
Generalized Majority Decision Reducts

Sebastian Widz∗ and Sebastian Stawicki†

∗Systems Research Institute, Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland
†Institute of Mathematics, University of Warsaw

ul. Banacha 2, 02-097 Warsaw, Poland

sebastian.widz@gmail.com, sebastian.stawicki@gmail.com

Abstract—We discuss several new methods for constructing
approximate decision reducts from the rough set theory. We intro-
duce generalized approximate majority decision reducts, which
are an extension to standard approximate decision reducts known
from literature but with improved calculation performance and
complexity. We also discuss the relationship and differences of the
new approximate decision reduct notion with so called decision
bireducts – another type of approximate decision reducts.

Keywords-Feature Subset Selection; Rough Sets; Approximate
Decision Reducts; Decision Bireducts

I. INTRODUCTION

A
TTRIBUTE subset selection plays an important role in

knowledge discovery [1]. It establishes the basis for more

efficient classification, prediction and approximation models.

It also provides the users with a better insight into data

dependencies. In this paper, we concentrate on attribute subset

selection methods originating from the theory of rough sets

[2]. There are numerous rough-set-based algorithms aimed

at searching for so called reducts – irreducible subsets of

attributes that satisfy predefined criteria for keeping enough

information about decisions. Those criteria are verified on

the training data and, usually, they encode the risk of mis-

classification by if-then decision rules with their antecedents

referring to the values of investigated attribute subsets and

their consequents referring to decisions.

Original definition of a reduct is quite restrictive, requiring

that it should determine decisions or, if data inconsistencies

do not allow full determinism, provide the same level of

information about decisions as the complete set of attributes.

There are a number of approaches to formulate and search

for approximate or inexact reducts, which almost preserve

the decision information [3]. Approximate reducts are usually

smaller than standard ones, providing the basis for learning

more efficient classifiers [4], [5].

In our previous work [6] we compared approximate decision

reducts based on feature subset quality functions [7], [8] with

decision bireducts [9] – another extension to the rough set

framework of decision reducts. In short, a decision bireduct is

an irreducible feature subset which preserves the information

about the decision but only on selected objects from the data

set. The feature subset cannot be reduced as well as the

object subset cannot be further expanded without violating the

decision functional dependence.

In this article we show new methods for calculating approx-

imate decision reducts based on generalized majority decision

(GMD) function. The concept of GMD function might be

considered as an modification to a very well known concept of

generalized decision function known from the rough set theory.

We also consider a few variations of decision rule-based

classifiers induction from the discussed approximate decision

reducts. We introduce the concept of exception decision rules

which are created during the reduct calculation process. The

use of exceptions can be helpful in case we need to construct

simplified decision models [10] and preserve more information

about the original data set. We also explain the relationship

of the proposed methods to the notion of decision bireducts

and propose a new algorithm for decision bireducts calculation

based on GMD function.
The remainder of this paper is organized as follows. Sec-

tion II briefly describes the concept of generalized decision

function. In Section III we explain approximate decision

reducts. In Sections IV and V we present a new definition

of approximate decision reducts and show new algorithms

in Section VI. In Section VII we introduce the concept of

exception decision rules. In Section VIII we show relationship

to the decision bireducts and a new way of decision bireduct

calculation. Finally, we show experiment results in Section IX

and conclude our work in Section X.

II. DECISION REDUCTS AND GENERALIZED DECISION

We use the standard notion of a decision system to rep-

resent data [2]. By a decision system we mean a tuple

A = (U,A∪{d}), where U is a set of objects and A is a set of

attributes and d /∈ A is a distinguished decision attribute. For

simplicity, we refer to the elements of U using their ordinal

numbers i = 1, ..., |U |, where |U | denotes the cardinality of

U . We treat attributes a ∈ A as functions a : U → Va, Va

denoting a’s value domain. The values vd ∈ Vd correspond to

decision classes that we want to describe using the values of

attributes in A. Each subset B ⊆ A partitions the space U into

equivalence classes. For such a division we get the partition

space denoted as U/B = {E1, . . . , Et} where Et ⊆ U . Each

equivalence class is defined as Et = {x ∈ U : B(x) = vt}
where vt is a vector of values on attributes B. We will further

refer the set of objects with particular decision k as Xk.

Definition 1. We say that B ⊆ A is a decision reduct for

A = (U,A ∪ {d}) if and only if it is an irreducible subset

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 165–174

DOI: 10.15439/2016F559

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 165

of features such that each pair i, j ∈ U satisfying inequality

d(i) 6= d(j) is discerned by B.

Definition 1 works well in case of consistent decision tables,

however in case of inconsistent data no attribute reduction

is possible, in fact, even the whole attribute set A cannot

be considered to be a decision reduct itself. There are many

alternative definitions of decision reducts that could be applied

to inconsistent decision tables, e.g., subsets of features that

preserve the same positive region as the full set of attributes.

Another example could be a decision reduct based on gener-

alized decision function [2]:

Definition 2. For a given decision table A = (U,A ∪ {d}),
we say that a generalized decision function is a function ∂d :
2U → 2Vd defined as follows:

∂d(E) = {k : Xk ∩ E 6= ∅} (1)

The cardinality of a generalized decision may be used

to express the level of inconsistency in describing decision

attribute by subsets of features. In particular, if |∂d([x]A)| = 1,

for any x ∈ U , then the decision table A = (U,A∪{d}) is said

to be consistent. Otherwise it is inconsistent. The example of a

generalized decision is presented in Table I in column denoted

as ∂d([x]A).

