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Abstract—Consider the problem of allocation of spatially

correlated gridded data to finer spatial scale, conditionally on co-

variate information observable in a fine grid. Spatial dependence

of the process can be captured with the conditional autoregressive

structure, suitable for gridded (areal level) data. Also geostatisti-

cal methods, particularly empirical universal kriging, can be used

for this purpose. In this study, we compare prediction results

as well as prediction standard errors for two disaggregation

procedures, based on the inventory of agricultural ammonia

emissions reported in Pomeranian Voivodeship of Poland.

I. INTRODUCTION

I
N MANY environmental and epidemiological applications,

one has to deal with spatial variables observed at different

resolutions. The change of support problem is encountered,

for example, in a development of high-resolution inventories

of greenhouse gases [1], [2] or ammonia emissions [3].

The choice of a relevant model capturing spatial correlation

depends on a type of data, but also it can depend on a size of

dataset and computational efficiency. In principle, the model

suitable for areal data is based on Markov random fields,

in particular the commonly used conditional autoregressive

structure. However, the point-referenced data can be aggre-

gated to the area level, and modelled the same way [4].

On the other hand, the geostatistical approach, designed for

continuous spatial processes, can be used to model a process

over a gridded domain.

In this paper, we aim to explore uncertainty underlying a

particular procedure of areal data disaggregation from a coarse

to fine grid. The setting assumes knowledge on (i) a variable

of interest in a coarse grid, and (ii) some related variables

(proxy data) in a fine grid. The task is accomplished with

two alternative approaches to modelling spatial data: the one

based on conditional autoregressive model, and the other, using

geostatistical methods. These models represent two general

classes commonly used in spatial statistics. Within geostatis-

tical approach, empirical universal kriging was applied for a

prediction of unknown values in a fine grid. For each model we

compare the prediction standard errors against actual residuals

(their absolute values), as resulting from an empirical study of

ammonia emission inventory. In addition, we analyse the effect

of the level of disaggregation.

II. MOTIVATING DATA SET

A. Inventory of ammonia emissions

The analysed dataset concerns ammonia (NH3) emission

inventory in a region of Poland. Ammonia is emitted mainly

(up to 80 − 90%) by agricultural sources such as livestock

production and fertilized fields [5], [6]. High concentrations of

ammonia can lead to acidification of soils [7], forest decline,

and eutrophication of waterways [6]. All of these lead to

loss of plant biodiversity [8]. Moreover, ammonia emissions

are recognized for their importance in contributing to fine

particulate matter [9], hence their spatial distribution is of great

importance.

However, agricultural emission sources cannot be measured

directly, and spatial emission patterns need to be assessed

otherwise. This issue was addressed, for instance in [3], where

agricultural and land cover data were used to disaggregate

the national NH3 emission totals across Great Britain. This

was accomplished employing a spatially weighted redistribu-

tion of emission sources, with weights based on respective

landcover classes. It was demonstrated in [10] that this type of

straightforward, linear approaches to spatial allocation can be

substantially improved by introducing a spatial random effect

modelled with a conditional autoregressive structure.

B. Data description

The dataset comprises the gridded inventory of ammonia

emissions from fertilization (in tonnes per year), reported in

Pomeranian Voivodeship of Poland. The inventory grid cells

are of regular 5km×5km size, and the whole of cadastral

survey compiles n = 800 cells, denoted y = (y1, . . . , yn)
T

;

see Fig. 1.

It should be noted, that the considered variable y of am-

monia refers to a total amount of emissions over a grid cell;

it is called an extensive variable [11]. This should be distin-

guished from intensive variables, e.g. emission concentrations

or proportions over a geographic region.
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For explanatory information we use the CORINE Land

Cover Map for this region, available from the European

Environment Agency [12]. Specifically, for each single grid

cell we calculate area (in m2) of those land use classes that are

related to ammonia emissions. The following CORINE classes

were considered (for reference, the CORINE class numbers are

given in brackets):

• Non-irrigated arable land (211), denoted x1;

• Fruit tree and berry plantations (222), denoted x2;

• Pastures (231), denoted x3;

• Complex cultivation patterns (242), denoted x4;

• Principally agriculture, with natural vegetation (243),

denoted x5.

