
Run-time Injection of Norms in Simulated Smart
Environments

Patrizia Ribino, Carmelo Lodato, Antonella Cavaleri, Massimo Cossentino
Istituto di Reti e Calcolo ad Alte Prestazioni

Consiglio Nazionale delle Ricerche

Palermo, Italy

Email: {ribino, c.lodato, a.cavaleri, cossentino}@pa.icar.cnr.it

Abstract—Smart systems have to deal with environmental
changes and react for adapting their behavior to changes in the
operating conditions, so to always meet users’ expectations. This
is fundamental for those systems operating in open environments
that may change frequently. Smart environments are complex
systems that more than others are affected by these issues. In
this paper, we propose a normative framework for regulating
at run-time system behavior when some situations occur, thus
providing system flexibility. The proposed approach includes also
mechanisms to identify anomalous situations that can occur in
the system due to the run-time injection of new norms.

I. INTRODUCTION

A
GREAT challenge in complex systems is to adequately

deal with the unpredictability and the dynamics changing

of the application context the systems are plugged in. Smart

environments are complex systems that more than others are

affected by these issues. A way to provide system flexibility

is given by implementing statically normative frameworks in

which norms for regulating the behavior of the system are

specified at design time. This kind of solution is not effective

when we face with unpredictable and unexpected situations

that have not been considered at design time. Hence, solutions

for modifying at run-time norms or injecting new ones into the

systems are mandatory.
It is widely accepted that multi-agent systems pro-

vide relevant features for implementing smart environments

[1][2][3][4]. In such field, norms have been widely employed

for regulating the ideal behavior of the system. Norms are

considered as a mechanism for controlling multi-agent soci-

eties and for ensuring order and predictability [5]. Such norms

define standards of behaviors that have to be adopted in the

society as well as undesired behaviors that have to be avoided.

Hence, normative frameworks rely on a representation of

norms by means of permission, obligations and prohibitions

that ensure the agents behave within predefined boundaries. In

particular, several works have been conducted for addressing

theoretical and practical aspects about norm change [6][7][8]

providing agents with mechanisms for enacting behavior mod-

ification. Typically, new plans/actions have been created for

agents to be complied with new norms.
In this paper, we propose a normative framework to be

coupled with goal oriented systems in order to introduce more

flexibility in smart environment by means of run-time injection

of norms regulating system goal fulfillment. In our approach,

norms and goals allow to cope with two main aspects of a

smart environment. Goals express what is the desired state

of the world the system has to result in. Norms regulate the

desired state of the world according to the normative context

in which the system works.

In order to modify system behaviors when new norms are

injected into the system, we implemented some algorithms in

agents life cycle for reasoning about new goals to be pursued

according to new norms. In so doing, we also manage some

anomalous situations that can occur in the system due to the

run-time injection of new norms. In particular, we identified

three kinds of anomalies:

- the injection of an inconsistent norm, namely containing

logical contradictions;

- the injection of a norm that is structurally incompatible

with a goal;

- finally, the injection of a norm that creates an antinomy.

Thus, the main contributions of this work are:

- an algorithm for modifying agent goal fulfillment accord-

ing to norm changing;

- an algorithm for checking the consistency of norms with

the system.

In order to show in semi-natural languages some practical

examples, we use GoalSpec [9] and SBVR [10] for modeling

goals and norms.

Moreover, the normative framework with algorithms was

implemented in MUSA [11]. It is a Middleware for User-

driven Service Adaptation that provides means for supporting

run-time adaptation of a process together with a multi-agent

system for executing the activities of the process.

In order to validate our approach, we simulated a smart

environment for improving services of a health care home.

The simulation has been developed by integrating MUSA with

ICasa simulator [12].

The rest of the paper is organized as follows. Section II

introduces the theoretical background of the paper. In Sections

III and IV, related works and motivation are respectively

presented. Section V and Section VI presents the key concepts

and the algorithms the proposed normative framework is based

on. Section VII illustrates an application scenario of the

proposed approach in a simulated smart environment. Finally,

in Section VIII conclusions are drawn.

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 1481–1490

DOI: 10.15439/2016F549

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1481

II. BACKGROUND

The main purpose of this work is to introduce more flex-

ibility in smart environments by means of run-time injection

of norms for adapting the behavior of the system to new

situations. This section introduces the theoretical background

of the paper. In particular, it is organized in four parts: the first

one presents the features making multi-agent systems more

suitable for implementing smart environments; the second one

introduces two modeling languages (GoalSpec [9] and SBVR

[10]) we use for modeling goals and norms for specifying

functionalities and setting regulations the smart environment

has to own. The third one provides an overview of MUSA [11],

a multi-agent system for the dynamic composition and the

orchestration of services in a distributed and open environment

we adopt for implementing the functionality of the smart

environment. The last one introduces ICasa [12], a dynamic

pervasive environment simulator, we use for simulating the

injection of norms in a smart environment.

A. Multi-Agent System features for Smart Environment

A Multi-Agent System (MAS) is a distributed system com-

posed of autonomous entities, called agents. The decentralized

and loosely coupled nature of such kind of systems makes

it possible to design applications that are highly flexible,

scalable and adaptive. The multi-agent paradigm provides

several features that make them more suitable in order to fit

smart environment requirements. Among them:

• Decentralization - MASs provide decentralized control

based on distributed autonomous entities.

• Interactions - MASs support complex interactions be-

tween entities, using high level semantic languages. It

is essential for smart environments that commonly deal

with various, heterogeneous information from physical

sensors, services or users preferences.

