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Abstract—Fishing activity detection is important for fishery
management to maintain abundant oceans. This paper presents
a novel approach to identifying fishing activities from Automatic
Identification System (AIS) data using Conditional Random
Fields (CRFs). CRFs are popular for solving structured pre-
diction problems such as sequence labeling in natural language
processing. To model the conditional probability distributions
that can identify fishing activities of the vessel points, we treat
attributes of vessel points as observed variables and the fishing
and non-fishing labels as hidden variables. We present three
experiments and two comparisons to demonstrate the stability
and effectiveness of the resulting models.

I. INTRODUCTION

G
LOBAL overfishing causes a dramatic decline in the

fish population. Several major commercial fish species

are endangered which threatens the ocean ecosystem. This

affects millions of people who depend on fish for food and

living. According to a 2014 report by the United Nations

Food and Agriculture Organization1, more than 90 percent of

global fisheries are over exploited. Unfortunately, these fishing

activities are often illegal, unreported and unregulated (IUU),

which makes tracing them a challenge. Thus, in order to make

fishing activities more transparent for practicing sustainable

fisheries, fishing activity detection is urgently needed.

In 2000, International Maritime Organization (IMO) firstly

introduced the Automatic Identification System (AIS) to en-

hance the security and safety of maritime navigation. Ships

equipped with AIS can automatically broadcast informa-

tion, including unique identification (Maritime Mobile Service

Identity, MMSI), position, speed, course and further details of

the vessel to its nearby ships and coastal authorities. AIS data

are openly accessible and not encrypted. In 2008, satellites

AIS technology was implemented, enabling the collection of

massive and reliable information of vessels in global areas

within seconds. Consequently, satellites AIS data could be

used as an ideal source to monitor vessel movements and

detect fishing activities around the world.

In this paper, we present a novel approach for identify-

ing fishing activities using Conditional Random Fields and

demonstrate its stability of performance using three different

1Food and Agriculture Organization of the United Nations, 2014.
http://www.fao.org

evaluation experiments and two comparisons. The remainder

of the paper is organized as follows: In Section 2, we describe

relevant literature; in Section 3, we explain conditional random

fields (CRFs) and then elaborate on how to apply them to

identify fishing activities; in Section 4, we present three ex-

periments and two comparisons and their results on historical

AIS data to demonstrate the stability and effectiveness of our

models; finally, in Section 5, we discuss practices and provide

direction for future work.

II. BACKGROUND AND RELATED WORK

CRFs are prevalent in solving structured prediction prob-

lems [1]. It has been applied to many tasks in natural language

processing (NLP) such as part-of-speech (POS) tagging [2],

[3], shallow parsing [4] and name-entity recognition (NER)

[5], [6]. In addition, Hierarchical CRFs [7] has been applied to

extract human activities. We find similarity between these tasks

and fishing activity detection from the following perspective.

In POS tagging, the goal is to label words in sentences

using word-category tags. The labels depend on both the

word’s meaning and context. This task involves two random

variables, X and Y , where X is a sequence of words, and

Y is a sequence of POS tags. Linear-chain conditional ran-

dom fields can model the conditional probability distribution

p(y|x) to predict POS tags. Similarly, the task of fishing

activity detection involves two random variables, X and Y ,

where X is the observed random variable (which represents

sequences of coordinates and speeds), and Y is the hidden

random variable to be predicted (Y is a sequence of fishing

and non-fishing labels). Consequently, it is reasonable to test

whether the linear-chain conditional random fields can model

the conditional probability distribution p(y|x) of fishing–non-

fishing to detect fishing activities.

Most studies of fishing activity detection focus on Trawlers.

For example, Mazzarella et al. identified fishing events using

a clustering method [8], and Peel and Good recognized vessel

activities using Hidden Markov Model [9]. It is found that

trawler fishing activities are highly related with speed, mean-

ing speed can provide useful information to aid the classifica-

tion of fishing activities. However, for longliners, Souza et al.

found that there is no obvious pattern to distinguish fishing

activities using speed information alone [10]. Souza et al.
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applied Lavielle’s unsupervised trajectory segmentation algo-

rithm, inspired by animal movements, to identify the longliner

fishing behavior. Jiang et al. applied a deep learning approach

using autoencoders (AE) that are pretrained with restricted

Boltzmann Machines [11]. To the best of our knowledge,

[10] was the first paper that we can find to apply Machine

Learning to the task of fishing and non-fishing detection. Here

we apply a supervised machine learning method (CRFs) to

detect longliner fishing activities.