Only land use data are used as explanatory information. Also,

it should be pointed out that our modelling approach includes

both a regression component as well as a spatial correlation

component, and the resulting regression coefficients are not

the same as typical emission coefficients, specific for the listed

land use classes.

Performance of a disaggregation framework depends on

various factors. Among others, it highly depends on the

extent of disaggregation; note, that this is connected with

a preservation of the correlation across spatial scales. An

impact of this feature is evaluated in the study. We test the

disaggregation from 10km×10km and 15km×15km (coarse)

grids to a 5km×5km (fine) grid. To examine performance of

the disaggregation procedure, first we aggregate the original

fine grid emissions into respective coarse grid cells. Next, we

fit respective model and predict ammonia emissions for a 5km

fine grid. Finally, we check obtained results with the original

inventory emissions of a 5km grid. Thus, our simulation study

tests the cases of a fourfold and ninefold disaggregation. The

aggregated values of the two coarse grids as well as the actual

inventory data in the fine grid are shown in Fig. 1.

III. DISAGGREGATION MODEL BASED ON CONDITIONAL

AUTOREGRESSIVE STRUCTURE

In this section we present an approach for areal to areal

data realignment, where the residual covariance structure is

modelled with the conditional autoregressive (CAR) specifi-

cation [13], [14]. This class of models is used in the case

of areal data, and it introduces spatial association through a

neighbourhood structure.

A. The model

1) Fine grid: We begin with the model specification in

a fine grid. Let Y = {Yi}
n
i=1

denote random variables

associated with missing values of interest y = {yi}ni=1 defined

at each cell i, i = 1, ..., n of a fine grid. Assume that random

variables Yi follow a Gaussian distribution with respective

mean and variance, Yi|µi, σ
2
Y ∼ N

(
µi, σ

2
Y

)
. Given the values

µi and σ2
Y , the random variables Yi are independent.

The values µ = {µi}ni=1 represent the underlying mean

process, and the (missing) observations in a fine grid are

related to this process through a measurement error of variance

σ2
Y . The model for the underlying mean process is formulated

under 0.33
0.33 − 0.67
0.67 − 1
1 − 1.33
1.33 − 1.67
1.67 − 2
2 − 2.33
2.33 − 2.67
over 2.67

DATA − 5km

under 1.32
1.32 − 2.64
2.64 − 3.96
3.96 − 5.28
5.28 − 6.6
6.6 − 7.92
7.92 − 9.24
9.24 − 10.56
over 10.56

10km

under 2.96
2.96 − 5.89
5.89 − 8.83
8.83 − 11.76
11.76 − 14.69
14.69 − 17.62
17.62 − 20.56
20.56 − 23.49
over 23.49

15km

Fig. 1. Ammonia emissions (in tonnes/year): inventory data in 5km grid,
and aggregated values in 10km and 15km grids

as a sum of regression component with available covariates,

and a spatially varying random effect.

The approach to modeling µi expresses an assumption that

available covariates explain part of the spatial pattern, and

the remaining part is captured through a spatial dependence,

introduced as the conditional autoregressive CAR model. The

CAR scheme follows an assumption of similar random effects

in adjacent cells, and it is given through the specification of
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full conditional distribution functions of µi for i = 1, . . . , n
[15], [16]

µi|µj,j 6=i ∼ N


xT

i β + ρ

n∑

j=1

j 6=i

wij

wi+

(
µj − xT

j β
)
,
τ2

wi+


 ,

(1)

where µ−i denotes all elements in µ but µi; wij are the

adjacency weights (wij = 1 if j is a neighbour of i and 0
otherwise, also wii = 0); wi+ is the number of neighbours

of area i; xT
i β is a regression component with explanatory

covariates for area i and a respective vector of regression

coefficients.; and τ2 is a variance parameter.

The conditionals (1) yield the following joint distribution of

the process µ, see e.g. [15]

µ ∼ Nn

(
Xβ, τ2 (D − ρW )−1

)
, (2)

where X is a design matrix with vectors xi; D is an n× n
diagonal matrix with wi+ on the diagonal; and W is an n×n
matrix with adjacency weights wij . Equivalently, we can write

(2) as

µ = Xβ + ǫ, ǫ ∼ Nn (0,N ) , (3)

denoting also N = τ2 (D − ρW )
−1

.

