
On Algebraic Hierarchies
in Mathematical Repository of Mizar

Adam Grabowski, Artur Korniłowicz
Institute of Informatics

University of Białystok

ul. Ciołkowskiego 1 M, 15-245 Białystok, Poland

Email: {adam, arturk}@math.uwb.edu.pl

Christoph Schwarzweller
Department of Computer Science

University of Gdańsk
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Abstract—Mathematics, especially algebra, uses plenty of
structures: groups, rings, integral domains, fields, vector spaces
to name a few of the most basic ones. Classes of structures
are closely connected – usually by inclusion – naturally leading
to hierarchies that has been reproduced in different forms in
different mathematical repositories. In this paper we give a brief
overview of some existing algebraic hierarchies and report on the
latest developments in the Mizar computerized proof assistant
system. In particular we present a detailed algebraic hierarchy
that has been defined in Mizar and discuss extensions of the
hierarchy towards more involved domains. Taking fully formal
approach into account we meet new difficulties comparing with
its informal mathematical framework.

I. INTRODUCTION

S
INCE its development at the beginning of the 20th century

abstract algebra has spread over to various branches of

mathematics. One reason is the highly reusable results pro-

duced, not least due to the hierarchical structure of algebraic

domains. This kind of reuse, of course, is also highly desirable

in mathematical proof assistants. Consequently one naturally

finds various systems in which algebraic hierarchies similar to

abstract algebra have been constructed. However, most of them

served to facilitate the formalization of a particular theorem

or a particular application:

Though not in a proof assistant, but in a computer algebra

system the – to the best of our knowledge – first algebraic

hierarchy was constructed in Axiom [24]. Started back in

1978 – the first release under the name Axiom took place

in 1991 – this was the first system in which types were

connected to mathematical domains: Algebraic domains have

types in their own right – called categories – that can be

used to form hierarchies. So, for example, it is possible to

define an operation Fraction that takes an argument of

type IntegralDomain and returns its field of fractions. The

algebraic hierarchy of Nuprl [23] was developed to support

computational abstract algebra. In Coq [9] more than one

algebraic hierarchy exists, we name two of them: One [11] was

constructed as part of the FTA project to prove the fundamental

theorem of algebra, another one was used in the formalization

of the Feit-Thompson Theorem [12]. In the HOL/Isabelle

Archive of Formal Proofs [22] one finds a number of proof

libraries devoted to algebraic domains. Lately in ACL2 [1] an

algebraic hierarchy has been built in order to support reasoning

about Common Lisp programs [21].

The Mizar system [5], [17], [31] provides a methodology

to model algebraic domains based on attributed types [4].

Using so-called cluster registrations one can express (and

prove) logical implications between attributes, in this way

extending subtyping of attributed types. This allows not only

to model algebraic domains in a generic way, but also to

draw connections between – also already existing – algebraic

domains. We claim that this approach is suitable to develop

algebraic hierarchies that a) are generic in the sense that

notations and theorems introduced in a class of algebraic

domains are automatically available in subclasses b) are easily

extensible by both algebraic domains and additional notations

c) can automate a great deal of the natural switching between

algebraic domains mathematicians are used to and d) are

highly convenient for open repositories with lots of authors.

To support this claim we present in Section II a detailed

hierarchy of rings up to fields, containing such algebraic do-

mains such as unique factorization domains (UFDs), principal

ideal domains (PIDs), and others. In Section III we show how

homomorphisms can be incorporated into this hierarchy and

how properties of homomorphisms can be used to automati-

cally infer properties about the underlying algebraic domains.

Finally, in Section IV, we discuss how to extend the hierarchy

towards more involved domains such as polynomial rings and

ordered fields. At the end we draw some conclusions.

II. AN INTRINSIC HIERARCHY OF RINGS

In Mizar, algebraic domains are built based on structure

definitions giving the signature – carriers and operations – of

the domain. Informally, a ring is understood as an algebraic

structure consisting of a set of elements equipped with binary

operations + and · satisfying three sets of axioms. More

formally, usually this leads to understanding mathematical

structures as ordered tuples, and in the case of a ring we have

〈R,+, ·〉.