• Coordination - In a MAS, individual entities with limited

capabilities are able to coordinate in order to achieve

complex tasks. Flexible organization patterns enable

groups of agents to create and dynamically reconfigure

applications depending on current conditions. In an open,

and dynamic smart environment, this feature is highly

suitable for dynamic composition of elementary function-

ality in order to accomplish more sophisticated processes.

• Heterogeneity - A MAS is a society of agents with

different capacities and roles.

B. GoalSpec & SBVR

GoalSPEC [9] is a language designed for specifying user-

goals and enabling at the same time goal injection and software

agent reasoning. The concept of goal is central in GoalSpec.

Goals are described as states of the world that the user desires

to achieve [13]. In GoalSpec, a goal is composed of a Trigger

Condition and a Final State. The trigger condition is an event

that must occur in order to start acting for addressing the

goal. The final state is the desired state of the world that

must be addressed. Trigger conditions and final states must be

expressed by using domain ontology predicates. In GoalSpec,

uppercase words represent the keywords of the language, and

lowercase words represent the predicates constrained by the

domain ontology.

Let us suppose we want define in our smart environment

system the following common user goal:

If at 07:00 the living-room temperature is below 20 C, the

shutter should be closed and the air conditioning turned on

at level 6.

In GoalSpec, it could be written as follow:

WHEN on(07:00 pm) AND temperature(T) AND T<20

THE system SHALL ADDRESS closed(shutter) AND

turned_on(air_conditioning, level(6)).

In order to define norms in natural language, we adopted the

SBVR [10] standard as a modeling language for our system.

The Semantics of Business Vocabulary and Business Rules

(SBVR) is an adopted standard of the Object Management

Group (OMG). It is designed for business domains for formal-

izing complex business rules. In business domains, a business

rule describes the conditions of a business process execution.

A business rule may define the semantics of business concepts,

reactions to business events, constraints and preconditions on

tasks and activities, as well as the prohibitions, permissions

and obligations of business actors and activities. In other

words, business rules guide and constrain various aspects

of business, including the sequence and timing of activities

[14]. SBVR uses ’semantic formulation’, which is a way of

describing the semantic structure of statements and definitions.

In our approach, we use GoalSPEC for defining expected

results of the system in terms of functionality and we adopt

SBVR for specifying the normative context the system works

in. Hence, by using the same kind of abstraction of SBVR,

we can see a smart environment as an organization of entities

that are involved in activities for reaching goals. The entities of

the smart environment, sharing the same domain ontology (the

SBVR vocabulary), constitute a community’s body of shared

meanings that can understand SBVR rules.

An example of SBVR rules for the previously defined goal

could be: It is prohibited that the system closes shutters if

John is at home.

C. MUSA- A Middleware for User-driven Service Adaptation

The Middleware for User-driven Service Adaptation

(MUSA) proposed in [11] is intended to provide a means for

supporting run-time adaptation of a process based on a multi

agent system for executing the activities of the process. The

core element of the approach is the use of Goals for explicitly

representing user-preferences into the system (what to ad-

dress). The injection of goals triggers the re-organization of the

agents in hierarchical groups. These self-adaptive structures

allow for dealing with dynamic composition and orchestration

of services. MUSA provides a platform in which (i) it is

possible to deploy some capabilities that wrap real services,

1482 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

completing them with a semantic layer for their smart use; (ii)

users can inject their goals for satisfying their specific needs.

Under the hypothesis that both goals and capabilities refer to

the same semantic layer (described as an ontology), then the

agents of the system are able to conduct a proactive means-

end reasoning for composing available capabilities into tasks

for addressing the user request.

D. iCASA - a dynamic pervasive environment simulator

iCasa [12] is a set of integrated tools for the development

and administration of pervasive applications. It includes a

smart home simulator that allows the creation and removal of

a wide range of devices that can be used by the applications.

Specifically, iCasa Simulator provides:

• A graphical user interface that displays a map of the

house and the localization of the different devices. It

allows developers to create and configure devices, create

and move physical users, and watch their actual config-

urations;

• Scripting facilities for controlling the environment and to

test the applications under reproducible conditions.

• Notification facilities for notifying users of any modifi-

cations in the environment.

III. RELATED WORKS

Norms like obligations, permissions and prohibitions have

been implemented in multi-agent systems in order to specify

(un)desired behavior of agents so that the goals of the system

can be reached. They also provide means for coordinating

agent activities in order to reach the overall objective of the

system they are part of [15]. Norm-governed systems are also

known as Normative systems.

Normative systems are commonly defined as systems that

specify every possible system transition, whether or not that

transition is considered to be legal or not. In other words,

Normative Systems specify which actions or which states

should be achieved or avoided [16][17][18].

A lot of work has been done about normative frameworks

in the field of Electronic Institutions or Virtual Organizations

where norms have found a natural implementation. For in-

stance, Alechina et.al [19] present a programming framework

for developing normative organizations. Such framework is

based on N-2APL, a BDI-based agent programming language

for implementing norm-aware agents. N-2APL supports nor-

mative concepts such as obligations, prohibitions and sanc-

tions. In such a work, the normative system is conceived in

such away that the interaction between agents and the environ-

ment is regulated by a "normative exogenous organizations",

which is defined by means of a set of conditional norms

(i.e: conditional obligation and conditional prohibition). Such

norms have the form obligation(l, o, d, s) that means "agent l is

obliged to establish an environment state satisfying o before

deadline d, otherwise it will be sanctioned by updating the

environment with s"[19]. A norm-aware deliberation approach

is also proposed. It allows agents to determine the set of plans

(to be adopted in order to satisfy a goal) of highest priority

which do not violate higher priority prohibitions.