2) Coarse grid: The model for a coarse grid (aggregated)

observed data is obtained by multiplication of the mean

process (3) with an N ×n aggregation matrix C, where N is

a number of observations in a coarse grid

Cµ = CXβ +Cǫ, Cǫ ∼ NN

(
0,CNCT

)
. (4)

The matrix C consists of 0’s and 1’s, indicating which cells

have to be aligned together. The random variable λ = Cµ

is treated as the mean process for variables Z = {Zi}Ni=1

associated with observations z = {zi}Ni=1 of the aggregated

model

Z|λ ∼ NN

(
λ, σ2

ZIN

)
, (5)

where IN is the N ×N identity matrix. Also at this level, the

underlying process λ is related to Z through a measurement

error with variance σ2
Z .

B. Maximum likelihood estimation

The parameters β, σ2
Z , τ

2 and ρ are estimated with the

maximum likelihood method based on the joint unconditional

distribution of Z

Z ∼ NN

(
CXβ,M +CNCT

)
, (6)

where M = σ2
ZIN . Next, the log likelihood function associ-

ated with (6) is formulated

L(·) = −
1

2
log

∣∣∣M +CNCT
∣∣∣ − N

2
log (2π)

−
1

2
(z −CXβ)

T
(
M +CNCT

)−1

(z −CXβ) ,

where |·| denotes the determinant. The analytical derivation is

limited to the regression coefficients β, and further maximisa-

tion of the profile log likelihood is performed numerically. The

standard errors of parameter estimators for this model have

been developed by means of the expected and observed Fisher

information matrices, details of which are provided in [17].

C. Prediction in a fine grid

Regarding the missing values in a fine grid, the underlying

mean process is of our primary interest. The predictors optimal

in terms of the minimum mean squared error are given by

E (µ|z). The joint distribution of (µ,Z) is

[
µ

Z

]
∼ Nn+N

([
Xβ

CXβ

]
,

[
N NCT

CN M +CNCT

])
.

The above distribution allows for full inference, yielding both

the predictor

Ê (µ|z) = Xβ̂ + N̂C
T
(
M̂ +CN̂C

T
)−1 [

z −CXβ̂
]

(7)

and its variance

̂V ar (µ|z) = N̂ − N̂C
T
(
M̂ +CN̂C

T
)−1

CN̂ . (8)

IV. GEOSTATISTICAL APPROACH

In this section, we briefly review geostatistical approach,

which is dedicated to modelling point-referenced data over a

continuous domain. It specifies the process through a covari-

ance function.

In the application considered, ammonia emission Y (s) is

the variable of area type. The point level data are obtained

by dividing this variable by area (in km2) of respective

grid cell. This is a kind of approximation which expresses

emissions over a unit area, or (roughly) emission intensity.

Thus, a geostatistical model is applied to the modified process

YA (s) = Y (s)/A, where A stands for area of a 5km grid cell.

We observe Y A = (YA(s1), . . . , YA(sn))
T

in a fine grid, and

we wish to predict the variable YA(s0) at a location s0 ∈ D
where it has not been observed, i.e. in centroids of a coarse

grid.

Gaussian geostatistical models are based on two assump-

tions: second order stationarity and isotropy. Second order

stationarity means that the process mean is constant and its

covariance function depends only on the difference between

locations. The process is isotropic if, additionally, the covari-

ance depends only on distance (not direction) between two

locations. Once these assumptions are met, spatial process can

be modelled with parametric covariance functions. The expo-

nential covariance function, applied in this study, is defined

as,

cov (h) =

{
σ2exp (−φh) if h > 0

τ2nug + σ2 if h = 0,
(9)

where h denotes the Euclidean distance between two points,

τ2nug represents the nugget effect, σ2 is the partial sill, and

φ denotes the effective range of the covariance. Furthermore,

denote K = cov
(
Y A,Y

T
A

)
, k = cov {Y A, YA(s0)}, and

k0 = cov {YA(s0), YA(s0)}.
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With land use information available as covariates denoted

X = (x(s1), . . . ,x(sn))
T

and x(s0), universal kriging [18]

was applied for a prediction in a fine grid. The model for a

random field YA(s) has a linear mean function and the error

process ǫ(s)
YA(s) = x(s)Tβ + ǫ(s), (10)

where β = (β1, β2, . . . , βp)
T

is a vector of p unknown

coefficients, and ǫ(s) is a zero-mean Gaussian process with

the exponential covariance function given by (9).