This could make potential troubles if we try to define rings

through simpler notions, namely groups, which are usually

〈G,+〉 or 〈G, ·〉
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Figure 1. Net of basic algebraic structures in the Mizar Mathematical Library

(in additive or multiplicative notation, respectively). Of course

then, ordinary concatenation of tuples does not work properly.

In the Mizar system, structures were implemented as partial

functions with the syntax as below.

struct (Predecessor_List) Structure_Name

(# selector_1 -> type_1,

selector_2 -> type_2,

...

selector_n -> type_n #);

This could lead to the tree, or rather a forest of 157 struc-

tures, as there are primitive structures other than 1-sorted.

However, as multiple predecessors are allowed, we should look

at the diagram of interconnections as at a net. A part of such

structure, dealing with basic algebraic signatures, is shown at

Figure 1.

So, for example, central item in this hierarchy is

definition

struct (addLoopStr, multLoopStr_0)

doubleLoopStr

(# carrier -> set,

addF, multF -> BinOp of the carrier,

OneF, ZeroF -> Element of the carrier #);

end;

which gives the signature of rings and fields (another one

is ModuleStr over F which gives raise to the theory of

vector spaces). Note that doubleLoopStr inherits from

both addLoopStr and multLoopStr_0, that is it joins

the signatures of additive and multiplicative groups. Partic-

ular properties such as commutativity or the existence of

inverse elements are described by attribute definitions (see

[35]). As a consequence, attributes defined for these become

available and need not to be stated again. A ring is now

just a doubleLoopStr with the appropriate collection of

attributes:

definition

mode Ring is Abelian add-associative

right_zeroed right_complementable

associative well-unital distributive

non empty doubleLoopStr;

end;

Observe that because the Axiom of Choice is hardcoded

in the Mizar checker, the collection of attributes clustered in

the above definition of type should be shown to exist for at

least one object; otherwise (with the illustrative example of

infinite empty set) this should be contradictory. This is called

the paradigm of non-emptiness of types in Mizar.

More interesting are different subclasses of rings that form

a hierarchy according to their additional properties, e.g.

rings ⊇ commutative rings ⊇ integral domains ⊇

⊇ GCD domains ⊇ UFDs ⊇ PIDs ⊇

⊇ Euclidean domains ⊇ fields

to mention the most common ones. Each such subclass is

easily characterized by adding an attribute describing its

defining property, for example

definition

let L be non empty doubleLoopStr;
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attr L is PID means

for I being Ideal of L holds I is principal;

end;

Note that the definition does not use integral domains – in

fact not even rings, but just their signature. The property of

an ideal being principal just not relies on other properties such

as commutativity or the absence of zero divisors (at least when

defining the property; later on more properties may be neces-

sary to show that this one is fulfilled in a particular domain

– see [37]). The above hierarchy can now be established by

observing that one defining property implies another – just

like in mathematical textbooks:

registration

cluster Euclidean -> PID for comRing;

end;

This way of defining the hierarchy has two major advan-

tages. Firstly, a proof of the implication has to be given. This

may be obvious, but we like to emphasize at this point, that

proofs are an indispensable part of a repository. Note also, that

the registration is about commutative rings, not about integral

domains. Analogous to the definition of the attribute PID this

points out, that Euclid’s property implies that every ideal of the

ring is principal even in presence of zero divisors – although

both domains are usually defined as integral domains with the

appropriate additional property.

