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Email: apoli@eti.pg.gda.pl

Tomasz Kocejko
Gdansk University of Technology

in Gdańsk
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Abstract—The paper presents an example of model-based esti-
mation of blood pressure parameters (onset, systolic and diastolic
pressure) from continuous measurements. First, the signal was
low pass filtered and its quality was estimated. Good quality
periods were divided into beats using an electrocardiogram. Next,
the beginning of each beat of the blood pressure signal was
approximated basing on the function created from the sum of
two independent distributions: Gaussian and exponential. The
nonlinear least square method was used to fit measurement data
to the model. The initial conditions for the fitting procedure were
selected for each beat on the basis of its parameters. Finally, the
diastolic and systolic values of blood pressure and onset were
determined.

I. INTRODUCTION

T
HE BLOOD pressure analysis allows for a certain char-

acterization of the cardiovascular system and thus the

patient state. Therefore, it is very important to accurately esti-

mate its characteristic values from noisy data (measurements).

The methodology requires that certain steps are performed.

First, the signal quality should be estimated in order to skip

the fragments of the data which are too noisy. This can be

done by using the methods proposed in [1], [2]. Next, the

characteristic points of a full beat of blood pressure signal

should be estimated. A different method of estimation can

be utilized including a windowed and weighted slope sum

function [3], a filter bank with variable cutoff frequencies,

rank-order nonlinear filters, and decision logic [4], inflection

and zero-crossing points of blood pressure, and then com-

binatorial amplitude and interval criteria to select the onset

and systolic peak [5], wavelets [6], principal components [7],

waveform descriptor compared with a customized template [8],

determined lines and polynomial approximation [9] or Fourier

series interpolation [10].

In our studies we have decided to use a model-based

approach to obtain signal parameters. In such an approach

the approximation results correspond to the selected model.

Therefore, it is important that the model has a similar shape to

the real signal. A simple solution is to use a polynomial model
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Fig. 1. Communication between DAQ and data receiving software

(like in R-wave estimation [11], which does not guarantee,

however, correct results for longer parts of a signal. We have

decided to use the more complicated exponentially modified

Gaussian function. The exponentially modified Gaussian func-

tion was used in different applications like chromatography

[12] or cell proliferation and differentiation [13], , but to our

knowledge, it has not been used in blood pressure modelling.

The practical limitation of such a simple model is that the

pressure waveform is a combination of incident and reflected

waves. It affects the estimation of systolic pressure. In such

an approach, the estimation of model parameters is crucial.

Since there is a nonlinear dependence of the model parameters

on measurement data, the nonlinear least square approach

was used. The model parameters obtained allow to extract

diastolic and systolic pressure, but also to compare different

pulses using reconstructed parameters. These parameters allow

a further data analysis including the dependence between heart

rate and blood pressure analysis [14] or estimation of patient

condition [15], [16].

II. MATERIAL AND METHOD

The continuous blood pressure and ECG were measured

using a custom ECG module and CNAP monitor. Both devices

were connected to the 16-channel USB Data Acquisition DAQ

Module. All data relayed by the DAQ module were recorded

by custom software. The block diagram (Fig. 1) presents a

general overview of communication between DAQ and the

proposed custom recording software.

The rapid measurement and analysis of the ECG signal was

enabled by the dedicated ECG optimized pre-amplifier de-
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Fig. 2. The prototype of the custom ECG measuring module

signed and manufactured for the purpose of this study (Fig. 2).

The overall amplification of the unit was set to approximately

5000. The bandwidth was limited to 0.05 Hz-60 Hz with a

dedicated 50 Hz notch filter. A similar solution was used in

[17] and [18]. To improve the CMRR, a dedicated DRL circuit

was implemented. Blood pressure was measured by means

of a standalone CNAP monitor. It enabled the continuous

monitoring of blood pressure and pulse rate. All utilized

hardware and software came from different vendors which

made the integration of the measurements slightly challenging.

The CNAP monitor analogue output was connected, next to the

custom ECG unit, to the additional PC by means of the DAQ

Module. Dedicated software was used for reading the data

from the data logger. The measurements were triggered over

the network by the UDP protocol. Because ECG and CNAP

were registered by means a DAQ data logger there was no

delay between measurements. The use of external trigger (over

network) allows to extend the measurements by additional

parameters like respiration rate, etc. The UDP protocol ensured

simple and quick data transfer. Moreover, the UDP allowed

for multicast traffic which is very convenient for synchronized

measurements of different biosignals.