Definition 3. Let A = (U,A ∪ {d}) be given. We say that

B ⊆ A is a ∂-decision superreduct if and only if the following

condition holds:

∀
x∈U

∂d([x]B) = ∂d([x]A) (2)

We say that B is a ∂-decision reduct if and only if it is a

∂-superreduct and none of its proper subsets satisfy the above

condition.

III. FOUNDATIONS OF APPROXIMATE REDUCTS

There are a variety of methods of searching for approximate

decision reducts (e.g. [11], [12], [13]). The criteria usually

include formulas for functions measuring degrees of decision

information induced by subsets of features and thresholds for

those functions’ values specifying which subsets of attributes

are good enough. The choice of functions may depend on

the nature of particular data sets and methods of learning

classifiers based on reduced sets of attributes. In order to

follow the filter approach to feature subset selection, we

need to design some measures that evaluate particular feature

subsets in the selection process. From this point of view, the

rough set literature may be regarded as a source of measures

that draw correspondence between feature subsets and rule-

based classifiers corresponding to those subsets, where each

subset of attributes B ⊆ A yields a set of decision rules based

on all combinations of its values in U and the consecutive

value is chosen according to some criteria.

Let us define a measure F : P (A) → ℜ which evaluates

the degree of influence F (B) of subset B ⊆ A in d. Then one

can decide which features may be removed from A without

significant loss of accuracy.

Definition 4. Let A = (U,A ∪ {d}) and approximation

threshold ε ∈ [0, 1) be given. We say that B ⊆ A is an

(F, ε)-approximate decision reduct if and only if it satisfies

the following condition:

F (B) ≥ (1− ε)F (A) (3)

and none of its proper subsets C ⊆ B does it.

There are many examples how function F can be defined.

Let us focus on two examples. The first is Majority measure

(further denoted as M), proposed in [7]:

M(B) =
∑

E∈U/B

|E|

|U |
max
k∈Vd

|Xk ∩ E|

|E|
(4)

The function M points to a decision value that appears the

most frequently within a particular equivalence class E. It

means that if we need to decide which decision should be

attached to objects from a particular class, then we always

choose the most frequent decision that was observed in the

training data. Based on the measure M , one could generate

decision rules for which the rules’ right sides are the most

frequent decisions for E ∈ U/B. Another example of F refers

to a Bayesian extension of the classical rough set model, where

rules induced by a given subset of attributes are pointing at the

decision classes which become maximally frequent comparing

to their overall occurrence in the data. This function called

Relative information gain measure (further denoted as R) was

proposed in [8].

R(B) =
1

|Vd|

∑

E∈U/B

max
k∈Vd

|Xk ∩ E|

|Xk|
(5)

In our research the permutation based REDORD algorithm

introduced in [14] is used as a baseline algorithm (see Algo-

rithm 1).

Algorithm 1 Permutation-based (F, ε)-REDORD Algorithm

Input: A = (U,A ∪ {d}), ε ∈ [0, 1),
σ : {1, ..., n} → {1, ..., n}, n = |A|
Output: (F, ε) approximate decision reduct B ⊆ A

1: B ← A
2: for i = 1→ n do

3: if F (B \ {aσ(i)}) ≥ (1− ε)F (A) then

4: B ← B \ {aσ(i)}
5: end if

6: end for

7: return B

IV. GENERALIZED MAJORITY DECISION REDUCTS

Approximate decision reducts calculation methods allow

some level of interaction with users designing decision models.

However, this interaction is only limited to a single parameter

describing the degree of approximation that refers to the

allowed overall misclassification rate of a decision model.

What is more restricting is that the decision model based on

166 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

approximate decision reduct is always pointing to majority

decision within particular equivalence classes. We would like

to give the user the ability to decide about the decision

classes distribution within each E. Based on the idea of gen-

eralized decision we formulate generalized majority decision

(described in this section) and generalized approximation ma-

jority decision concepts. The approximate version is described

in the next section.

Definition 5. For a given decision table A = (U,A∪{d}), we

say that a generalized majority decision function is a function

md : 2U → 2Vd defined as follows:

md(E) = {k : |Xk ∩ E| = max
j

(|Xj ∩ E|)} (6)

Generalized majority decision function reflects the choice

of most frequent decision classes within subsets E ⊆ U . In

Table I we present an example of generalized decision and

generalized majority decision attributes denoted ∂d([x]A) and

md([x]A) respectively.

Table I
DECISION TABLE AND GENERALIZED DECISION AND GENERALIZED

MAJORITY DECISION ATTRIBUTES

Id a1 a2 a3 a4 d ∂d([x]A) md([x]A)

x1 1 1 2 2 0 {0,1} {0,1}
x2 1 1 2 2 1 {0,1} {0,1}
x3 1 1 2 2 1 {0,1} {0,1}
x4 1 1 2 2 0 {0,1} {0,1}
x5 3 3 1 2 1 {0,1} {0,1}
x6 3 3 1 2 0 {0,1} {0,1}
x7 2 3 1 2 1 {1} {1}
x8 1 2 2 1 2 {0,1,2} {1,2}
x9 1 2 2 1 2 {0,1,2} {1,2}
x10 1 2 2 1 1 {0,1,2} {1,2}
x11 1 2 2 1 1 {0,1,2} {1,2}
x12 1 2 2 1 0 {0,1,2} {1,2}
x13 2 1 1 1 1 {1} {1}
x14 2 2 1 1 0 {0} {0}

In case of consistent decision tables |md([x]A)| = 1. In case

of inconsistent decision tables the cardinality of md([x]A) will

be greater than one only in a case of an equivalence class with

more than one equally distributed decision values. However, let

us notice that one could be interested in calculating md([x]B)
for any subset of features B ⊆ A containing the smaller

number of attributes. In such a case the equivalence classes

are relatively large, and equal frequencies of decision values

are more common.

