]
dipole fem interpolant dipole fem interpolant

test 1 / 0◦ 19.37± 9.28 7.89± 4.96 3.62± 3.57 72.17± 72.09 113.71± 50.49 14.15± 16.11

Iq 17.96± 9.12 7.67± 4.71 1.62± 1.32 65.16± 55.32 127.09± 62.41 5.62± 7.94

IIq 22.81± 8.03 10.40± 4.41 5.82± 3.81 59.31± 56.11 108.68± 23.94 15.22± 19.41

IIIq 20.57± 9.29 7.68± 5.24 3.99± 4.78 70.38± 63.26 111.28± 50.20 20.91± 19.18

IVq 18.70± 8.15 6.41± 4.57 3.15± 2.10 58.69± 54.25 124.10± 39.39 11.07± 6.31

r<20 23.09± 10.74 11.69± 5.02 2.67± 1.99 128.76± 91.99 122.44± 75.47 25.12± 22.40

r>=20 17.52± 7.83 5.99± 3.66 4.09± 4.06 43.88± 34.11 109.34± 30.30 8.66± 6.95

test 2 / 90◦ 19.46± 9.50 8.24± 5.31 4.07± 3.60 72.07± 72.16 113.55± 51.35 14.06± 15.79

test 3 / 180◦ 19.31± 9.24 7.98± 4.75 3.70± 3.64 72.08± 71.99 114.08± 51.12 13.56± 14.43

test 4 / 270◦ 19.08± 9.21 7.63± 5.05 3.77± 3.56 71.92± 71.63 113.67± 50.58 15.53± 17.49

calibration points. Since magnetometer has maximum range
of measurements, readings were taken at distances of less that
12 [cm] from the magnet.

Left part of the table shows angle of deviation between
model magnetic field ~Bm and experimentally measured mag-
netic field ~Be. Right part of the table shows means and
standard deviations of norms between ~Bm and ~Be (i.e.
| ‖ ~Bm‖ − ‖ ~Be‖ |).

In Table III-D one can see that error is similar in each
model, indicating that the measured magnetic field is indeed
symmetrical along the axis of magnetization. Differences
between quarters of the coordinate system are larger, but
this is probably due to inaccuracies of measurement. Dipole
model (as expected) makes smaller error (in particular, when it
comes to the norm of ~B) when we measure at distant places
(r ≥ 20 [cm]) from the source field. Field calculated using
FEM is, roughly speaking, two times better than the dipole
model. Our method was marked as “interpolant” and is about
five times better that dipole and about 2 times better that FEM.

Bearing in mind the above, we assume that around cylin-
drical magnetic the field is symmetrical, therefore calibration
measurements were taken only on the one selected quadrant
of a plane.

Delaunay triangulation is depicted in Fig. 2. We see there 42
measurements of ~B (depicted as red arrows) and 115 vectors
(blue arrows) that were derived using symmetrical reflection
of those 42.

IV. POSITIONING IN EMPIRICALLY INTERPOLATED

MAGNETIC FIELD

Positioning within the magnetic field using a magnetometer
is usually performed using the layout of sensors and the dipole
model. Dipole model considered for its own sake is biased by
error. However, it can be compensated by using more readings
and their relative positions. Additionally, a more accurate
position can be determined with a greater number of sensors.

Therefore, in order to calculate the precise position it is
usually necessary to use at least two sensors. However, in
the paper we want to get rid of this constraint and estimate
the position with a single magnetometer in the magnetic field.
Hence, we cannot mitigate errors of the model by simultaneous
readings and, therefore, we can find only one parameter: either

the location (having a fixed orientation) or the orientation
(having a fixed position). For that we will minimize the cost

function defined as follows

f ~Be
(p) = | ~Bm(p)− ~Be|

2 + (| ~Bm(p)| − | ~Be|)
2, (7)

where ~Be is experimentally measured magnetic field and
~Bm(p) is the value of model magnetic field at point p.
Calculation of ~Bm(p) is the most computationally expensive
operation.