In [20] Kollingbaum and Norman proposed the NoA Nor-

mative Agent Architecture. It supports the implementation of

norm-governed practical reasoning agents. NoA agents are

motivated by norms to act. In the NoA language, all the effects

of a plan are declared in a plan specification. These effects

are considered by agents for reasoning about plan selection

and execution. Moreover, the norms governing the behavior

of a NoA agent refer to either actions that are obligatory,

permitted, forbidden, or states of affairs that are obligatory,

permitted or forbidden. The NoA language enables an agent

to be programmed in terms of plans and norms. Normative

statements formulated in the NoA language express obliga-

tions, permissions and prohibitions of an agent: Obligations

motivate the agent to achieve either a state of affairs or to

perform a specific action. Prohibitions require the agent to not

achieve a state of affairs or to not perform an action. The agent

is forbidden to pursue a specific activity. Prohibitions represent

restrictions on what capabilities the agent is allowed to reach

a certain goal. Finally, Permissions allow the achievement of

a state of affairs or the performance of an action.

Some works have been conducted for addressing norm

change and norm consistency providing agents with mech-

anisms for enacting behavior modification. Typically, new

plans/actions have been created to comply with new norms

[8][21][22]. In [23], Jiang et.al propose a normative structure,

named Norm Nets (NNs) for modeling sets of interrelated

regulations. NNs aims at verifying whether executions of

business process are compliance with process regulations.

Authors define a norm as a tuple of elements that specify

the type of deontic operator, the pair role-action (the target)

to which the deontic modality is assigned, a deadline of norm

validity and a precondition that determines when the target is

initiated. A formal method for checking norm compliance by

using Colored Petri Nets is proposed. In [24] [25], authors

propose a means for automatically detecting and solving con-

flict and inconsistency in norm-regulated Virtual Organization

and Electronic Institution.

In the next section, we provide the reasons that motivate

our work with respect to the related works.

IV. MOTIVATION

Although a considerable literature exists about norms, it is

mainly directed to explore the role of norms inside Virtual

Organization and Electronic Institution that are tightly coupled

with agents. We take inspiration from those works and we are

trying to introduce norms in smart systems as mechanisms that

regulate the system at a higher level of abstraction than that

where agents work.

The normative framework we defined adopts a norm spec-

ification similar to the previous ones. But in our framework,

we employ norms at a higher level of abstraction by moving

them from activity’s regulations to goal’s regulations. This

choice is motivated by the context of self-adaptive and self-

organized systems (SASO) we are working on. Commonly this

PATRIZIA RIBINO, CARMELO LODATO, ANTONELLA CAVALERI, MASSIMO COSSENTINO: RUN-TIME INJECTION OF NORMS IN SIMULATED SMART ENVIRONMENTS1483

kind of systems are able to effectively adapt their behavior to

environment changes and self-organize their internal structure

for finding composed solutions in order to achieve collabo-

rative goals. In particular, the kind of SASO systems we are

considering owns the following features [11]:

• Openness - They are open systems that evolve at run-

time because: (i) new services could be made available

for satisfying user requirements; (ii) the satisfaction of

new user requirements may be demanded to the system;

• Goal-directed - They are goal-directed systems. Goals are

motivators for these systems providing them the reason

for doing something. Goals express user requirements to

be satisfied.

The aim of this work is to increase the openness of the sys-

tem by allowing the run-time introduction of new regulations

thus improving the flexibility of such systems. In so doing,

we look at norms from a different perspective with respect to

the classical one. Starting from the consideration that goals

are key elements for the systems we focus on and they are

motivators of their behavior, we look at goals as commitments

the system engages with users. In other word, goals can be

seen as a particular kind of obligation that has to be satisfied

when some conditions occur.
Hence, in the normative framework we developed norms

that are directly linked to goals where a permission norm

relaxes the conditions under which the goal has to be satisfied

and a prohibition norm nullifies the commitment under the

circumstances expressed by the prohibition. The effect is that

norms may act for increasing the opportunity for the system

to pursue the goal it is committed to (Permission) or, on the

contrary, norms may inhibit system intentions to pursue the

goal it is committed to (Prohibition).
By adopting this perspective, the norms operate for regulat-

ing what the system has to satisfy and not how it does that.
In order to provide an example, let us to suppose there is

a system that is committed for satisfying the user goal have

lunch and at the moment of the commitment, the system owns

two means to satisfy the have lunch goal. Fig. 1 shows a

goal diagram where the goal "have lunch" can be satisfied by

performing the tasks "book a restaurant" or "take a pizza".

Let us suppose that such smart system has to provide its

assistance to a diabetic patient. A norm in the system states

that "It is prohibited that a diabetic patient has lunch before

taking insulin". The norm (at the goal level) constraints the

requirement that the system can provide by inhibiting its

intentions rather than disabling all the possible ways the

system can follow in order to satisfy that requirement.
Let us suppose now that a new task "cook with microwave

oven" is introduced at run time for satisfying the "have lunch"

goal (see Fig.2). Considering that the norm at the goal level

spreads to the task level, we do not need to add/change any

system regulations to adapt the behavior of the system to

manage the change of its operative context.
Moreover let us suppose that a new norm for the goal "have

lunch" is injected at run-time in the system. The simultaneous

presence of interrelated norms may cause some system conflict

or inconsistency. Indeed, when two norms are interrelated, it

may happen that being compliant with a norm may cause to be

uncompliant with the second one, thus generating conflicts or

inconsistencies. In classical approaches, conflicts are generated

when an agent wants to perform an action that is simultane-

ously allowed and forbidden. Inconsistencies, instead, occur

when an agent may be forbidden to perform an action that

may be essential for fulfilling one of its obligations [26].