Definition 6. Let A = (U,A ∪ {d}) be given. We say that

B ⊆ A is an (m,=)-decision superreduct if and only if the

following condition holds:

∀
x∈U

md([x]B) = md([x]A) (7)

We say that B is an (m,=)-decision reduct if and only if it is

an (m,=)-superreduct and none of it proper subsets satisfy

the above condition.

Proposition 1. Let A = (U,A ∪ {d}) be given. If B ⊆ A is

an (m,=)-decision superreduct, then:

∀x,y∈Umd([x]A) 6= md([y]A)⇒ ∃a∈Ba(x) 6= a(y) (8)

Proof: First let us notice that we can transform the above

equation to the following form:

∀x,y
(

∀a∈Ba(x) = a(y)⇒ md([x]A) = md([y]A)
)

(9)

Let us consider any x, y such that ∀a∈B a(x) = a(y). We

need to show that md([x]A) = md([y]A). Based on Definition

(6) we know that md([x]A) = md([x]B) and that md([y]A) =
md([y]B). Because [x]B = [y]B , then md([x]B) = md([y]B),
this also md([x]A) = md([y]A). Let us take any x ∈ U .

We need to show that md([x]B) = md([x]A). Let us take

any vk ∈ md([x]A). We need to show that vk ∈ md([x]B).
If vk ∈ md([x]A), then based on Equation (9) we have

vk ∈ md([u]A) for all y ∈ [x]B . This means, that vk has

maximal frequency among all decision classes for all A-

indiscernibility classes contained in [x]B . This means that is

also has maximum frequency in [x]B . Thus:

md([x]B) ⊆ md([x]A) (10)

always holds.

In Proposition (3) we will show that if the intersection of

md([y]A) sets for all y ∈ [x]B for a given x ∈ U is not

empty, then the following holds:

md([x]B) ⊆ md([x]A) (11)

Based on Equation (9) we know that this intersection is

nonempty. Based on Equations (9) and (10) we have

md([x]B) = md([x]A) (12)

Let us propose also another method of using the md

function to define attribute reduction criteria, where we are not

interested in the full discernibility with regard to the symbolic

representation of generalized majority decision but we apply

a weaker condition.

Definition 7. Let A = (U,A ∪ {d}) be given. We say that

B ⊆ A is an (m,⊆)-decision superreduct if and only if the

following condition holds:

∀
x∈U

md([x]B) ⊆ md([x]A) (13)

We say that B is an (m,⊆)-decision reduct if and only if it is

an (m,⊆)-superreduct and none of it proper subsets satisfy

the above condition.

The following result emphasizes the importance of Defini-

tion 7.

Proposition 2. Let A = (U,A ∪ {d}) be given. B ⊆ A
is (m,⊆)-decision superreduct if and only if the following

condition holds:

M(B) = M(A) (14)

SEBASTIAN WIDZ, SEBASTIAN STAWICKI: GENERALIZED MAJORITY DECISION REDUCTS 167

Let us further notice that Definition 7 is more flexible than

Definition 6 and it usually allows more attribute reduction.

Proposition 3. Let A = (U,A ∪ {d}) be given. B ⊆ A is an

(m,⊆)-decision superreduct if and only if:

∀
x∈U

⋂

y∈[x]B

md([y]A) 6= ∅ (15)

Proof: Let us take any x ∈ U and let us consider all

objects y ∈ [x]B . We know that:

∀
y∈[x]B

md([y]B) ⊆ md([y]A) (16)

Because y ∈ [x]B , then [y]B = [x]B . Thus:

∀
y∈[x]B

md([x]B) ⊆ md([y]B) (17)

and therefore:

∀
y∈[x]B

md([x]B) ⊆
⋂

y∈[x]B

md([y]A) (18)

Thus,
⋂

y∈[x]B
md([y]A) cannot be empty.

Let us take any x ∈ U and let us consider all objects y ∈ [x]B .

Because, we know that:
⋂

y∈[x]B

md([y]A) 6= ∅ (19)

we also know that there exists such v that v ∈ md([y]A) for

every y ∈ [x]B . By Definition (5) we know that v must be one

of the most frequent decision values on all equivalence classes

[y]A such that y ∈ [x]B . This is because [x]B is a sum of some

disjoint blocks E ∈ U/A, which are represented by [y]A For

that reason it must be also one of the most frequent values

in the whole [x]B i.e. v ∈ md([x]B). For any other decision

v′ contained in md([x]B), it would have to be as frequent in

[x]B as the decision value v. But if would require for v′ to be

as frequent as v in all blocks EA ∈ U/A,EA ⊆ EB . Thus, it

would be also v′ ∈ md(EA) for all such blocks. In particular

we would have:

md([x]B) ⊆ md([x]A) (20)

Proposition 4. Let A = (U,A ∪ {d}) be given. B ⊆ A is an

(m,⊆)-decision superreduct if and only if:

∀
x∈U

⋂

y∈[x]B

md([y]A) = md([x]B) (21)

Let us illustrate the difference between (m,⊆)- and (m,=)-
decision reducts. Let us consider a decision table presented

in Table II. All three objects have exactly the same values

on feature subset B but different values on attribute a.