Secondly, and more important here, cluster registrations

extend automation of proving in Mizar, that is after the above

registration the theorem like

theorem

for R being Euclidean domRing holds

R is PID domRing;

becomes obvious. Here domRing denotes integral domain,

where in the attribute domRing-like the commutativity is

not taken into account. Such granularity allows for better reuse

of knowledge. As a secondary consequence all notations –

definitions, predicates and also theorems – established for the

subclass now are available for the superclass, too. In practice,

this means that notations are generic: There is no need to

define, for example, greatest common divisors in Euclidean

domains. They can be already introduced in GCD domains (see

[20]) and are therefore available in Euclidean domains, once

Euclidean domains have been incorporated into the hierarchy.

The proofs necessary to built the above-mentioned hierarchy

of rings have been carried out in a number of Mizar articles

[2], [28], [30], [36]. Together they establish an environment in

which arguing about different kinds of rings – and switching

between them – can be performed in a way very similar to

the usual mathematical processing.

First of all, the hierarchy can easily be extended when neces-

sary or convenient: For example Noetherian rings are integral

domains (rings) in which every ideal is finitely generated. Thus

every PID is a Noetherian ring. The corresponding part of the

hierarchy looks as follows:

definition

let L be non empty doubleLoopStr;

attr L is Noetherian means

for I being Ideal of L holds

I is finitely_generated;

end;

registration

cluster PID -> Noetherian

for non empty doubleLoopStr;

end;

Furthermore, concrete domains such as the ring of integers

or the field of real numbers can be integrated in a straight-

forward way: a concrete domain is an instance of an abstract

domain and can be introduced by just defining its concrete

carriers and operations. The ring of integers, for example, is

then given by

definition

func INT.Ring -> doubleLoopStr equals

doubleLoopStr(#INT,addint,multint,In(1,INT),

In(0,INT)#);

end;

and the following registrations then show that INT.Ring

is both an integral and a Euclidean domain, hence connect

INT.Ring with the hierarchy.

registration

cluster INT.Ring -> non degenerated

add-associative right_zeroed

right_complementable distributive

commutative associative Abelian

domRing-like;

end;

registration

cluster INT.Ring -> Euclidean;

end;

With these registrations all notations – definitions, pred-

icates and theorems – established for the abstract domains

become available for INT.Ring, too. Note that from this in

particular follows – without any further proof, because this has

been proven inside the hierarchy – that the ring of integers is

both UFD and Noetherian, that is

theorem

INT.Ring is UFD domRing;

theorem

INT.Ring is Noetherian domRing;

are obvious. Moreover, it even does not matter which domain

– Noetherian rings or the ring of integers – is added to the

hierarchy first. In both cases the above theorems are obvious

for the Mizar checker. Note however that in order to make

this automation working, it is convenient to have a bunch of

useful examples of concrete mathematical structures (just to

assure that at least one object with desired properties exists).

At the end of this section it should be noted that the formal

proof that UFDs are GCD domains has not been completed

yet, but see [27] where the fundamental theorem of arithmetic

– giving a blueprint for the proof – has been formalized.
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III. RING HOMOMORPHISMS

When working with algebraic domains (ring-) homomor-

phisms are indispensable. Therefore homomorphisms are an

essential part of an algebraic hierarchy. Homomorphisms are

essentially mappings between rings with additional properties,

that hence can again be defined by adding attributes describing

these properties:

definition

let R be Ring,

S be R-homomorphic Ring;

mode Homomorphism of R,S is

additive multiplicative unity-preserving

Function of R,S;

end;

The attribute homomorphic for S is necessary here, be-

cause Mizar does not allow empty modes: For each pair of

parameters R and S it has to be proved that there exists

a homomorphism from R into S. Therefore the definition of

homomorphisms can take into account only such rings S, for

which such a homomorphism indeed exists. This is ensured

by adding the attribute homomorphic, which has the ring R

as a parameter:

definition

let R,S be Ring;

attr S is R-homomorphic means

ex f being Function of R,S

st f is additive multiplicative

unity-preserving;

end;

Note that together with the hierarchy presented in Section II

this definition provides homomorphisms for all kinds of rings

up to fields. By the way, homomorphisms are functions

preserving the unity and the zero, but the latter one can

be deduced (and really is in this framework) automatically,

hence it is not explicitly given in this collection of attributes.