The geostatistical prediction problem is formulated as fol-

lows. We seek a predictor ŶA(s0) that minimises the mean

squared prediction error among the predictors satisfying two

properties:

1) linearity: ŶA(s0) = λ
T
Y A

2) unbiasedness: EŶA(s0) = E
(
λTY A

)
= EYA(s0) for

all β ∈ Rp

We obtain minimisation of E
{
YA(s0)− λTY A

}2

subject

to

XTλ = x(s0). (11)

This constraint optimisation task can be solved with the

method of Lagrange multipliers, see e.g. [19], [15]. Provided

that matrices K and XTK−1X are invertible, it yields

λ =

{
K−1 −K−1X

(
XTK−1X

)−1

XTK−1

}
k

+K−1X
(
XTK−1X

)−1

x (s0) (12)

and the best linear unbiased predictor (BLUP) of YA(s0)
becomes

ŶA(s0) =λTY A

=

{
k +X

(
XTK−1X

)−1 [
x (s0)−XTK−1k

]}T

×K−1Y A. (13)

The resulting mean squared error of the BLUP, called also

the kriging variance, is given by

k0 − kTK−1k + γT
(
XTK−1X

)−1

γ, (14)

where γ = x(s0)−XTK−1k.

Estimation of parameters has been performed using the

geoR package from the R software [20].

V. RESULTS

A. Fourfold disaggregation

This subsection presents the model testing results for dis-

aggregation from a 10km grid.

Table I displays the maximum likelihood estimates and

standard errors for all parameters. Also the statistical signifi-

cance of regression coefficients is reported with the t-statistic

and respective p-values. It should be stressed, that estimation

of parameters has been performed for emission values in

the case of CAR models, and for emission intensity in the

case of geostatistical models (denoted GEOST). Therefore,

parameter estimates are comparable only within the same class

of models. As regards GEOST models, due to an optimisation

procedure [20], the standard errors are available only for the

ratio τ2nug/σ
2
Z .

From a visual comparison of the 5km maps with predicted

values of ammonia emissions (not shown), the differences with

respect to the original data cannot be easily distinguished.

Instead, Fig. 2 presents scatterplots of predicted values y∗i
against observations yi. This suggests that CAR model gives

better results than GEOST. In general, CAR model provides

very accurate predictions, although it tends to overestimate

significantly some of small values.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

1
.0

2
.0

3
.0

CAR

y*

y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

1
.0

2
.0

3
.0

GEOST

y*

y

Fig. 2. Predicted (y∗) versus observed (y) values (in tonnes/year); disag-
gregation from 10km grid

Model residuals (di = yi − y∗i ) are further summarised in

Table II (the upper panel). The quantitative comparison con-

firms that CAR model outperforms the geostatistical one, both

in terms of the mean squared error (mse) as well as the sample

correlation coefficient (r). Still, the highest overestimate, i.e.

min(di) = -1.717, is reported for CAR model.

Next, the prediction standard error was calculated following

the formula (8) for CAR model, and the formula (14) for

geostatistical model. Since in the present case study the correct

values of emissions predicted in 5km grid are known, we

are in a position to compare the prediction error with actual

residuals (more precisely, with their absolute values). In Fig. 3

these values are presented on maps for both disaggregation

procedures. For CAR model, it is noticeable that the prediction

error does not reflect diversification of actual residuals very ac-
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TABLE I
MAXIMUM LIKELIHOOD ESTIMATES FOR COARSE GRIDS