In our approach, we characterize the definition of conflict

and inconsistency to deal with dynamically changing environ-

ments, where the conflicting state of two norms may change

according to the particular execution context. In order to

address this concern, we introduce some new definitions about

conflicts and inconsistencies that are based on a representation

of the execution context.

Resuming the previous example, let us suppose that a new

norm regulating the "have lunch" goal is introduced into the

system, that is "It is permitted that guests have lunch if

they have performed sports activities". This latter norm is

interrelated to the previous one because they both refer to

the same goal "have lunch". The injection of the second norm

could cause a system deadlock because if the conditions of

both norms are simultaneously valid an antinomy is generated

and the system does not know how to behave.

Have lunch

Book a

restaurant

Take a

pizza

OR

Norms

Goal Level

Task Level

Fig. 1: An example of Means-End Analysis [27]. It introduces

two tasks "Book a restaurant" and "Take a pizza" to indicate

two particular ways to fulfill the goal "Have lunch".

Have lunch

Book a

restaurant
Take a

pizza

OR

Norms

Goal Level

Task Level

Cook with

microwave

oven

Fig. 2: The availability of the new task "cook with microwave

oven" gives the system a new mean for satisfying the goal

"Have lunch".

In the following section, we introduce the key concepts our

approach is based on.

1484 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

V. THEORETICAL FOUNDATIONS

The normative framework for introducing more flexibility

in smart environments, we propose in this work is based on

three key concepts: state of the world, goal and norm. In the

following, we formally introduce some definitions.

H DEFINITION 1 — State of the world

Let D be the set of concepts defining a business domain.
Let L be a first-order logic defined on D with ⊤ a tautology
and ⊥ a logical contradiction, where an atomic formula
p(t1, t2..., tn)∈L is represented by a predicate applied to a tuple
of terms (t1, t2..., tn)∈D and the predicate is a property of or
relation between such terms that can be true or false.

A state of the world in a given time t (Wt) is a subset of
atomic formulae whose values are true at the time t:

Wt = [p1(t1, t2, ..., th), ..., pn(t1, t2, ..., tm)]

The state of the world represents a set of declarative in-

formation concerning events occurred within the environment

and relations among events at a specific time. An event can be

defined as the occurrence of some fact that can be perceived by

or be communicated to the smart system. Events can be used to

represent any information that can characterize the situation of

an interacting user as well as a set of circumstances in which

the smart system operates at a specific time. Definition 1 is

based on the close world hypothesis[28] that assumes all facts

that are not in the state of the world are considered false.

H DEFINITION 2 — Goal

Let D, L and p(t1, t2..., tn)∈L be as previously introduced
in the definition 1. Let tc∈L and fs∈L be formulae that may
be composed of atomic formulae by means of logic connectives
AND(∧), OR (∨) and NOT (¬).

A Goal is a pair 〈tc, fs〉 where tc (trigger condition) is a
condition to evaluate over a state of the world Wt when the goal
may be actively pursued and fs (final state) is a condition to
evaluate over a state of the world W t+∆t when it is eventually
addressed:

- a goal is active iff tc(W
t) ∧ ¬fs(W

t) = true
- a goal is addressed iff fs(W

t+∆t) = true

Goals express what is the desired state of the world the

system has to result in. Conversely, Norms regulate the desired

state of the world according to the normative context in which

the system works.

H DEFINITION 3 — Norm

Let D, L, p(t1, t2..., tn)∈L and Wt be as previously
introduced in the definition 1. Let φ∈L and ρ∈L be
formulae composed of atomic formula by means of logic
connectives AND(∧), OR (∨) and NOT (¬). Moreover, let
Dop = {permission, obligation, prohibition} be the set of
deontic operators. A Norm is defined by the elements of the
following tuple:

n = 〈r , g , ρ, φ, d〉

where
- r∈R is the Role the norm refers to. The special character

“_” indicates that the norm refers any role.

- g∈G is the Goal the norm refers to. The special character
“_” indicates that the norm refers to any goal.

- ρ∈L is a formula expressing the set of actions and state of
affairs that the norm disciplines.

- φ∈L is a logic condition (to evaluate over a state of the world
Wt) under which the norm is applicable;

- d∈Dop is the deontic operator applied to ρ that the norm
prescribes to the couple (r , g)∈R× G.

In particular d(ρ) =

ρ iff d = obligation

¬ρ, iff d = prohibition

ρ ∨ ¬ρ iff d = permission

In other words, let Wt be a state of the world, a norm

prescribes to a couple (r , g) the deontic operator d applied to

ρ if φ is true in Wt 1.