Therefore additional properties of homomorphisms for more

advanced rings can now be easily incorporated, for example

that homomorphisms between fields are actually monomor-

phisms:

registration

let F be Field, E be F-homomorphic Field;

cluster -> monomorphism

for Homomorphism of F,E;

end;

The property of being monomorphic is then automatically

added when later working with homomorphisms of fields.

The same holds naturally for properties of the image of

homomorphisms:

registration

let F be comRing, E be F-homomorphic Ring,

f be Homomorphism of F,E;

cluster Image f -> commutative;

end;

says that the image of a commutative ring is a commutative

ring. So there is no need to distinguish homomorphisms

between different kind of rings. In fact – as the last registration

shows – it is even sufficient to claim that the homomorphism’s

codomain is an ordinary ring.

For a small example illustrating these techniques consider

now rings R and S and a homomorphism f : R −→ S.

The first isomorphism theorem then states that R/(kerf) ∼=
Image f . Quotient rings have been defined in [26]. The image

of f is here understood as the subring of S with carrier range

f , the operations of Image f are then just restrictions of the

ones of S. This gives

definition

let R be Ring, S be R-homomorphic Ring,

f be Homomorphism of R,S;

func Image f -> Ring means

the carrier of it = rng f &

the addF of it =

(the addF of S) || (rng f) &

the multF of it =

(the multF of S) || (rng f) &

the OneF of it = 1.S &

the ZeroF of it = 0.S;

end;

Now the homomorphism h : R/(kerf) −→ Imagef given by

[a] 7→ f(a) for a ∈ R can easily be defined and shown to be

bijective [28], so

theorem

for R being Ring, S being R-homomorphic Ring,

f being Homomorphism of R,S holds

R / (ker f), Image f are_isomorphic;

Note that if R is a field we get that R/(kerf) is a field also:

If R is a field, so is Image f , and hence its isomorphic copy

R/(kerf). This argument can now be automated by observing

that homomorphic images of fields are fields – as in the

case of commutative rings from above – and reformulating

the isomorphism theorem as a registration using the attribute

isomorphic that is defined analogously to homomorphic.

registration

let F be Field, E be F-homomorphic Ring,

f be Homomorphism of F,E;

cluster Image f -> almost_left_invertible;

end;

registration

let R be Ring, S be R-homomorphic Ring,

f be Homomorphism of R,S;

cluster R / (ker f) -> (Image f)-isomorphic;

end;

These two registrations hence automate the argument above

and therefore the following theorems are now obvious, that is

are accepted by the Mizar checker without further proof.

theorem

for F being Field, R being F-homomorphic Ring,

f being Homomorphism of F,R holds

Image f is Field;

theorem

for F being Field, R being F-homomorphic Ring,

f being Homomorphism of F,R holds

F/(ker f) is Field;
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IV. EXTENDING THE HIERARCHY

A. Polynomial Rings

New domains are not always built solely by adding new

properties, but may contain other (abstract) domains as param-

eters. The standard example here are vector spaces or modules

that are built over a field or a ring, respectively. They, however,

define new classes of algebraic domains.

More interesting are polynomial rings R[X] realizing an

operator within the class of rings. The standard definition

of polynomial rings is well-known: Polynomials over R are

sequences over R or functions p : N −→ R, on which addition

and multiplication are defined appropriately (see [29]):

definition

let R be Ring;

func Polynom-Ring R -> non empty doubleLoopStr

equals

doubleLoopStr (# Polys R, addpoly R,

multpoly R, 1_.R, 0_.R #);

end;

Using registrations Polynom-Ring R can now be incorpo-

rated as usual into the hierarchy by showing that the carrier –

the set of polynomials – fulfills the necessary properties, for

example

registration

let R be Ring;

cluster Polynom-Ring R ->

add-associative right_zeroed

right_complementable;

end;

In fact it is not necessary for R to be a ring to prove

each individual property – even when defining R[X]. In this

registration, for example, distributivity and that polynomial

addition forms a group are sufficient [29].