III. LINEAR-CHAIN CONDITIONAL RANDOM FIELDS

A. Basic Principles of Linear-Chain Conditional Random

Fields

Linear-chain conditional random fields are undirected

graphical models that represent conditional probability distri-

butions of random variables V = X ∪ Y that take the form

p(y|x) =
1

Z(x)

n
∏

j=1

ψj(x,y), (1)

where X is a set of observed variables, Y is a set of labels that

we need to predict, and Z(x) is a normalization or partition

function

Z(x) =
∑

y′

n
∏

j=1

ψj(x,y
′), (2)

where ψj(x,y) are compatibility functions over a subset of

random variables A ⊂ V , and n is the number of compatibility

functions ψ(x,y) that factorize the probability distribution.

Given compatibility functions in the form

ψj(x,y;λ) = exp(
m
∑

i=1

λifi(yj−1, yj ,x, j)), (3)

the conditional probability distribution can be written as

p(y|x;λ) =
1

Z(x)
exp(

t
∑

j=1

m
∑

i=1

λifi(yj−1, yj ,x, j)), (4)

where m is the number of feature functions, t is the length

of sequence y, and λ is a set of weight parameters that help

provide weighted average over these feature functions.

Fig. 1. Factor graph of linear-chain conditional random fields. x denotes
a sequence of input data, y denotes a sequence of labels and ψst and ψio

denote two compatibility functions.

In (3), the parameter λi of compatibility functions

ψj(x,y;λ) does not depend on the index j, which means the

parameters are shared along the linear chain. Fig. 1 visualizes

the factor graph of linear-chain conditional random fields

with two compatibility functions. In (4), the first sum runs

over each position of the linear chain and the second sum

runs over each feature function. The conditional probability

p(y|x;λ) can be represented as a mapping function from

features to labels. Thus, the selection of feature functions is

of great significance for the performance of a model. The

parameters can be estimated using maximum-likelihood. The

log-likelihood can be estimated with the Forward-Backward

Algorithm. The inference of finding the most likely sequence y

given observations x is performed using the Viterbi Algorithm

[1]. The remainder of this section demonstrates how we adapt

CRFs to identifying fishing activities.

B. Discretization

Compared with POS tagging where the input is a sequence

of discrete words, AIS trajectory consists of real-valued fea-

tures that are continuous by nature, such as longitudes and

latitudes. Conditional random fields can model real-valued

features, but they typically require proper normalization so

that the value of the feature function is a linear function of

the conditional probability p(y|x). However, since the rela-

tionships between AIS features and fishing activity labels are

non-linear, we discretize the features to relax the normalization

constraints and allow the conditional random fields to learn

p(y|x) with a more flexible representation. We use a variant

of equal interval binning discretization in our work. Each bin

is associated with a set of parameters to fit the model.

C. Feature Functions

We use two sets of compatibility functions ψst and ψio to

factor p(y|x):

p(y|x) =
1

Z(x)
(ψst(x,y) · ψio(x,y)). (5)

The first compatibility function ψst is transition compati-

bility function, which models the transition probability of the

labels from one state to another and takes the form

ψst(x,y;λ) = exp(λstfst(yj−1, yj ,x, j)), (6)

where fst(yj−1, yj ,x, j) is transition feature function that

takes the form

fst(yj−1, yj ,x, j) = 1{yj−1=s}1{yj=t}, (7)

and st are all possible combinations of labels, yj−1 and yj are

the labels of the (j−1)-th and j-th position of the linear chain

and x is the input sequence. More concretely, if the labels can

only take two values: 0 and 1, the feature functions can be

rewritten as

f00(yj−1, yj ,x, j) = 1{yj−1=0}1{yj=0}, (8)

f01(yj−1, yj ,x, j) = 1{yj−1=0}1{yj=1}, (9)

f10(yj−1, yj ,x, j) = 1{yj−1=1}1{yj=0}, (10)

f11(yj−1, yj ,x, j) = 1{yj−1=1}1{yj=1}, (11)
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Fig. 2. Differences of fishing and non-fishing tracks. Tracks in the orange
circle are fishing tracks and the rest are non-fishing tracks.

which are parameterized by λ0,0, λ0,1, λ1,0, λ1,1 respectively.