H DEFINITION 4 — State of Norm

Let a norm n = 〈r , g , ρ, φ, d〉 where g = 〈tc, fs〉 and let a
state of the world in a given time t (Wt)

A norm can assume the following states:

- n is applicable at time t if φ(Wt) = true ∨ φ = ⊤
- n is active at time t if n is applicable and tc(W

t) = true
- n is logically contradictory if φ is ⊥
- n is in opposition to goal if fs ∧ d(ρ) is ⊥

Moreover, let a state of the world (W t) and let two
norms n1 = 〈r1 , g1 , ρ1 , φ1 , d1 〉 and n2 = 〈r2 , g2 , ρ2 , φ2 , d2 〉
where r1 = r2 , g1 = g2 , ρ1 = ρ2

- n1 and n2 are deontically contradictory iff
{

φ1(W
t) ∧ φ2(W

t) = true

d1 6= d2

It is worth noting that we talk about logically contradictory

when the contradiction concerns the logical conditions (φ∈L)

under which the norms are applicable. On the contrary, we talk

about deontically contradictory when the contradiction con-

cerns the semantic meaning of the deontic operator (d∈Dop)

the norms apply to.

Moreover, a norm is in opposition to a goal when pursuing

that goal violates always the prescribed norm.

In the next section, we present the algorithms for the

injection of norms in a running smart environment.

VI. ALGORITHMS FOR RUN-TIME INJECTIONS

The aim of the normative framework is to provide some

mechanisms that allow to modify the behavior of the smart

environment in order to adapt it to unexpected situations

that can occur by introducing new norms. The approach we

propose is illustrated by the Algorithm 1.

The triple of elements the Algorithm 1 works on is com-

posed of: a state of the world Wt that characterizes the

system in a given time, a set of goal G representing the

requirements the system is able to satisfy and finally a set

1It is worth noting that in order to be compliant in Wt with 1) an obligation
ρ must be true, 2) a prohibition ¬ρ must be true 3) a permission ρ or ¬ρ

may be true. In the context of this paper, we assume that the system does not
violate norms.

PATRIZIA RIBINO, CARMELO LODATO, ANTONELLA CAVALERI, MASSIMO COSSENTINO: RUN-TIME INJECTION OF NORMS IN SIMULATED SMART ENVIRONMENTS1485

Algorithm 1: RunTime injection

Data: Wt, G, N
while system is running do

N t
injected ← inject_new_norms;

1©for j ← 1 to length(N t
injected) do

〈r , g , ρ, φ, d〉 ← nj ;
〈tc, fs〉 ← g;
if (φ 6= ⊥) ∧ (fs ∧ d(ρ) 6= ⊥) then

add 〈r , g , ρ, φ, d〉 to N ;
else

revise(nj)

2©foreach gi ∈ G do
〈tci, fsi〉 ← gi;
if ¬fsi(W

t) then

Ni ← {n ∈ N : n = 〈r , gi , ρ, φ, d〉 ∧ φ(Wt) =
true};

A© if card{Ni} = 0 ∧ tci(W
t) = true;

then
pursue(gi);

B© if card{Ni} = 1;
then
〈r , gi , ρ, φ, d〉 ← n;
if (d = Permission) then

pursue(gi);

C© if card{Ni} > 1;
then

Ni ← Check_Norms(Ni,W
t); (see Alg.3)

(φOR, φAND)←
Compose_Norm_Condition(Ni); (see

Alg.2) t
′

ci ← OR_composition(tci, φOR);

t
′

ci ← AND_composition(t
′

ci, φAND);

g
′

i ← 〈t
′

ci, fsi〉;

if t
′

ci(W
t) = true then

pursue(gi);

of norms N the system has to obey in order to deal with

some specific situations. Both N and Wt may change during

system execution. In particular, the state of the world may

change due to some events that can occur or some actions

that can be performed in the environment. The set of norms

may change due to norm injection.

While the system is running, new norms can be injected.

Step 1© makes a preliminary check on new injected norms.

Such step ensures that among injecting norms neither norms

are in opposition to the goal they refer nor they are logically

contradictory.

Step 2© is the core of the algorithm. The system is in the

state of the world (Wt), the norms have effects on the system

goals only if they are not addressed yet. Thus, for each goal the

system has to satisfy, the set of applicable norms (φ(Wt) =
true) is processed.

Hence, three situations can occur. The most simple one

(A©) is that there are no applicable norms for an active goal

(see Definition 2). In such a case the system can pursue the

goal without restrictions. The second situation (B©) is a basic

case in which the set of applicable norms for a single goal

is composed of only one norm. In such case, (i) if the norm

is a permission it actives the related goal and the system can

fulfill that goal despite tc(W
t) = false. This is because the

permissions relax system constraints, giving alternatives; (ii)

if the goal is regulated by a prohibition, it further constraints

the goal activation. The system cannot pursue that goal until

φ(Wt) = true. It is worth noting that generally speaking, an

applicable norm influences a goal when it is active. However, a

permission norm can influence a goal also when it is inactive.

The last situation (C©) is a general case in which norms are

more than one and they can have different deontic operators.

In this case Algorithm 1 allows to modify goals, making them

norm compliant. By encapsulating the condition expressed

by the norms inside the goal they refer to, it is possible to

modify the activation of that goal thus making it compliant

with the norms. Such composition (see Algorithm 2) takes

into consideration different types of norms and it accordingly

modifies the activation of a goal.