However, the hierarchy is able to deal with more involved

properties of R[X] also. For example, if R is without zero

divisors, so is R[X], which is described by the following

registration.

registration

let R be domRing;

cluster Polynom-Ring R -> domRing-like;

end;

In this way additional properties of R[X] are added depending

on properties of R. When working with the hierarchy Mizar

now automatically adds such properties to R[X], if R fulfills

the conditions of the registration.

In fact, the parameter R can even be a field F – based on

the hierarchy of Section II the Mizar checker infers that F is

a ring, so the notation Polynom-Ring F exists and one can

formulate

registration

let F be Field;

cluster Polynom-Ring F -> Euclidean;

end;

So we automatically get that F [X] is a PID and that gcds

for polynomials over a field exist. Note also that F_Real is

the field of real numbers; therefore real polynomials are now

just given by Polynom-Ring F_Real.

In the context of polynomials another notation also becomes

interesting: the notion of subring – ⊆ for short – giving

relations such as Z ⊆ Q, Q ⊆ R or Z[X] ⊆ R[X] – and for

polynomial rings one often reads R ⊆ R[X] (see e.g. [39]).

Now, the notation of a subring is easily defined by

definition

let R be Ring;

mode Subring of R -> Ring means

the carrier of it c= the carrier of R &

the addF of it =

(the addF of R) || the carrier of it &

the multF of it =

(the multF of R) || the carrier of it &

1.it = 1.R &

0.it = 0.R;

end;

Then theorems for the above relations can easily be shown,

for example

theorem

INT.Ring is Subring of F_Real;

theorem

Polynom-Ring INT.Ring is

Subring of Polynom-Ring F_Real;

The property R ⊆ R[X], however, cannot be shown; it

is just not true: an element a ∈ R is not a polynomial, so

the carrier of R is not included in the carrier of R[X] as it

contains sequences or functions, that is ordinary set inclusion

between carriers does not work here. The solution is found in

the literature [39]:

We regard F ⊂ F [X] by identifying the element

a ∈ F with the constant polynomial a ∈ F [X].

(More precisely, the identification i : R −→ R[X], a 7→
a(x) is a monomorphism, and therefore allows to embed

R into R[X].) To formally reconstruct this identification in

a repository one now has to construct a new ring R′ with the

corresponding carrier

(R[X]\{p ∈ R[X] : p is constant}) ∪R

and adapted addition and multiplication. This is both tedious

and technical, but, what is more important, R′ does not solve

the problem, either: Though now one has R ⊆ R′, of course,

R′ is not exactly the polynomial ring R[X] in the above sense,

but only an isomorphic copy of it.

Modifying the definition of subring in the sense that a ring

R is a subring of R′ if R can be embedded into R′ – that

would allow to prove that R is a subring of R[X] – is too

liberal: It destroys the simplicity and elegance of the subring

notation. As a consequence in mathematical repositories this

kind of using the definition of subring can be modelled only

at the level of morphisms, e.g. via theorems such as

theorem

for R being Ring

ex R’ being Ring st R c= R’ &
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R’,Polynom-Ring R are_isomorphic;

theorem

for R being Ring

ex R’ being Subring of Polynom-Ring R

st R,R’ are_isomorphic;

B. Ordered Fields

There are situations in which the extension of an algebraic

domain can be realized in more than one way. The standard

example here is the neutral element e, that is, for example

added to semigroups in order to construct monoids. e can be

introduced solely as an adjective in an attribute definition then

claiming the existence of e – or as an additional part of the

underlying structure then just claiming a ∗ e = a for all a
in the carrier, where e is now the element given by the new

part of the structure. Usually the second alternative is used

here, because this allows for an equational definition of e’s

properties.
A similar situation occurs when the additional properties to

be defined do not concern the domain at hand itself, but are

described based on additional notations. A typical example

are ordered domains, here the newly added properties concern

a relation over the domain. A standard definition, for example,

is:

An ordered field is a pair (F,≤), where F is a field

and ≤ is a (total) relation being compatible with the

field operations.