The second compatibility funciton ψio is state-observation

compatibility function, which models the probability distribu-

tion of the labels given a set of observations. The subscript

i within ψio represents a set of input observations, which is

different from the index i of parameter λ in (4). The state-

observation compatibility function can be written as

ψio(x,y;λ) = exp(λiofio(yj−1, yj ,x, j)), (12)

where fio(yj−1, yj ,x, j) is state-observation feature func-

tion that takes the form

fio(yj−1, yj ,x, j) = 1{yj=o}1{x=i}, (13)

where io are all possible combinations of input features and its

corresponding labels. The state-observation feature functions

are parameterized by a set of parameters λio.

IV. EXPERIMENTS

A. Data Preprocessing

AIS data contain attributes including MMSI, time, lon-

gitude, latitude, speed over ground (SOG) and course over

ground (COG). In the experiments, we use historical AIS data

from 14 longliners around the world collected from June 1st

2012 to Dec 31st 2013. The fishing and non-fishing activities

of these data are labeled by a marine biology expert. Fig. 2

shows the differences between fishing and non-fishing tracks

that are recovered from discrete AIS signals. The fishing tracks

are in the form of a zigzag. The non-fishing tracks tend to

follow smooth lines. To preprocess the data, we perform data

cleansing to remove uninformative data, data conversion from

absolute values to differential values (i.e. difference with to

the previous point), data discretization to transform continuous

value into nominal counterparts, and feature selection to fit the

model with the most relevant features.
1) Data Cleansing: We sort the data points of each long-

liner in chronological order. We then remove repetitive data

points as well as data points with incomplete features. We

further detect and remove outliers if the speed exceeds the

normal range and the location deviates from its normal trajec-

tories. After data cleansing, we have 505893 longliners data

points in total. On average, 77% of the data points are labeled

as fishing. Table I shows a summary of the 14 longliners after

cleansing.

TABLE I
SUMMARY OF THE 14 VESSELS DATA

Track ID Track Size # of Fish Points % of Fish Activity

1 21556 17148 79.6
2 8829 6326 71.7
3 30166 24422 81.0
4 6086 4226 69.4
5 28184 22153 78.6
6 37710 32977 87.4
7 24715 16857 68.2
8 2032 1755 86.4
9 12111 8470 69.9
10 17161 14277 83.2
11 2670 1761 66.0
12 90429 78765 87.1
13 108826 73005 67.1
14 115418 86256 74.7
Mean 36135 27742 76.5

2) Differential longitude and latitude: In our early experi-

ments, we trained our predictive models using absolute value

of longitudes and latitudes. However, we find the resulting

models overfitting on the training data and cannot generalize

to different locations. In order to generalize the model into

other areas, we use differential longitude, that is the difference

of absolute longitudes between the current and previous data

points. Thus the absolute longitudes L = [l1, l2, ..., ln] are

transformed to differential longitudes that takes the form

Ld = [l2 − l1, l3 − l2, ..., ln − ln−1]. Similarly, we transform

absolute latitudes to its differential form.

3) Discretization: As mentioned in Section 3, we discretize

the attributes of data using a variant of equal interval binning.

Early experiments indicate different features require different

sizes of intervals. For differential longitudes and latitudes, the

interval size m takes the form

m =

{

0.05 l ∈ [−1, 1]

20 l > 1, l < −1
(14)

where fine intervals are selected in the range [−1, 1]. Because

most differential longitudes and latitudes are between -1 and

1, fine intervals provide a larger number of parameters to fit

the model compared to coarse intervals, when l is greater than

1 or less than -1. For SOG, we set m to 0.5. For COG, we

set m to 20.

4) Feature Selection: In early experiments, we built the

model using different combinations of features, such as dif-

ferential longitude, differential latitude, SOG and COG. We

find the model built with differential longitude, differential

latitude, and SOG performed the best. We use these features in

the following three experiments of this paper, shown in Fig. 3.

More precisely, we use the following feature functions in our

experiments: 1) pairs of longitudes and latitudes are selected

to represent the positions of data points (colored in orange);

2) pairs of neighbouring longitudes are selected to represent

the changes of longitudes over time (colored in red); 3) pairs

of neighbouring latitudes are selected to represent the changes

of latitudes over time (colored in green); 4) speed and pairs of

neighbouring speed are selected to represent speed information
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Fig. 3. Feature functions. When predicting the label of index j, the values of
colored dots as well as the paired values connected by solid lines are selected
as feature functions.