Algorithm 2: Compose_Norm_Condition

Data: a list of norms NormList
Result: a couple (φmergedOR, φmergedAND)
Listφ_OR← ∅;
Listφ_AND ← ∅;
// Identification of norm types

for j ← 1 to size(NormList) do
〈r , g , ρ, φ, d〉 ← NormList[j];
switch d do

case Obligation do
break;

case Prohibition do
add ¬φ to Listφ_AND;

case Permission do
add φ to Listφ_OR;

// Permissions give alternatives (OR)

if Size(Listφ_OR) 6= 0 then
φmergedOR ← Listφ_OR[1];
for h← 2 to Size(Listφ_OR) do

φmergedOR ←
OR_composition(φmergedOR, Listφ_OR[h]);

// Prohibition are mandatory (AND)

if Size(Listφ_AND) 6= 0 then
φmergedAND ← Listφ_AND[1];
for h← 2 to Size(Listφ_AND) do

φmergedAND ←
AND_composition(φmergedAND, Listφ_AND[h]);

It is worth noting that, when there are more than one

applicable norm in the system (C©), it is necessary to check

for deontological contradictions among norms (see Definition

4) and to remove them. This is performed by Algorithm 3.

Deontological contradictions are known in legislative environ-

ments as antinomy. For instance, if there is an applicable norm

n1 that prohibits to pursue a goal g1 and another applicable

1486 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

norm n2 that obliges to pursue the same goal g1, then n1 and

n2 generate an antinomy.

In legal theory, several criteria exist for solving such

antinomy [29]: legis posterior, the most recent norms takes

precedence; legis superior the norm imposed by the strongest

institutional power takes precedence; and legis specialis the

most specific norm takes precedence. In this paper, we assume

to work with hierarchically equal norms (i.e: norms with the

same authority) thus we adopt the legis posterior criterion in

order to choice among conflicting norms.

In the following, we show our approach in a simulated smart

environment.

Algorithm 3: Check_Norms

Data: a list of applicable norms N related to a single goal, a
state of the world Wt

Result: a list Nout of consistent norms
Nout ← chronological_order(N);
Mconflicts ← ∅;
for i← 1 to length(Nout) do
〈r , g , ρ, φi , di〉 ← ni;
for j ← i + 1 to length(Nout) do
Mconflicts[i][i]← 1;
if ri = rj ∧ ρi = ρj ∧ di 6= dj then
Mconflicts[i][j]← 1;

else
Mconflicts[i][j]← 0;

for i← length(Nout) to 1 do
ncurrent ← Nout[i];
for j ← i− 1 to 1 do

if Mconflicts[i][j] = 1 then
delete(Nout, oldest(Nout[j], ncurrent));
ncurrent ← Nout[j];

VII. A SIMULATED HEALTH-CARE HOME

In order to show our approach, we simulated an health-

care home provided with a smart system for supporting guest

activities.

The simulation framework is responsible for time advanc-

ing. In particular, we adopt a discrete time-stepped simulation.

The virtual time advances with a fixed interval (i.e.: each time

step is 30 minutes).

In the simulated health-care home, each guest is provided

with some devices for individual recognition and with wear-

able sensors for monitoring physiological parameters (i.e:

body temperature, heart rate, blood pressure etc...). The smart

environment owns a knowledge base containing information

about health-care home guests (i.e: diseases, pharmacological

therapy, clinical investigations etc...). The health-care home

is endowed with a plurality of sensors and devices. The

smart system provides each guest with a personal virtual tutor

that supports daily activities such as taking medicines, doing

medical examinations and so on.

Fig. 3 shows a screen-shot of health-care house simulated

with ICasa[12]. It is composed of several bedrooms for guests,

Fig. 3: The simulated health-care house

a medical room and a restaurant. Each room is endowed with

a presence sensor that detects the occupancy of a space by

people. Some monitors are located in common areas in order

to show personalized advertisements to guests.

An excerpt of user goals the system can satisfy is described

in the following by adopting the GoalSpec specification.

goal_1: WHEN is_Time_to_WakeUp(guest) THE

system SHALL ADDRESS light(guest_room, on) AND

alarm(guest_room, on) AND guest(awake).

goal_2: WHEN is_Time_to_Have_Lunch(guest) THE system

SHALL ADDRESS restaurant_service(guest, available).

goal 3: WHEN is_Time_to_Take_Medicine(guest) THE

system SHALL ADDRESS at(guest, medical_room) AND

done(took_medicine).

...

goal n: WHEN is_Time_to_Meet_Doctor THE system

SHALL ADDRESS done(checked, guest)

The first goal means that the Smart Environment has to

reach the desired state of the world in which the light and

the alarm of guest’s room are turned on and guest is awake.

The second one makes the restaurant available to guests. The

third one indicated that the smart environment has to fulfill the

state of the world in which the guest is at medical room and he

takes his medicine. Finally, the system allows to periodically

make medical checks for monitoring the wellness of guests.

For the sake of clarity, in the following scenarios we

exemplify norms in SBVR language. It is worth noting that

our application translates SBVR rule according to Definition

3. In the following we provide an example:

SBVR norm: It is permitted that guests have lunch if they

have performed sports activities

System norm: norm(type(permission), role(guest), goal

(have_launch), condition(is(guest,diabetic))).

PATRIZIA RIBINO, CARMELO LODATO, ANTONELLA CAVALERI, MASSIMO COSSENTINO: RUN-TIME INJECTION OF NORMS IN SIMULATED SMART ENVIRONMENTS1487

Fig. 4: Guest Monitor Application

We initially assume that the guests of the health-care home

are individuals without particular diseases. The system behaves

in the same way for each guest thus satisfying the previous

goals. Over time, other people with particular illnesses are

received and their preferences and clinical status are registered

in the system. The manager of the health-care home inserts

new norms in the system in order to change system behavior

accordingly to the new situations. In particular, we simulated

the following scenarios.
a) Permission Norm Injection: During the normal ex-

ecution of the system, the manager of the health-care home

gives the permission to guests that get already had some sports

activities to have lunch before the established time. Thus, he

introduces into the system the following norm:

norm_1: It is permitted that guests have lunch if they have

performed sports activities.