So, ordered structures can be easily built using the second

alternative from above by just adding an additional part for

the relation to the underlying structure definition.

definition

struct (doubleLoopStr) ordereddoubleLoopStr

(# carrier -> set,

addF, multF -> BinOp of the carrier,

OneF, ZeroF -> Element of the carrier,

OrdF -> Order of the carrier #);

end;

Then, based on an attribute compatible_with describ-

ing compatibility of the order with the field operations, one

defines the mode orderedField. This allows to formalize

and prove theorems such as follows:

theorem

for F being orderedField holds 0.F <= 1.F;

theorem

for F being orderedField,

a being Element of F holds

0.F <= a|^2;

theorem

for F being orderedField holds -1.F <= 0.F;

Here a <= b denotes [a,b] ∈ the OrdF of F, if a

and b are of type Element of F.
Also concrete domains, such as for example these over the

set of all real numbers, fit into this approach. With <=_R being

the usual order relation over the real numbers, the following

definition establishes the real numbers as an ordered field.

definition

func OF_Real -> orderedField equals

(# REAL, addreal, multreal, In(1,REAL),

In(0,REAL), <=_R #);

end;

In this case, however, introducing concrete domains this

way turns out to be too restrictive: When fixing the field

– of an ordered field – one immediately also has to fix

the ordering. This results in inconveniences when further

developing the theory. For real numbers, for example, there

exists one ordering only. To formalize this within the above

approach one needs to say that for two ordered fields, in

both of which the field happens to be the real numbers, the

orderings coincide:

theorem

for F,E being orderedField

st the doubleLoopStr of F = F_Real &

the doubleLoopStr of E = F_Real

holds the OrdF of F = the OrdF of E;

This is too clumsy to work with – and to be part of

a contemporary repository. Of course, this does not bother

mathematicians. If convenient they just fix the field and leave

the ordering(s) as a parameter:

Let F be the field of real numbers. Let ≤ and ≤′ be

orderings of F . Then ≤ = ≤′.

At this point it should be mentioned that apart of the abstract

hierarchy shown at Fig. 1, another one, with the set of all real

numbers fixed in certain places, is available in the MML. Such

net of notions (see Fig. 2) is concentrated around the structure

as follows:

definition

struct (addLoopStr) RLSStruct

(# carrier -> set,

ZeroF -> Element of the carrier,

addF -> BinOp of the carrier,

Mult -> Function of

[:REAL, the carrier :], the carrier #);

end;

and is still kept in the Mizar library for backward compatibility

reasons. This was useful and handy some ten years ago for

Mizar developers, but the approach was reimplemented. The

mechanism of the identification of ordinary operations on reals

with corresponding abstract field operations was discussed in

detail in our paper [18]. There we described the usefulness

of automatic consideration of core equalities via identify

construction, which does not force the mathematician to add

them explicitly to the proof.

For a reasonable formalization one also needs such a flexible

way of talking about a domain and its (possible) orderings.

Therefore one has to resign from the above, natural approach:

The solution is not to extend the structure by another part,

but to define the existence of an ordering externally – as an

additional property. Then an ordered field is just a field for

which (at least) one ordering exists:

definition

let F be Field;
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Figure 2. The correspondence of real-valued structures in the Mizar Mathematical Library

attr F is ordered means

ex O being Order of the carrier of F

st O is compatible_with F;

end;

Now an ordered field is just an ordinary field, a concrete

ordering has only to be fixed in the proof that the field can

be ordered. This gives the above-mentioned flexibility: One

can state that the real numbers can be ordered – by using

the natural ordering <=_R. After that – now knowing that

an ordering for a concrete or abstract domain exists – one

can introduce one or more of them whenever necessary or

convenient.