According to definition of (m,=)-decision reduct attribute

a cannot be removed. (m,=)-decision reduct requires that

generalized majority decision sets are exactly the same for

merged equivalence classes. In case of (m,⊆)-decision reduct

this attribute can be removed as it requires only set inclusion.

Table II
ATTRIBUTE REMOVAL IN (m,⊆)- AND (m,=)-decision reducts.

Id B a md([x]B∪{a})

x1

...
1 {0,1}

x2 2 {0,1,2}
x3 3 {0,2}

V. GENERALIZED APPROXIMATE MAJORITY DECISION

The generalized majority decision function points only to

a single most frequent decision for a given equivalence class.

Its drawback is that it does not keep any information about

minority decision classes and there is no way to control the

threshold how much information about the minority decision

classes should be maintained. We propose to determine this

threshold based on decision class distribution within equiva-

lence classes and a level of approximation given by the user.

Let us introduce a definition of generalized approximate

majority decision function. In comparison to Equation 1 we

include not only the most frequent decision values but also

those which are almost as frequent as the majority decision

values. We express this statement by introducing a threshold

parameter ε that controls the ratio between allowed decision

values and the majority decision.

Definition 8. For a given decision table A = (U,A∪{d}) and

approximation threshold ε ∈ [0, 1), we say that a generalized

approximate majority decision function is a function mε
d :

2U → 2Vd defined as follows:

mε
d(E) = {k : |Xk ∩ E| ≥ (1− ε)max

j
|Xj ∩ E|} (22)

Proposition 5. For ε = 0 and ε→ 1− we have:

∀
E

m0
d(E) = md(E) and ∀

E

lim
ε→1−

mε
d(E) = ∂d(E)

Let us propose an alternative way of the attribute reduction

based on the new concept of (mε,∩)-decision reduct and

generalized decision set intersections. Let us further notice

that this approach is equivalent to the previous one for ε = 0.

Definition 9. Let A = (U,A ∪ {d}) be given. We say that

B ⊆ A is an (mε,∩)-decision superreduct if and only if:

∀
x∈U

⋂

y∈[x]B

mε
d([y]A) 6= ∅ (23)

We say that B is an (mε,∩)-decision reduct if and only if it is

an (mε,∩)-decision superreduct and none of it proper subsets

satisfy the above condition.

Proposition 6. Let A = (U,A∪{d}) be given. The following

holds for every subset B ⊆ A:

∀
x∈U

⋂

y∈[x]B

mε
d([y]A) ⊆ mε

d([x]B) (24)

Proposition 7. If B ⊆ A in an (mε,∩)-decision superreduct

then the following inequality holds:

M(B) ≥ (1− ε)M(A) (25)

168 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Let us notice that in case of Proposition 2 we have the

equivalence between of B ⊆ A being an (m,⊆)-decision

reduct and given the equality M(B) = M(A), whereas in

case of Proposition 7 and (mε,∩)-decision reduct we have

only the implication.

In the traditional decision rule induction approach one can

use contents of a decision table and the set of attributes B
to induce decision rules. Similarly, decision rules calculated

with respect to the generalized majority decisions take such

a form that the ascendants are based on values of B over

objects x ∈ U but consequents point at disjunctions of possible

decisions belonging to mε
d(E). For example, let us consider

objects {x8, x9, x10, x11, x12} from Table I. Based on these

objects we can produce the following decision rule:

a1 = 1 ∧ a2 = 1 ∧ a3 = 2 ∧ a4 = 1⇒ d = 1 ∨ d = 2

It is important to note that such a rule could be rewritten as two

separate rules, both having the same support and confidence:

a1 = 1 ∧ a2 = 2 ∧ a3 = 2 ∧ a4 = 1⇒ d = 1

a1 = 1 ∧ a2 = 2 ∧ a3 = 2 ∧ a4 = 1⇒ d = 2

In fact all decision values belonging to generalized approxi-

mate majority decision set are treated as equally distributed

within a particular equivalence class. Moreover, all decision

rules based on this equivalence class are considered to have

equal quality support and confidence.

VI. HEURISTIC SEARCH FOR APPROXIMATE REDUCTS

The above results could be utilized in a procedure for

attribute reduction. First we calculate generalized majority

decision for the whole attribute set A. Next we can remove the

attribute a whenever the Equality 23 is satisfied. This means

that if the intersection of all generalized decision of smaller

equivalence classes induced by B ∪ {a} is nonempty we can

remove attribute a without a significant loss of information.

Algorithm 2 presents the procedure that utilizes Reduce func-

tion described in Algorithm 3. In Table III and Table IV we

give brief examples of attribute removal tries, the unsuccessful

and successful, respectively.