In such case, the system differently behaves according to

the particular guest. It allows only sportive guests to go to the

restaurant before the regular time for lunch (i.e.: 13 o’clock).
In Fig.5 two guests (Paul and Maria) want to go to the

restaurant at midday. In such scenario, Paul went to jogging

in the morning. Thus, the system permits Paul to go to the

restaurant before the regular time for lunch. Conversely, it

is prohibited for Maria that has not performed any sport

activities.

Fig. 5: The system behaves differently for different users.

b) Diabetic Guest: A new guest (Mark) is received in the

health-care home. It is the first diabetic patient of the house.

Fig.4 shows a screen-shot of the simulation framework that

allows to introduce new guest into the simulated environment

along with some guest information and preferences. The

following norm is injected at run-time into the system:

norm_2: It is prohibited that a guest has lunch before taking

insulin if the guest is diabetic.

In such scenario, the diabetic guest goes to the restaurant at

13 o’clock but before taking insulin. In such case, the system

does not allow Mark to eat at the restaurant and its virtual

tutor advises him that has to take the medicine before lunch

(see Fig.6 (a)). Then, Mark goes to the medical area and he

takes insulin (see Fig.6 (b)). Thus, the system updating the

state of the world will permit Mark to have lunch.

c) Heart-Rate Control: The manager of the health-care

home wants to provide better services to his guests. Thus, he

introduces a new norm for allowing the system to suggest a

medical check when some physiological parameters are out of

their normal range.

norm_3: It is permitted to do a medical check if a guest

has an irregular heart rate.

The introduction of the previous norm modifies the normal

system behavior, thus allowing not only periodic medical

check but also appropriate ones. In such case, the system that

is able to monitor the health of guests, when it perceives a

heart rate out of normal range (see Fig.7 (a)), it suggests the

guest to go to see a doctor and it alerts the nurses (Fig.7 (b)).

d) Conflict Scenario: In such scenario, the diabetic guest

goes to the restaurant after having had some gym and before

taking insulin. This particular state of the world cause a con-

flicting situation among two norms. In such case, the system

notifies the manager that there is a conflicting situation due

to the simultaneous application of the norm_1 and norm_2. If

the manager does not modify anything, the system applies the

legis posterior criterion thus prohibiting the user to go to the

restaurant before taking insulin (see Fig.8).

In the following section, we draw some conclusions.

1488 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

(a) The guest does not use restaurant services. The virtual
tutor advises the guest to take insulin.

(b) The guest goes to medical area and he takes insulin.
The system updates the new state of the world.

Fig. 6: Diabetic Guest scenario

VIII. CONCLUSIONS

Norms are well know means for regulating the behavior

of multi-agent systems, thus ensuring the fulfillment of the

overall objective of the society the agents live in. This work

takes place in the context of self-adaptive and self-organized

systems that consider goals as key elements. They are systems

conceived for satisfying user requirements that can be also

established at run-time. These systems may evolve over time

by increasing the objectives they are able to satisfy. In such

context, we defined a normative framework that owns a direct

link with the goals the system is able to pursue thus hiding

the agent level. In our approach we consider the goals as a

particular kind of obligation that have to be satisfied under

certain conditions. Besides, we see permission and prohibition

norms as promoters or inhibitors of the system in pursuing

its goals. By introducing norms at run-time we also make

the system more flexible to environment changes and able

to self-adapt to new normative contexts in which it could be

employed.

Moreover, the proposed algorithm takes into consideration

the simultaneous presence of multiple norms related to the

same goal, thus determining their joint effect. The approach

for run-time injection also provides a means for checking

norm conflicts and inconsistencies. Such an approach also

implements a recovery mechanism based on the legis posterior

criterion for solving inconsistencies among norms.

(a) The system perceives an irregular heart rate and it alerts
the nurses. The virtual tutor advises the guest to go to make
a check.

(b) The guest goes to medical area.

Fig. 7: Heart-Rate Control scenario

Finally, the simulated environment provides us a means for

testing new hypotheses about a real system. In particular, in

our future works, it will used for studying the consequences

of norms injection in order to discover undesired behaviors of

the system or new kinds of conflicting situations.

REFERENCES

[1] Diane J Cook. Multi-agent smart environments. Journal of Ambient

Intelligence and Smart Environments, 1(1):51–55, 2009.
[2] Diane J Cook, Michael Youngblood, and Sajal K Das. A multi-agent

approach to controlling a smart environment. Designing smart homes,
4008:165–182, 2006.

[3] Mathieu Vallée, Fano Ramparany, and Laurent Vercouter. A multi-

agent system for dynamic service composition in ambient intelligence

environments. Citeseer, 2005.
[4] Laura Klein, Jun-young Kwak, Geoffrey Kavulya, Farrokh Jazizadeh,

Burcin Becerik-Gerber, Pradeep Varakantham, and Milind Tambe. Coor-
dinating occupant behavior for building energy and comfort management
using multi-agent systems. Automation in Construction, 22:525–536,
2012.

[5] Huib Aldewereld, Frank Dignum, Andrés García-Camino, Pablo Nor-
iega, Juan Antonio Rodríguez-Aguilar, and Carles Sierra. Opera-
tionalisation of norms for electronic institutions. In Coordination,

Organizations, Institutions, and Norms in Agent Systems II, pages 163–
176. Springer, 2007.