The data were collected from three healthy men at the age

of 28, 33 and 47. The duration of measured signals (including

blood pressure, ECG, respiration and eye movement - not used

in the present study) was 120 seconds for each person.

The measured signals were sampled with 1 kHz frequency.

This relatively high frequency is required to obtain a large

number of data for each beat of pressure. This allows to

increase the accuracy of the approximation results. First, the

continuous blood pressure signal was filtered using a low pass

FIR filter (order 1256) with cut off frequency equal to 16 Hz.

This made it possible to remove the high frequency noise with-

out modifying the shape of the signal and respiratory influence.

The Matlab filtfilt function was used, and consequently there

was no delay between the raw and filtered data. After blood

pressure preprocessing, the R-wave of the electrocardiogram

was detected using [19] algorithm. The shape of the blood

pressure wave was good enough to skip the above-mentioned

quality measure calculations. For each R-wave detected, the

minimum of the blood pressure signal was sought. The search

was carried out up to 200 ms from the R-wave detected. If

there was more than one point of the minimum, than the

latest minimum was chosen as a reference (tmin). Next, the

time of the maximum of the blood pressure was sought at the

400 ms window. If there was more than one point, the latest

value was chosen (tmax). The last step was choosing the time

interval for signal approximation (tmin-10 ms, tmax+150 ms).

Each beat was approximated using the model derived from

convolution of two independent additive processes: Gaussian

and exponential (ex-Gaussian model)

f(t) = C +M
λ

2
exp

(

λ(2µ+ λσ2 − 2t)

2

)

× (1)

(

1− erf

(

µ+ λσ2 − t√
2σ

))

where M is a constant required to stretch the function to

the desired range of beat pressure, C is a constant which

determines the level of the signal (diastolic blood pressure), µ,

σ, λ are parameters describing the properties of the function

(µ and σ come from the Gaussian model and λ from the

exponential model). The erf(·) is an error function

erf(x) =
2

π

∫ x

0

e−t2dt (2)

Having tmin and tmax initial values for fitting were calculated

as follows

µinit = tmax σinit = (tmax − tmin)/2 λinit = 10 (3)

Minit = (BP (tmax)−BP (tmin))/4 Cinit = BP (tmin)

where BP is the registered continuous blood pressure signal.

The lsqnonlin Matlab function was used to find the global

minimum for the nonlinear least square problem. The sys-

tolic and diastolic blood pressure was determined from the

minimum and maximum values of each estimated beat. A

more complicated issue is onset calculation. In the approach

assumed, it was represented by the point of the maximum

curvature of the estimated model, where the curvature was

determined from

curve =
|f”(t)|

(1 + (f ′(t))2)3/2
(4)

To allow comparison with other methods, the algorithm was

tested on publicly available data. The 037 record from the

MIMIC database [20] was used. Since the data were sampled

at 125 Hz, the FIR filter was redesigned (order 157). The anal-

ysed data were restricted to the beats with SBP<180 mmHg

and DBP>20 mmHg. This simple operation was conducted to

remove the extremely high and low peaks. The median error

for SBP, DBP and onset as well as the RMS error (RMSE)

RMSE =

√

√

√

√

1

N

N
∑

i=1

(data(i)− approximation(i))2 (5)

were calculated for the first 15000 beats. In equation 5, data
represents either SBP, DBP or onset obtained from annota-

tions, while approximation represents the same parameters

obtained from the algorithm proposed. The data values are

integers so approximation values were convert integers as

well.
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Fig. 3. Filtered signal and its approximation (dotted line)
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Fig. 4. An example of the onset points (circles)

III. RESULTS

Example of the fitting results (Fig. 3) and founded onset

points (Fig. 4) as well as the influence of sampling frequency

on DBP and SBP are presented (Figs. 5 - 6).

There were certain difficulties with the analysis of the

reference data for 298 of 15000 beats. Modification of one

initial data from σinit to 0.6σinit succeeded in 187 cases,

while for the last 111 cases, further modification of one

initial data from 0.6σinit to 0.5σinit succeeded in 26 cases.