Table III
IMPOSSIBLE REMOVAL OF ATTRIBUTE a2

Id a1 a3 a4 mε
d
([x]B)

{x1, ..., x4} 1 2 2 {0,1} ✓

{x5, x6} 3 1 2 {0,1} ✓

{x7} 2 1 2 {1} ✓

{x8...x12} 1 2 1 {1,2} ✓

{x13 ∪ x14} 2 1 1 {1} ∩ {0} = ∅ ✗

Let us focus on decision rules that could be generated before

and after removal of attribute a1 based on objects {x5, x6, x7}
Before removal of attribute a1 that rules are as follow:

a1 = 3 ∧ a2 = 3 ∧ a3 = 1 ∧ a4 = 2⇒ d = 0 ∨ d = 1

a1 = 2 ∧ a2 = 3 ∧ a3 = 1 ∧ a4 = 2⇒ d = 1

Algorithm 2 Generalized Majority Decision Reduct

(GMDR2)

Input: A = (U,A ∪ {d}), ε ∈ [0, 1), σ : {1, ..., n} →
{1, ..., n}, n = |A|,
Atemp - temporary decision table for storing equivalence

classes)

Output: B ⊆ A

1: Calculate Generalized Majority Decision mε
d(EA) for all

objects in A

2: B ← A
3: EB ← CreateEquivalenceClasses(A)

4: for i = 1→ n do

5: EC ← Reduce(EB , B, aσ(i))
6: if EC 6= EB then

7: EB = EC

8: B ← B \ {aσ(i)}
9: end if

10: end for

11: return B

Algorithm 3 Attribute reduction function

Input: Collection of equivalence classes EB ∈ U/B,

Attribute subset B ⊆ A, Candidate attribute a ∈ B for removal

Output: Collection of equivalence classes EC ∈ U/C where

C ⊆ B if attribute a ∈ B was removed or EB ∈ U/C
otherwise

1: function REDUCE(EB , B, {a})
2: C ← B \ {a}
3: EC ← ∅

4: for all EquivalenceClasses e ∈ EB do

5: DEC ← ∅

6: vB ← GetInstance(e)

7: vC ← Remove(vB , {a})
8: etmp ← Find(EC , vC)

9: if etmp 6= NULL then

10: DEC ← GetDec(etmp) ∩ GetDec(e)

11: if |DEC| > 0 then

12: SetDec(etmp, DEC)

13: else

14: return EB

15: end if

16: else

17: AddEquivalenceClass(EC , etmp)

18: end if

19: end for

20: return EC

21: end function

After removal of attribute a1:

a2 = 3 ∧ a3 = 1 ∧ a4 = 2⇒ d = 1

From this perspective we can understand the described pro-

cedure as creating a lowe approximation of decision rules

generated on the whole attribute set.

SEBASTIAN WIDZ, SEBASTIAN STAWICKI: GENERALIZED MAJORITY DECISION REDUCTS 169

Table IV
SUCCESSFUL REMOVAL OF ATTRIBUTE a1

Id a2 a3 a4 mε
d
([x]B)

{x1, ...x4} 1 2 2 {0,1} ✓

{x5, x6} ∪ {x7} 3 1 2 {0, 1} ∩ {1} = {1} ✓

{x8...x12} 2 2 1 {1, 2} ✓

{x13} 1 1 1 {1} ✓

{x14} 2 1 1 {0} ✓

VII. APPROXIMATE DECISION REDUCTS WITH

EXCEPTIONS

Let us propose an another way of expressing levels of

allowed inconsistency in the decision model. We introduce a

new approximation threshold φ that relates to the maximal

ratio of objects that can be misclassified. By analogy, we

introduce a new definition of (mφ,∩)-decision reduct which

utilizes the generalized majority decision function.

Definition 10. Let φ ∈ [0, 1) and A = (U,A∪{d}) be given.

Subset B ⊆ A is an (mφ,∩)-decision superreduct if and only

if there exists subset X ⊆ U satisfying inequality |X| ≥ (1−
φ)|U |, such that the following condition holds:

∀
x∈X

⋂

y∈[x]B∩X

md([y]A) 6= ∅ (26)

We say that B is an (mφ,∩)-decision reduct if and only if

it is an (mφ,∩)-decision superreduct and none of its proper

subsets satisfy the above conditions.

The idea behind (mφ,∩)-decision reducts B ⊆ A is to cover

sufficiently the data set with decision rules constructed using

attributes in B and provide a comparable level of information

to decision rules constructed using all features from A. If B ⊆
A is an (mφ,∩)-decision superreduct, then there exists subset

X ⊆ U satisfying inequality |X| ≥ (1− φ)|U | and condition

(26) such that X is definable by A, which means that X is the

set-theoretic sum of some equivalence classes of U/A. This

explains in what sense subsets X ⊆ U can be treated as set-

theoretic sum of supports of premises of rules induced by A
whose information is kept at comparable level after shortening

them to more general decision rules induced by B. Thus, from

now on, we will implicitly assume that all subsets X ⊆ U
discussed in context of (mφ,∩)-decision reducts take a form

of sums of some equivalence classes of U/A.

Proposition 8. If B ⊆ A is an (mφ,∩)-decision superreduct,

then the following inequality holds

M(B) ≥M(A)− φ (27)

Let us notice that we could combine definitions of (mφ,∩)-
decision reduct with (mε,∩)-decision reduct and formulate a

combined definition of (mε,φ,∩)-decision reduct. For simplic-

ity, we will further assume that ε = 0.