[6] Guido Boella and Leendert WN van der Torre. Regulative and consti-
tutive norms in normative multiagent systems. KR, 4:255–265, 2004.

[7] Mehdi Dastani, John-Jules Meyer, and Nick Tinnemeier. Programming
norm change. Journal of Applied Non-Classical Logics, 22(1-2):151–
180, 2012.

[8] Felipe Meneguzzi and Michael Luck. Norm-based behaviour modifica-
tion in bdi agents. In Proceedings of The 8th International Conference

PATRIZIA RIBINO, CARMELO LODATO, ANTONELLA CAVALERI, MASSIMO COSSENTINO: RUN-TIME INJECTION OF NORMS IN SIMULATED SMART ENVIRONMENTS1489

Manager Room

??

Fig. 8: A conflicting situation is detected by the system. It is

notified to the manager. The legis posterior criterion is applied.

on Autonomous Agents and Multiagent Systems-Volume 1, pages 177–
184. International Foundation for Autonomous Agents and Multiagent
Systems, 2009.

[9] Luca Sabatucci, Patrizia Ribino, Carmelo Lodato, Salvatore Lopes, and
Massimo Cossentino. Goalspec: A goal specification language support-
ing adaptivity and evolution. In Engineering Multi-Agent Systems, pages
235–254. Springer, 2013.

[10] Object Management Group. Semantics of business vocabulary and
business rules (sbvr). version 1.3. may 2015.

[11] Massimo Cossentino, Carmelo Lodato, Salvatore Lopes, and Luca
Sabatucci. Musa: a middleware for user-driven service adaptation. in

proc. of XVI Workshop "Dagli Ogetti agli Agenti", Napoli, June, 17-19,

2015, 1382, 2015.
[12] Icasa : a dynamic pervasive environment simulator

http://adele.imag.fr/icasa-a-dynamic-pervasive-environment-simulator/.
[13] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and

John Mylopoulos. Tropos: An agent-oriented software development
methodology. Autonomous Agents and Multi-Agent Systems, 8(3):203–
236, 2004.

[14] Graham Witt. Writing Effective Business Rules: A Practical Method.
Elsevier, 2012.

[15] Frank Dignum. Autonomous agents with norms. Artificial Intelligence

and Law, 7(1):69–79, 1999.
[16] Thomas Agotnes, Wiebe Van Der Hoek, JA Rodriguez-Aguilar, Carles

Sierra, and Michael Wooldridge. On the logic of normative systems. In
Proceedings of the Twentieth International Joint Conference on Artificial

Intelligence (IJCAI’07), pages 1181–1186, 2007.
[17] Marek Sergot. Action and agency in norm-governed multi-agent sys-

tems. In Engineering Societies in the Agents World VIII, pages 1–54.
Springer, 2007.

[18] Mehdi Dastani, Nick AM Tinnemeier, and John-Jules Ch Meyer. A
programming language for normative multi-agent systems. Multi-Agent

Systems: Semantics and Dynamics of Organizational Models, pages
397–417, 2009.

[19] Natasha Alechina, Mehdi Dastani, and Brian Logan. Programming
norm-aware agents. In Proceedings of the 11th International Conference

on Autonomous Agents and Multiagent Systems-Volume 2, pages 1057–
1064. International Foundation for Autonomous Agents and Multiagent
Systems, 2012.

[20] Martin J Kollingbaum and Timothy J Norman. A contract management
framework for supervised interaction. In Working Notes of the 5th UK

Workshop on Multi-Agent Systems UKMAS 2002, 2002.
[21] Nick Tinnemeier, Mehdi Dastani, and John-Jules Meyer. Programming

norm change. In Proceedings of the 9th International Conference

on Autonomous Agents and Multiagent Systems: volume 1-Volume 1,
pages 957–964. International Foundation for Autonomous Agents and
Multiagent Systems, 2010.

[22] Max Knobbout, Mehdi Dastani, and John-Jules Ch Meyer. Reasoning
about dynamic normative systems. In Logics in Artificial Intelligence,
pages 628–636. Springer, 2014.

[23] Jie Jiang, Huib Aldewereld, Virginia Dignum, and Yao-Hua Tan. Com-
pliance checking of organizational interactions. ACM Transactions on

Management Information Systems (TMIS), 5(4):23, 2015.
[24] Wamberto Vasconcelos, Martin J Kollingbaum, and Timothy J Norman.

Resolving conflict and inconsistency in norm-regulated virtual organi-
zations. In Proceedings of the 6th international joint conference on

Autonomous agents and multiagent systems, page 91. ACM, 2007.
[25] Marc Esteva, Wamberto Vasconcelos, Carles Sierra, and Juan A

Rodriguez-Aguilar. Norm consistency in electronic institutions. In
Advances in Artificial Intelligence–SBIA 2004, pages 494–505. Springer,
2004.

[26] Martin J Kollingbaum, Timothy J Norman, Alun Preece, and Derek
Sleeman. Norm conflicts and inconsistencies in virtual organisations. In
Coordination, organizations, institutions, and norms in agent systems II,
pages 245–258. Springer, 2007.

[27] Eric Yu. Modelling strategic relationships for process reengineering.
Social Modeling for Requirements Engineering, 11:2011, 2011.

[28] Raymond Reiter. On closed world data bases. Springer, 1978.
[29] Andrés García-Camino, Pablo Noriega, and Juan-Antonio Rodríguez-

Aguilar. An algorithm for conflict resolution in regulated compound
activities. In Engineering Societies in the Agents World VII, pages 193–
208. Springer, 2006.

1490 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