Est. Std.Err. t-statistic p-value Est. Std.Err. t-statistic p-value

CAR models

10km 15km

β1 1.13e-07 3.26e-09 34.66 2.99e-59 1.12e-07 3.95e-09 28.26 6.37e-51

β2 2.56e-07 1.94e-07 1.31 0.09 - - - -

β3 9.77e-08 1.19e-08 8.20 3.34e-13 1.07e-07 1.84e-08 5.83 3.11e-08

β4 1.18e-07 2.13e-08 5.51 1.27e-07 1.24e-07 2.77e-08 4.49 9.02e-06

β5 1.27e-07 1.32e-08 9.57 2.92e-16 1.27e-07 1.74e-08 7.31 2.84e-11

σ2

Z
0.334 0.073 - - 2.339 0.424 - -

τ2 0.536 0.082 - - 0.214 0.088 - -

ρ 0.948 9.98e-04 - - 0.966 4.91e-04 - -

GEOST models

10km 15km

β1 9.72e-08 5.83e-09 16.68 1.80e-31 9.21e-08 8.75e-09 10.53 2.19e-18

β2 - - - - - - - -

β3 8.06e-08 1.62e-08 4.96 1.36e-06 - - - -

β4 9.53e-08 3.65e-08 2.61 0.005 1.21e-07 5.69e-08 2.12 0.018

β5 1.12e-07 2.30e-08 4.88 1.91e-06 1.12e-07 3.79e-08 2.96 0.001

σ2

Z 2.04e-03 - - - 4.50e-04 - - -

τ2nug 9.92e-05 0.07 - - 9.84e-05 0.285 - -

φ 205.01 298.41 - - 61.02 61.39 - -

TABLE II
ANALYSIS OF RESIDUALS

mse min(di) max(di) r

10km grid

CAR 0.064 -1.717 1.104 0.961

GEOST 0.077 -1.444 1.200 0.956

15km grid

CAR 0.136 -2.428 0.646 0.915

GEOST 0.144 -1.914 1.519 0.913

curately, and the highest values of residuals are underestimated

(compare the scales of both maps). Otherwise, the prediction

standard errors seem to provide a reasonable assessment. On

the other hand, the prediction standard error for GEOST

model is significantly underestimated, as seen from the map

scales. Note, that for both disaggregation methods, the highest

residuals are reported on the border of the domain; this fact

is known in spatial statistics as the edge effect.

In addition, Fig. 4(a) presents the differences between the

prediction standard errors of the models and absolute values

of actual residuals. The empirical cumulative distributions

of these differences confirm that the geostatistical model

underestimates the prediction standard errors, much more than

the CAR model does.

B. Ninefold disaggregation

Next, the results of disaggregation from a 15km grid are

presented. In Table I we can see, for respective models, the

increase of variances σ2
Z when turning from a 10km to 15km

disaggregation.

−1.5 −1.0 −0.5 0.0 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  (a) 

Prediction error − Abs(Residual)

CAR

GEOST

−2.0 −1.5 −1.0 −0.5 0.0 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) 

Prediction error − Abs(Residual)

CAR

GEOST

Fig. 4. Empirical cumulative distributions of the differences between the
prediction standard errors and absolute values of residuals (in tonnes/year)
for (a) 10km and (b) 15km disaggregation

JOANNA HORABIK-PYZEL, ZBIGNIEW NAHORSKI: UNCERTAINTY OF SPATIAL DISAGGREGATION PROCEDURES 453



under 0.28
0.28 − 0.31
0.31 − 0.34
0.34 − 0.38
0.38 − 0.41
0.41 − 0.45
over 0.45

Prediction error − CAR 

under 0.23
0.23 − 0.45
0.45 − 0.68
0.68 − 0.91
0.91 − 1.13
1.13 − 1.36
over 1.36

Abs(Residual) − CAR

under 0.01
0.01 − 0.02
0.02 − 0.03
0.03 − 0.04
0.04 − 0.06
0.06 − 0.07
over 0.07

Prediction error − GEOST 

under 0.23
0.23 − 0.45
0.45 − 0.68
0.68 − 0.91
0.91 − 1.13
1.13 − 1.36
over 1.36

Abs(Residual) − GEOST

Fig. 3. Prediction standard errors and absolute values of residuals (in tonnes/year) for CAR (upper panel) and GEOST (lower panel) models; disaggregation
from 10km grid. Note that the maps are drawn in different scales.

The scatterplot in Fig. 5 reveals important differences

between the two methods. CAR model generally provides

more accurate predictions but heavily overestimates numerous

values. Predictions from GEOST are less accurate, and the

model also tends to overestimate low values and underestimate

high ones. Overall, Table II shows that both approaches

provide comparable quality of predictions, as summarised by

the mean squared error and correlation coefficient. Again, the

highest overestimate, i.e. min(di) = -2.428, is noted for CAR

model.