Convergence was not obtained for 85 beats. The median error

for SBP, DBP and onset was equal to 2 mmHg, 2 mmHg and

0 samples, respectively, while the RMSE error was equal to

4.97 mmHg, 3.23 mmHg and 2.40 samples. Removing 1% of

the worst approximation results reduced the RMSE error to
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Fig. 5. The difference in estimated diastolic blood pressure (for 1 kHz and
125 Hz sampling frequency)
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Fig. 6. The difference in estimated systolic blood pressure (for 1 kHz and
125 Hz sampling frequency)
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Fig. 7. Filtered signal and its polynomial approximation (dotted line - 3-rd,
and dashed line 5-th degree)

3.08 mmHg, 2.64 mmHg and 2.28 samples, respectively.

IV. DISCUSSION AND CONCLUSIONS

The results of approximation were highly satisfactory (Fig.

3). In the case of polynomial approximation, the results were

much worse. An example of such approximation using 3-rd

and 5-th degree polynomial is presented in Fig. 7. The differ-

ence between systolic and diastolic blood pressure calculated

from low pass filtered data was similar to the approximated

one. To reduce the problem of onset detection, the ECG signal

was used as a reference. The main problem in nonlinear least

square fitting is choosing the starting point for every iteration.

Its influence was estimated by perturbing initial conditions.

The results of fitting were most sensitive to the µ parameter.

Even a change of 5% in the initial value caused poor fitting

results. The distortions present in the recorded signal caused

problems with the estimation of the fitting error. Thus, the

results were compared to the fitting with the initial values.

The quality of fitting using the initial values was estimated by

visual inspection and a comparison of diastolic and systolic

blood pressure with the values calculated for the low pass

filtered blood pressure signal (defined as the minimum of

blood pressure after R-wave - for the diastolic, and the

maximum after DBP for the systolic). The fitting results were

much less sensitive to the initial value of σ. Satisfactory results

were obtained for values which were as much as ten times

smaller and five times greater. Similar results were obtained

for the initial λ estimation. The method presented was more
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sensitive for the initial values of C and M . Based on the

experiment conducted we have assumed that a deviation of 5%

is acceptable for C. In the case of parameter M , satisfactory

results could be obtained when the value was in the range

between 50% and 120% of the initial value.
The nonlinear least squares fitting can use the Jacobian

calculated analytically or numerically. We did not notice any

significant differences in the results obtained regarding the

method of Jacobian calculation. The difference in systolic

and diastolic values was lower than 10−3 mmHg, while the

difference in onset was lower than 0.1 ms.
The sampling frequency did not influence the results ob-

tained. Down sampling of the blood pressure signal from 1

kHz to 125 Hz did not modify the estimation of DBP and

SBP significantly (except for one sample) (Figs. 5 and 6).
The diastolic blood pressure can be easily obtained from

the model (DBP=C). The analytic estimation of systolic blood

pressure requires solving a nonlinear equation. The advantage

of the proposed approach is that the calculated parameters: µ,

σ, λ can be used to estimate the arteries’ condition and their

changes.
In our approach the onset estimation bases on finding the

maximum curvature of the estimated model curve. To prevent

finding the maximum value of the model as the point of

maximum curvature, the search was limited to 50 ms after the

beginning of each beat. The sampling frequency did not have

a large influence on onset detection. The difference between

values obtained for 1 kHz and 125 Hz sampling frequency

was lower than 7 ms (except for three peaks). The approach

adopted for onset detection can be modified by introducing an

additional parameter p, which will allow the onset point to be

shifted. The curvature will then be defined as

|f”(t)|
(p+ (f ′(t))2)3/2

. (6)

In general, the reference ECG signal is not required. The

beat localization can be obtained by using only the blood pres-

sure waveform (for example by using the algorithm proposed

in [3]), and the proposed model can be then used to obtain

signal parameters.
The results obtained from the reference data are satisfactory.

Some problems may be due to the relatively low sampling

frequency and possible distortions in the analysed signal.

Better results can be obtained by further modifying the initial

parameters.
The analysis of all the results obtained enables the conclu-

sion that the proposed method of blood pressure parameters

estimation using the ex-Gaussian model is suitable to the

requirements and reliable.
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