In Section IV we discussed an example showing that the

attribute a2 cannot be removed. This was due to the fact

that objects x13 and x14 have an empty intersection of their

generalized majority decision sets. In other words, there was

Algorithm 4 Attribute reduction function with exceptions

Input: Collection of equivalence classes EB ∈ U/B, Approx-

imation degree φ ∈ [0, 1); Attribute subset B ⊆ A, Candidate

attribute a ∈ B for removal

Output: Updated exception rules set Rex, Collection of

equivalence classes EC ∈ U/C where C ⊆ B if attribute

a ∈ B was removed or EB ∈ U/B otherwise

1: function REDUCE2(EB , B, {a}, φ, R)

2: C ← B \ {a}
3: EC ← ∅

4: wC ← GetWeight(EB)

5: for all EquivalenceClasses e ∈ EB do

6: DEC ← ∅

7: vB ← GetInstance(e)

8: vC ← Remove(vB , {a})
9: etmp ← Find(EC , vC)

10: if etmp 6= NULL then

11: DEC ← GetDec(etmp) ∩ GetDec(e)

12: if |DEC| > 0 then

13: SetDec(etmp, DEC)

14: else

15: wC ← wC − |e|
16: if wC ≤ (1− φ)|U | then

17: return EB

18: end if

19: StoreExceptionRule(R, etmp)

20: end if

21: else

22: AddEquivalenceClass(EC , e)

23: end if

24: end for

25: SetWeight(EC , wC)

26: return EC

27: end function

only one object that was blocking the algorithm from reducing

the number of features. If we removed either object x13 or

object x14 from the discussed decision table the reduction

would be possible but we would also lose some information.

Exception rules allow us to reduce the number of features

and at the same time to save additional information about

lost objects. Let us focus on Tables V and VI where we

again consider the same example but this time we can remove

attribute a2. We create the following exception rule (supported

only by one object ({x14}) but with confidence = 1.0)

a1 = 2 ∧ a2 = 1 ∧ a3 = 1 ∧ a4 = 1⇒ d = 0

In the next step we try to remove another attribute, again if

some objects do not allow attribute removal we can remove

them and save in form of exception rules, remembering that

no more than φ · |U | objects can be removed in total. This

procedure is presented as Algorithm 4.

During the classification phase, the exception rules are

always searched in the first place. If a proper exception rule is

170 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Table V
SUCCESSFUL REMOVAL OF ATTRIBUTE a2

Id a1 a3 a4 mε
d
([x]B)

{x1, ..., x4} 1 2 2 {0,1} ✓

{x5, x6} 3 1 2 {0,1} ✓

{x7} 2 1 2 {1} ✓

{x8...x12} 1 2 1 {1,2} ✓

{x13 ∪ x14} 2 1 1 {1} ∩ {0} = ∅ ✓(-1)

Table VI
STATE AFTER REMOVAL OF ATTRIBUTE a2 – OBJECT x14 WAS REMOVED

Id a1 a3 a4 mε
d
([x]B)

{x1, ..., x4} 1 2 2 {0,1}
{x5, x6} 3 1 2 {0,1}
{x7} 2 1 2 {1}

{x8...x12} 1 2 1 {1,2}
{x13} 2 1 1 {1}

found, we do not search any other rules related to this reduct,

i.e., any shorter more general rule that had been created in the

subsequent stages of the learning process.

VIII. BIREDUCTS AND GENERALIZED MAJORITY

DECISION

The first formulation of decision bireducts occurred in [9],

[6], where their Boolean characterization was described and a

simple ordering algorithm aimed at their heuristic extraction

from data was proposed by an analogy to classical decision

reducts. The motivation to introduce decision bireducts was to

allow for explicit analysis whether classifiers that use different

selected subsets of attributes do not repeat classification mis-

takes on the same objects in the training data set. Experiments

reported in [9] show that diversification of subsets of attributes

with this respect may be important in practice.

Definition 11. Let A = (U,A ∪ {d}) and subsets B ⊆ A,

X ⊆ U be given. We say that B determines d within X , further

denoted as B ⇛X d, if and only if B discerns all pairs ui, uj ∈
X such that d(ui) 6= d(uj). Further, we say that the pair

(X , B) is a decision bireduct if and only if the following holds:

1) There is B ⇛X d,

2) There is no proper subset B′ (B such that B′
⇛X d,

3) There is no proper superset X
′) X such that B ⇛X ′ d.

The original ordering algorithm to calculate a decision

bireduct for a given data set is presented in Algorithm 5. It

is recalled here as a reference point to a modified version

of the algorithm (presented as Algorithm 6) that works with

equivalence classes instead of single objects and with gener-

alized majority decision intersections constraint instead of the

original discernibility condition.

A major difference of the ordering algorithm for decision

bireducts extraction, comparing to the ordering algorithms

obtaining decision reducts (reduction on attributes only, e.g.,

Algorithm 2), can be observed in the main loop iterating

on both the attributes and the objects at the same time. An

appropriate action is taken, i.e., either removal of unnecessary

attribute or addition of an object to the result, on base

Algorithm 5 Original Ordering Decision Bireduct Algorithm

Input: a decision table A = (U,A ∪ {d}), σ – a permutation

of a set {1, . . . , |U |+ |A|}
Output: a decision bireduct for A

1: X0 ← ∅, B0 ← A
2: for i = 1→ |U |+ |A| do

3: Bi ← Bi−1

4: Xi ← Xi−1

5: if σ(i) ≤ |U | then

6: if Bi ⇛Xi∪{uσ(i)} d then

7: Xi ← Xi ∪ {uσ(i)}
8: end if

9: else

10: if Bi \ {aσ(i)−|U |}⇛Xi
d then

11: Bi ← Bi \ {aσ(i)−|U |}
12: end if

13: end if

14: end for

15: return (X|U |+|A|, B|U |+|A|)