For the case of ninefold disaggregation, the prediction

standard errors and absolute values of residuals are depicted

in Fig. 6. For CAR model, this comparison provides quite

good picture, although the highest values of residuals are

still underestimated. Apart from this, the model uncertainty

is reflected rather well. This is not the case for GEOST

model. Firstly, a regular pattern on the map of prediction

standard error is completely different from the actual residuals.

It can be attributed to inherent features of the geostatistical

method which provides the lowest prediction error at observed

locations. Secondly, the prediction error for this procedure is

evidently underestimated, similarly as for the case of 10km

disaggregation.

Respective cumulative distributions of the differences be-
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under 0.28
0.28 − 0.31
0.31 − 0.34
0.34 − 0.38
0.38 − 0.41
0.41 − 0.44
over 0.44

Prediction error − CAR 

under 0.35
0.35 − 0.69
0.69 − 1.04
1.04 − 1.39
1.39 − 1.73
1.73 − 2.08
over 2.08

Abs(Residual) − CAR

under 0.02
0.02 − 0.03
0.03 − 0.05
0.05 − 0.06
0.06 − 0.08
0.08 − 0.1
over 0.1

Prediction error − GEOST 

under 0.35
0.35 − 0.69
0.69 − 1.04
1.04 − 1.39
1.39 − 1.73
1.73 − 2.08
over 2.08

Abs(Residual) − GEOST

Fig. 6. Prediction standard errors and absolute values of residuals (in tonnes/year) for CAR (upper panel) and GEOST (lower panel) models; disaggregation
from 15km grid. Note that the maps are drawn in different scales.

tween the prediction standard errors and absolute values of

residuals, presented in Fig. 4(b), illustrate that CAR model

provides rather higher estimates of error than the actual resid-

uals, while GEOST underestimates the model error. Compared

with the results for 10km disaggregation, we note that accuracy

of uncertainty assessment improved for CAR model, and it

declined for GEOST.

VI. CONCLUDING REMARKS

The major objective of this paper was to study uncertainty

of two procedures for spatial allocation from a coarse to fine

grid. For a particular disaggregation setting with proxy data

available in a fine grid, we analysed the approach based on

the conditional autoregressive structure, and the one based on

the geostatistical methods.

For disaggregations from 10km and 15km grids to a 5km

grid, both methods provided very good predictions, with

r = 0.96 and 0.91, respectively. The mean squared error of

predictions was approximately 20% lower for CAR model in

the case of fourfold disaggregation, and 5% in the case of

ninefold disaggregation.

As regards the geostatistical method, despite its good pre-

dictive performance, this disaggregation procedure failed to

properly assess uncertainty of the model. It should be noted
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TABLE III
PROS AND CONS OF THE DISAGGREGATION METHODS

CAR model GEOST model

ADVANTAGES

- Very good predictive performance - Very good predictive performance

- Reliable assessment of prediction error - Prediction with universal kriging is a well known, popular method,

- Accuracy of uncertainty assessment remains high also when and thus easy to implement for practitioners.

increasing a degree of disaggregation. - Wide availability of dedicated software

- The method is well suited for areal data.

DISADVANTAGES

- CAR structure is less popular among practitioners, and usually - Poor assessment of model uncertainty

one needs to develop their own codes. - The method is dedicated to point-referenced data, and application

for areal data requires some additional manipulations.
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y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
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.0

2
.0

3
.0

GEOST
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Fig. 5. Predicted (y∗) versus observed (y) values (in tonnes/year); disag-
gregation from 15km grid

that in our study the covariance function was unknown and

respective parameters were estimated, which resulted in empir-

ical universal kriging procedure. In such a case, the predictor

is no longer a linear function of the data. In [16] the authors

note that empirical kriging variance tends to underestimate

the actual prediction error variance of the empirical universal

kriging predictor because it does not account for additional

error due to parameter estimation. CAR model provided a

reliable assessment of prediction error. In this particular case

study, this might result also from the fact that CAR structure is

dedicated to areal data, like the analysed dataset of ammonia

emissions.

When increasing a degree of disaggregation, obviously the

quality of predictions decreases, but the accuracy of uncer-

tainty assessment improved for CAR model. For the geosta-

tistical approach presented, it is generally poor. Nevertheless,

universal kriging is a popular, widespread technique, built into

numerous software tools, which facilitates application of this

disaggregation approach.

To summarise, Table III lists advantages and disadvantages

of both methods for the considered case of areal data disag-

gregation.
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