Since this function is convex in a neighbourhood of cur-
rent position, we know that (locally) the minimum value of
function (7) is uniquely determined. As it was stated above,
in the presence of at least two sensors we can use dipole
model. Therefore, error function is smooth and minimization
can be done by gradient descent algorithm which it terminates
after just a few iterations. In the case of our model, the error
function is created from DT and since the data is collected
empirically we do not have smoothness any more. That is why
we use nongradient methods, e.g. Nelder-Mead. This algorithm
also terminates after few iterations, but it needs many more
error function evaluations.

In Fig. 3 we show the magnitudes of error function (Eq. 7)
with respect to number of evaluations during the execution
of minimization, starting from two initial positions. For each
minimization these were selected by first randomly choosing
known destination point and then selecting random position
from its neighbourhood within the range of 1 [cm] and 4 [cm],
respectively. The thick line on the chart indicates the average
and is surrounded by a plot of the standard deviation at each
iteration.

V. FUSION OF INERTIAL POSITIONING AND MAGNETIC

The fusion algorithm is implemented by the means of
Kalman Filter which estimates the error state vector δxk =
[δvk δpk δCk], which represents velocity, position and orien-
tation (roll, pitch, yaw) errors. Details of the algorithm are
described in Alg. 1—as an input it takes readings from IMU
(a, ω,m—which are acceleration, angular rates and magnetic
induction vector respectively).
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Fig. 3: Converge of minimization.

State transition matrix Fk is defined as follow:

Fk :=





I3×3 ∆tI3×3 03×3

03×3 I3×3 03×3

∆tSk 03×3 I3×3



 , (8)

where Sk is a skew-symmetric cross-product operator matrix
given by:

Sk :=





0 −aNz,k aNy,k
aNz,k 0 −aNx,k
−aNy,k aNx,k 0



 . (9)

The Sk matrix is used for accumulating orientation er-
rors with respect to velocity error estimates. This method is
inspired by technique called “alignment transfer” [27] and
was introduced to ZUPT-based inertial navigation systems by
Foxlin [4]. In our algorithm we updated the orientation esti-
mation from original Foxlin work by usage of complementary
filter (line 6) which was developed by Madgwick [3]. In our
previous work [28] we showed his setup works better for
orientation estimation for the object in motion with zupt-based
filters.

At line 11 two statistical test are performed: one for zero
velocity hypothesis testing (IsZUPT) and one for position es-
timation error test (IsMUPT). For the zero-velocity hypothesis
testing we apply the following formula at k-th reading:

Var
({√

ω2
x(t) + ω2

y(t) + ω2
z(t) | t = k − w, . . . , k

})

< ǫ1

(10)
Simply speaking Eq. 10 is a windowing w-length function

that checks if variance of gyroscope readings do not exceed
certain threshold (ǫ1). For zero-velocity hypothesis testing
there exist lots of solution in the literature (see [29], [30],
[31])

In order to check if the correction based on magnetic
positioning observation need to be performed another test is
executed: IsMUPT. This test checks if covariance error didn’t
exceed certain threshold:

6
∑

i=3

(Pi×i) < ǫ2 (11)

Eventually at lines 19-23 the Kalman Update is performed
basing on two version of observation matrix H; one for
velocity pseudo-observation update (line 13) and second one
or true position observation (line 16).

Algorithm 1 Psuedocode for inertial positioning system with
zero-veolcity and magnetic positioning updates.

1: procedure INS-ZUPT-MUPT(a, ω,m, g0)
2: k ← 0,
3: q0 ← INITIALIZEORIENTATION(g0)
4: loop

5: k ← k + 1
6: qk ← UPDATEORIENTATION(ak, ωk)
7: anav ← q−1

k ⊗ ak ⊗ qk − g0

8: v
(+)
k ← vk−1 + anav∆t

9: p
(+)
k ← pk−1 + vk−1∆t

10: P
(+)
k = FPk−1F

T +Q

11: if ISZUPT(k, a, ω) or ISMUPT(P (+)
k ) then

12: if ISZUPT(k, a, ω) then

13: H ←
[

03×3 I3×3 03×3

]