Algorithm 6 Ordering Generalized Majority Decision

Bireduct Algorithm

Input: a decision table Amd = (Umd , A ∪ {md}) obtained

from A = (U,A ∪ {d}), where equivalence classes induced by

A are considered objects in Amd , i.e., Umd = U/A and where

md is used to compute their decision values, σ – a permutation

of a set {1, . . . , |Umd |+ |A|}
Output: a decision bireduct for Amd

1: X0 ← ∅, B0 ← A
2: for i = 1→ |Umd |+ |A| do

3: Bi ← Bi−1

4: Xi ← Xi−1

5: if σ(i) ≤ |Umd | then

6: if Testmd(Xi ∪ {u
md

σ(i)}, Bi) then

7: Xi ← Xi ∪ {u
md

σ(i)}
8: end if

9: else

10: if Testmd(Xi, Bi \ {aσ(i)−|Umd |}) then

11: Bi ← Bi \ {aσ(i)−|Umd |}
12: end if

13: end if

14: end for

15: return (X|Umd |+|A|, B|Umd |+|A|)

of a given condition for the generalized majority decisions

intersections.

It is worth to notice that the reduct and bireduct versions of

the generalized majority decision algorithms are not equiva-

lent, i.e., there exist data sets for which certain results can be

obtained only by one of the methods.

As an example, let us consider the following fragment of a

decision table. All presented objects have the same values on

feature subset B and the specified values on attributes a and

SEBASTIAN WIDZ, SEBASTIAN STAWICKI: GENERALIZED MAJORITY DECISION REDUCTS 171

Algorithm 7 Test function used by Algorithm 6.

1: function Testmd (X ⊆ Umd , B ⊆ A)

2: XTest ← ∅
3: for all EquivalenceClasses e ∈ X do

4: v ← Remove(GetInstance(e), A \B)

5: etmp ← Find(XTest, v)

6: if etmp 6= NULL then

7: DEC ← GetDec(etmp) ∩ GetDec(e)

8: if |DEC| > 0 then

9: SetDec(etmp, DEC)

10: else

11: return false
12: end if

13: else

14: AddEquivalenceClass(XTest, e)

15: end if

16: end for

17: return true
18: end function

b.

B a b md([x]B∪{a,b})

. . .

0 0 {0, 1, 2}
0 1 {0, 1, 3}
1 0 {0, 2, 3}
1 1 {1, 2, 3}

Let as consider the generalized majority decision reduct com-

putation flow. If we try to remove only one column a or b,
respectively, we would get the following:

B b md([x]B∪{b})

. . .
0 {0, 2}
1 {1, 3}

B a md([x]B∪{a})

. . .
0 {0, 1}
1 {2, 3}

We can observe than in either case the second column cannot

be removed because {0, 2} ∩ {1, 3} as well as {0, 1} ∩ {2, 3}
are equal to ∅. Let us now consider a fragment of the

input permutation a, 1, 2, 3, b, 4 to the generalized majority

decision bireduct algorithm. We can remove the attribute a,

add equivalence classes 1, 2, 3 and remove the attribute b
because the intersection of the appropriate decisions are equal

to {0}:

B md([x]B)

. . .
{0, 1, 2}
{0, 1, 3}
{0, 2, 3}

. . . {1, 2, 3}

The subsequent addition of the equivalence class 4 is not

possible due to the fact that intersection of the decision

{1, 2, 3} with all other already added to the decision bireduct is

equal to ∅. Therefore, we would finish with a decision bireduct

consisting of the attribute subset B and the subset containing

only the first three equivalence classes.

IX. EXPERIMENTS

We conducted our experiments on a collection of benchmark

data sets available from the University of California at Irvine

(UCI) Repository [15]. We present our results based on two

data sets (DNA-splices and ZOO) but similar results can be ob-

served on other benchmark data. We compared different types

of approximate decision reducts calculation: the approximate

decision reducts (ADR) calculated according to Algorithm 1

and three variations on the generalized approximate majority

decision reducts (GMDA) with exceptions rules (EXEP) and

with exceptions pointing to unknown decision (GAPS) and

without any exception rules (NONE) but with the same re-

duction criteria. We have also tested each algorithm based

on M and R measures. In case of GMDA procedure, the

indications M and R correspond to the way how generalized

approximate majority decision set was constructed. In case

of the R measure we considered the relative frequency of a

decision class within each equivalence class prior to a decision

frequency in the testing set.

The data sets that were not given with a priori split into

training and testing data sets, have been tested using 5-fold

cross validation. Every experiment was conducted at least 20

times. We followed the well known ensemble technique to

construct a classifier consisting of 10 reducts, each yielding a

single weak classifier with a set of decision rules (including

exceptions) calculated according to a particular method. We

calculated 200 decision reducts and selected reducts with the

smallest number of features. In case of exception rules we also

included exceptions in calculation of the average reduct size

but we used weighted average, where number of recognized

objects is understood as a weight of the reduct.

Like in any ensemble-based classifier, some combination

technique of classifier outputs must be applied. We used voting

based on decision rule confidence, but other rule measures can

be also utilized – see our previous research [16] where we

described and tested several methods for rule identification

and voting mechanisms.