Fig. 4. Modified Monte Carlo. Choose 10 points as split point, obtain 10
pairs of training and testing sets.

(colored in blue); 5) label of the previous state is selected to

help model the transition probability between states (colored in

yellow). These feature functions employ spatial and temporal

information to aid the classification task.

B. Results

We train CRF models using CRF++ [12]. We design three

experiments to evaluate the model: Modified Monte Carlo

methods, Iterative Leave One Batch Out (LOBO) and Stratified

LOBO. We then compare CRFs with autoencoders and a data

mining approach.

1) Modified Monte Carlo: Here, we concatenate all the data

and apply Monte Carlo methods to get 10 pairs of training and

testing data sets. The size of the training and testing set is 1

5

of the total number of data points. To find the dividing points

TABLE II
EVALUATION USING MODIFIED MONTE CARLO METHODS .

Expt ID Accuracy Sensitivity Specificity PPV NPV

1 0.868 0.481 0.959 0.730 0.888
2 0.872 0.460 0.947 0.610 0.906
3 0.959 0.826 0.985 0.916 0.966
4 0.973 0.876 0.991 0.953 0.976
5 0.860 0.622 0.941 0.785 0.879
6 0.765 0.821 0.739 0.598 0.897
7 0.851 0.743 0.908 0.809 0.871
8 0.944 0.885 0.965 0.900 0.960
9 0.939 0.735 0.981 0.892 0.947
10 0.946 0.835 0.983 0.940 0.947
Mean 0.898 0.728 0.940 0.813 0.924
SD 0.065 0.157 0.075 0.131 0.040

of the ten Monte Carlo experiments, we first set aside 1

5
of the

whole data set in the front and back respectively, then select

10 dividing points with identical intervals that can cover the

entire dataset. For each selected point, the 1

5
portion of the

data set to the left of the point and the 1

5
portion to the right

constitute one pair of training and testing set. Fig. 4 shows the

way we obtain our 10 pairs of training and testing sets.

For each Monte Carlo experiment, the model is evaluated

using accuracy, sensitivity, specificity, positive predictive value

(PPV) and negative predictive value (NPV), as shown in Table

II, where the positive class is non-fishing. These measurements

provide us with information about the overall performance of

the model. Also, we present the mean and standard deviation

(SD) of the metrics.

2) Iterative Leave One Batch Out: Here, we first split the

14 vessels into 2 groups, group one with 10 vessels for iterative

LOBO, and group two with four vessels for stratified LOBO.

To split the vessels into two groups, we first take four vessels

from the 14 longliners as group two and then take the rest

10 vessels as group one. To get an accurate evaluation of the

model, we need the four selected vessels to be representative

of the entire data set. Therefore, we use trajectory size as a

criterion to help select these vessels. Since the trajectory sizes

of the 14 vessels vary from thousands to hundred thousands,

as shown in Table I, we categorize the 14 trajectories into

three sets based on their sizes. For the three sets, the sizes

of trajectories are in the range of thousands, ten thousands

and hundred thousands respectively. We then randomly select

vessels that are proportional to the cardinality of each set, one

vessel in set one, two vessels in set two, and one vessel in

group set as the four testing vessels.

For the set of 10 vessels, in each iteration, we consider one

vessel as one batch to be the test vessel and build one model on

the rest of 9 vessels, and repeat this for 10 times. The results

of Iterative Leave One Batch Out for the 10 test vessels are

shown in Table III.

3) Stratified Leave One Batch Out: We use the selected four

vessels from experiment 2 as independent test vessels and we

train the model using the 10 vessels from experiment 2, and

evaluate on the rest four vessels individually. The performance

of the model on the four testing vessels are shown in Table

IV. We further visualize the classification results in Fig. 5.

4) Comparisons with autoencoders and Data Minging ap-

proach: We reproduce the autoencoders [11] and the data

mining approach [10] on the same set of data in previous

ILOBO experiment. We compare the performance of CRFs

with these two methods as shown in Table III. We perform

paired-samples t-test to compare the classification accuracies

of CRFs with autoencoders and the data mining approach.

The resulting p-value from the comparison of CRFs and

autoencoders is 0.057. For the comparison of CRFs and the

data mining approach, the p-value is 0.032 which is less than

significance level 0.05 so that we can conclude these two

methods are significantly different.

50 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016



TABLE III
EVALUATION USING ITERATIVE LEAVE ONE BATCH OUT.