14: zk ← 03×1

15: else

16: H ←
[

I3×3 03×3 03×3

]

17: zk ← argmin fm(p
(+)
k )

18: end if

19: K ← P (+)HT (HP (+)HT +R)−1

20: Pk ← I −KHP
(+)
k

21: [δvk δpk δCk]← K(zk −Hxk)
22: qk ←CORRECTORIENTATION(Ck)
23: [pk, vk]← [pk, vk]− [δpk, δvk]
24: end if

25: end loop

26: end procedure

VI. EXPERIMENTAL RESULTS

Experiment was conducted using sensor and a magnet,
which properties were described in section III-D. The sensor
was moved freely over the table with moderate speed in
various trajectories (with and without still phases). The true
path was obtained using optical system, composed from two
cameras that were observing diode mounted on top of the
sensor. Example of such movement is depicted on the Fig. 4.
Fig. 4b depicts trajectories computed by algorithm described
in previous section (blue lines), whereas Fig. 4a shows the
same algorithm in which no magnetic update has been made.
Note that path is depicted only between zero-velocity phases—
the a posterori states. The a priori states are depicted by the
dotted line as “intermediate states”. The read arrows indicates
magnetic field measurements done at particular place and the
green line is the true path observed by optical system. As
a visual aid magnetic field was enclosed using interpolation
method—black field lines.

Error drift in inertial navigation system describes the sit-
uation where there is a random inaccuracy introduced at
each step of computation. It source lays in (1) sensor error
and (2) floating-point computation. It is very challenging
(or impossible) to model this error, therefore there is no
method for position tracking basing only on IMU readings.
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Fig. 4: Comparison of position tracking algorithms.
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Fig. 5: Position estimation errors.

After prototyping a system with another source of correction
the most important thing to check is if it’s error does not
accumulate over time.

The absolute error (measured as Euclidean distance between
the true and estimated path of two methods over time) is
depicted on Fig. 5. The error is computed as an average over
all 10 samples of different trials along with standard deviation.
The most important observation is that that ins-zupt-mupt does
not drift over time (p < 0.01 using Augmented Dickey-Fuller

Test for unit root testing of processes—stationary test), while
ins-zupt accumulates errors over time. The trials without zero-
velocity phases were not enclosed into the results since its
error was too significant.

VII. CONCLUSION AND FUTURE WORKS

In this paper, position tracking system based on data fusion
from inertial measurement unit and positioning in magnetic
field was presented. Inertial navigation was performed using
the so-called zero-velocity updates and modelled by the means
of the Kalman Filter. The common problem with error accu-
mulation of inertial system has been solved by positioning
sensor in the presence of static magnetic field.

The presented method enables us to build more robust
human-computer interfaces which requires positioning subsys-
tem, because it requires just one sensor for magnetic field
sensing. Static magnetic field can be easily generated with
no energetic cost by various (in terms of size and strength)

neodymium magnets and the magnetometer most of the time
is already mounted into IMU unit.

The previous works consisted of array of sensor that was
rigidly mounted, which can introduce some problem in real-
life systems. Usage of just one sensor, however, introduces
some drawbacks: (1) the field of magnet needs to be known
precisely in advance, therefore a calibration procedure needs to
be introduced in advance (2) from theoretical point of view the
additional corrections that are made are not unambiguous—
the cost function Eq. 7 minimizes position error with given
orientation. The second problem could lead to error in yaw-
angle estimation.

In this paper authors did not investigated orientation esti-
mation errors. Nevertheless, the presented algorithm corrects
the orientation estimates in zero-velocity phases. The estimates
are sufficiently good for most applications because orientation
estimation is less prone to errors since it can be corrected by
data fusion filter and needs only one integration. Nevertheless,
in future work promising idea is to estimate orientation errors
taking the whole path into consideration by forming some lag-
introducing corrections. The naive idea is to correct orientation
minimizing the magnetic field vector derivation from theoret-
ical model in more than one points, assuming some tuned
springiness between the measuring points.
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