X. CONCLUSIONS

We have presented several new methods for calculating

approximate decision reducts. All of presented methods are

based on the generalized majority decision function and the

concept of analyzing intersections between generalized ma-

jority decision sets. We consider new methods to be more

flexible in expressing the user preferences to control the

distribution of decision classes inside each equivalence class.

The presented methods are also less computationally expen-

sive in comparison to the standard methods for approximate

decision reducts, as they allow, in most situations, a quicker

test for attribute removal. We have also presented the idea of

constructing a decision rule-based classifier that use a special

type of rules referred as exceptions. These rules are produced

during the decision model construction and allow constructing

models with a reduced dimensionality but with information

about original training data preserved. We have experimentally

validated our propositions and algorithms. Results show that

172 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Figure 1. Average accuracy on DNA-splices data set

M R

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00
A

D
R

−
N

O
N

E
G

M
D

A
−

E
X

E
P

G
M

D
A

−
G

A
P

S
G

M
D

A
−

N
O

N
E

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

Figure 2. Average length of decision rules – DNA-splices data set

M R

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

A
D

R
−

N
O

N
E

G
M

D
A

−
E

X
E

P
G

M
D

A
−

N
O

N
E

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

the new way of constructing approximation decision reducts

have very comparable accuracy but is less computationally

complex. Last but not least, we compared our method with

bireduct framework and proposed new method for bireduct

calculation based on the generalized majority decision set

intersections. We plan to analyze the last method more deeply

Figure 3. Average accuracy on ZOO data set

M R

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
D

R
−

N
O

N
E

G
M

D
A

−
E

X
E

P
G

M
D

A
−

G
A

P
S

G
M

D
A

−
N

O
N

E

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

Figure 4. Average length of decision rules – ZOO data set

M R

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

A
D

R
−

N
O

N
E

G
M

D
A

−
E

X
E

P
G

M
D

A
−

N
O

N
E

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

in the nearest future.

REFERENCES

[1] H. Liu and H. Motoda, Eds., Computational Methods of Feature Selec-

tion. Chapman & Hall/CRC, 2008.
[2] Z. Pawlak and A. Skowron, “Rudiments of rough sets,” Information

sciences, vol. 177, no. 1, pp. 3–27, 2007.

SEBASTIAN WIDZ, SEBASTIAN STAWICKI: GENERALIZED MAJORITY DECISION REDUCTS 173

[3] D. Ślęzak, “Rough Sets and Functional Dependencies in Data: Foun-
dations of Association Reducts,” LNCS Transactions on Computational

Science, vol. V, pp. 182–205, 2009.
[4] S. Widz and D. Ślęzak, “Approximation Degrees in Decision Reduct-

based MRI Segmentation,” in FBIT. IEEE, 2007, pp. 431–436.
[5] A. Janusz and S. Stawicki, “Applications of Approximate Reducts to

the Feature Selection Problem,” in RSKT. Springer, 2011, pp. 45–50.
[6] S. Stawicki and S. Widz, “Decision bireducts and approximate decision

reducts: Comparison of two approaches to attribute subset ensemble
construction,” in Proc. of FedCSIS’2012 Conf. IEEE, 2012, pp. 331–
338.

[7] D. Ślęzak, “Normalized Decision Functions and Measures for Incon-
sistent Decision Tables Analysis,” Fundamenta Informaticae, vol. 44,
no. 3, pp. 291–319, 2000.

[8] D. Ślęzak and W. Ziarko, “The Investigation of the Bayesian Rough Set
Model,” International Journal of Approximate Reasoning, vol. 40, no.
1-2, pp. 81–91, 2005.

[9] D. Ślęzak and A. Janusz, “Ensembles of Bireducts: Towards Robust
Classification and Simple Representation,” in Proc. of FGIT 2011, ser.
LNCS, vol. 7105, 2011, pp. 64–77.

[10] S. Widz and D. Ślęzak, “Rough Set Based Decision Support – Models
Easy to Interpret,” in Selected Methods and Applications of Rough

Sets in Management and Engineering, ser. Advanced Information and
Knowledge Processing, G. Peters, P. Lingras, D. Ślęzak, and Y. Yao,
Eds. Springer, 2012, pp. 95–112.

[11] M. J. Moshkov, M. Piliszczuk, and B. Zielosko, Partial covers, reducts

and decision rules in rough sets: theory and applications. Springer,
2009, vol. 145.

[12] W. Ziarko, “Probabilistic approach to rough sets,” International Journal

of Approximate Reasoning, vol. 49, no. 2, pp. 272–284, 2008.
[13] G. Peters, P. Lingras, D. Ślęzak, and Y. Yao, Rough sets: Selected

methods and applications in management and engineering. Springer
Science & Business Media, 2012.

[14] J. Wroblewski, “Ensembles of classifiers based on approximate reducts,”
Fundam. Inform., vol. 47, no. 3-4, pp. 351–360, 2001. [Online].
Available: http://content.iospress.com/articles/fundamenta-informaticae/
fi47-3-4-14

[15] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[16] D. Ślęzak and S. Widz, “Is It Important Which Rough-Set-Based
Classifier Extraction and Voting Criteria Are Applied Together?” in
Proc. of Int. Conf. on Rough Sets and Current Trends in Computing

(RSCTC), ser. LNAI, vol. 6086. Springer, 2010, pp. 187–196.

174 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