registration

cluster F_Real -> ordered;

end;

theorem

for O,P being Ordering of F_Real holds O = P;

theorem

for F being ordered Field

for O,P being Ordering of F

st O c= P holds O = P;

Of course the theorems stated above for the first approach

remain valid. However, they now look a little different, because

the ordering has become a parameter of the theorems – as it

is not fixed in the structure, here the ordered field, anymore.

theorem

for F being ordered Field

for P being Ordering of F

holds 0.F <=_P 1.F;

theorem

for F being ordered Field

for P being Ordering of F,

for a being Element of F

holds 0.F <=_P a|^2;

theorem

for F being ordered Field

for P being Ordering of F

holds -1.F <=_P 0.F;

Summarizing, it turns out, that for ordered fields adding

a new part to the structure – the solution usually preferred –

is inferior to describing the property of being ordered solely

by an adjective, though this means that an existential quantifier

occurs in the attribute definition.

V. CONCLUSION

We have illustrated how in Mizar a deep algebraic hi-

erarchy has been built that to a great deal resembles the

natural changing between algebraic domains known from

mathematics. The key technique is the application of Mizar’s

attributed types: The adjectives defined by attributes enable the

natural extension of existing algebraic domains by adding new

properties. Furthermore, implications between adjectives can

be formulated in the form of cluster registrations. These not

only prove that, for example, an Euclidean domain is a UFD,

but also automate inferring the implication. Summarizing the

presented approach supports building algebraic hierarchies that

are easily extended and refined when necessary.

Mizar structures together with locales – a similar concept

implemented in Isabelle [3] can be a reasonable improvement

in writing mathematical proofs and their automated discovery.

Interesting categorical motivation of such an approach is

presented in [7]. Modules can be treated globally for all proof

assistants, and a kind of interface allowing for information

interchange is proposed as MMT – a module system for

mathematical theories with scalable formalism [34]. All ax-

iomatic theories can be viewed from the metalevel, using the

concept of realms – which could also enable reasonings via

consolidating knowledge about theories.

The hierarchy of structures available in the Mizar Mathe-

matical Library was described in [35] and was enriched during

the formalization of the proof of Fundamental Theorem of

Algebra [29]. However in 2007 a big refinement (a revision

[19]) took place, and parts of the net of structures together with
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corresponding attributes were a subject for refactoring. In that

time the Library Committee of the Association of Mizar Users

(with the two first authors of the current paper as its members)

wrote a library item [30] which is now a backbone for all

described constructions. This field of algebra is continuously

formalized, and recent Mizar article [38] contains results about

selected properties of polynomial ring.

In fact this methodology is not restricted to algebraic

domains and algebraic hierarchies. In Mizar one finds similar

hierarchies concerning a number of mathematical structures

such as, for example, posets, lattices, topologies, topological

groups, topological lattices, and graphs. In the Mizar reposi-

tory there is a series of articles devoted to algebraic structures

using multiplicative notation. Recently, Coghetto [8] made

a monographic Mizar article which was a modification of

already accepted ones with an addition as a basic binary op-

eration (instead of a multiplication). Even if the work was not

too much time-consuming, some of the library techniques can

be further improved (e.g. in the direction of generic structures

– because addMagma and multMagma could be potentially

more unified, but this would require implementational work

of the Mizar checker).

The direction of enhancing computer reasoning tools, which

is quite popular and efficient, is to use external specialized

software. In the case of Mizar some experiments were pro-

posed by Naumowicz [32] with SAT solvers in order to

improve the efficiency of boolean calculations. Of course,

this could be taken into account in the area of algebraic

domains. As another example, Grabowski succesfully used

Prover9 for reasonings about lattices [14]. This is another field

of research where efficient treatment of algebraic hierarchies is

very important, and recent formalization of Stone algebras as

generalization of Boolean algebras [15] shows the usefulness

of the Mizar system.
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