ID Accuracy Sensitivity Specificity PPV NPV
CRF AE DM CRF AE DM CRF AE DM CRF AE DM CRF AE DM

1 0.86 0.83 0.65 0.74 0.60 0.45 0.90 0.93 0.91 0.75 0.77 0.85 0.90 0.85 0.57
2 0.85 0.85 0.89 0.53 0.39 0.71 0.93 0.96 0.93 0.63 0.76 0.70 0.89 0.86 0.93
3 0.83 0.86 0.46 0.92 0.58 0.35 0.78 0.94 0.93 0.65 0.76 0.95 0.96 0.88 0.25
4 0.86 0.86 0.87 0.50 0.51 0.66 0.96 0.95 0.95 0.75 0.74 0.82 0.88 0.88 0.89
5 0.96 0.86 0.89 0.74 0.44 0.54 0.99 0.94 0.98 0.88 0.57 0.83 0.96 0.90 0.90
6 0.82 0.76 0.76 0.52 0.34 0.59 0.96 0.94 0.89 0.87 0.68 0.81 0.81 0.776 0.73
7 0.92 0.80 0.54 0.53 0.00 0.20 0.98 0.93 0.94 0.80 0.00 0.81 0.93 0.85 0.5
8 0.90 0.84 0.86 0.44 0.38 0.55 0.99 0.94 0.96 0.88 0.55 0.80 0.90 0.88 0.80
9 0.83 0.86 0.88 0.55 0.62 0.89 0.97 0.94 0.86 0.92 0.76 0.93 0.81 0.89 0.80
10 0.91 0.85 0.74 0.72 0.56 0.49 0.98 0.94 0.98 0.91 0.76 0.96 0.91 0.87 0.66
Mean 0.87 0.84 0.75 0.62 0.44 0.54 0.94 0.94 0.93 0.80 0.64 0.85 0.89 0.86 0.71
SD 0.05 0.03 0.16 0.15 0.19 0.19 0.06 0.01 0.04 0.10 0.24 0.08 0.05 0.04 0.22

TABLE IV
EVALUATION USING STRATIFIED LEAVE ONE BATCH OUT.

Expt ID Accuracy Sensitivity Specificity PPV NPV

1 0.871 0.642 0.929 0.700 0.910
2 0.818 0.576 0.922 0.759 0.835
3 0.991 0.944 0.998 0.988 0.992
4 0.888 0.824 0.919 0.833 0.914
Mean 0.892 0.747 0.942 0.820 0.913
SD 0.072 0.168 0.038 0.125 0.064

Fig. 5. The Visualization of four independent testing vessel tracks. Green
points mean both the label and the prediction are fishing. Blue points mean
both the label and the prediction are non-fishing. Red points mean the label
is fishing while the prediction is non-fishing. Yellow points mean the label is
non-fishing while the prediction is fishing. Zoomed-in region gives details of
classification results in the Atlantic ocean area.

C. Discussion

The results of the three experiments are consistent. The

average accuracy of the three experiments is 88.7% with 6.1%

average standard deviation. By comparing the results of the

second and the last experiments, we found that the models

built using Iterative Leave One Batch Out perform as good as

the model built in Stratified Leave One Batch Out. This further

proves the stability and potential of the model in future fishing

activity detection.

Through comparisons, we find CRFs can have better clas-

sification accuracy, in terms of mean and standard deviation.

We also find CRFs do not suffer from imbalanced data as

autoencoders: in experiment 7, autoencoders label all data

points as positive class with 0% of sensitivity, whereas CRFs

have 53.4% of sensitivity. According to our t-test results,

despite the fact that the CRFs and autoencoders are not

systematically different on significance level 0.05, CRFs can

perform as well as and sometimes better than autoencoders

and the data mining approach.

V. CONCLUSIONS AND FUTURE WORK

This paper presents an approach to detecting fishing activi-

ties from historical AIS data using Conditional Random Fields.

Data cleaning, discretization and transformation followed by

feature selection are performed to preprocess data. We then

specify proper feature functions to train CRF models. The

resulting models are further evaluated in three different ways.

In terms of efficiency, we find CRFs can be trained efficiently

than complex models such as deep learning. In terms of

effectiveness, the three evaluation experiments suggest the

model can generalize well in future fishing activity detection

problems.

As for future work, we will investigate better ways of

developing additional features, such as density and angle. We

also consider systematic approaches to incorporate additional

density and angle information into feature functions to aid the

development of the model.
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