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∗Institute of Informatics, University of Warsaw

ul. Banacha 2, 02-097 Warsaw, Poland

{janusza,slezak}@mimuw.edu.pl
‡Infobright Inc.

ul. Krzywickiego 34, lok. 219, 02-078 Warsaw, Poland

Marek Sikora†§, Łukasz Wróbel†§
†Institute of Informatics, Silesian University of Technology

ul. Akademicka 2A, 44-100 Gliwice, Poland

marek.sikora@polsl.pl
§Institute of Innovative Technologies EMAG

Leopolda 31, 40-189 Katowice, Poland

Abstract—This paper summarizes AAIA’16 Data Mining
Challenge: Predicting Dangerous Seismic Events in Active Coal
Mines which was held between October 5, 2015 and March
4, 2016 at the Knowledge Pit platform. It describes the scope
and background of this competition and explains our research
objectives which motivated the specific design of the competition
rules. The paper also briefly overviews the results of this
challenge, showing the way in which those results can help in
solving practical problems related to the safety of miners working
underground. In particular, our analysis focuses on applications
of prediction models in order to facilitate the assessment of
seismic hazards, in a situation when the exploration of a given
working site has just started and there is very little historical
data available.

Keywords—data mining competition; multivariate time series
data; attribute engineering; cold start problem; hazards assessment;

I. INTRODUCTION

THE COAL MINING is one of the most important indus-
tries which according to a report by IBISWorld employs

worldwide over 3.5M people [1]. The exploration of coal
often requires working in hazardous conditions. Miners in
an underground coal mine can face many threats, such as,
e.g. methane explosions, rock-burst or seismic tremors. To
provide protection for people working underground, systems
for active monitoring of the coal extraction processes are
typically used. One of their fundamental applications is to
screen the seismic activity in order to minimize the risk of
severe mining incidents. To facilitate this task, data exploration
and decision support tools can be employed, e.g. for predicting
seismic activity in the nearest future.

From a data processing point of view, a decision support
system which could aid in active monitoring of the coal mining
process requires efficient methods for handling continuous
streams of data [2]. Such methods have to be able to handle
large volumes of data from multiple sensors. They also need to
be robust with regard to missing or corrupted data. Moreover,
a good decision support system should be easy to comprehend
by the experts and end-users who need to have access not only
to its outcomes, but also to arguments or causes that were
taken into account. A few practical studies have been already
conducted with this respect, relying on rule-based models for
predicting the methane level [3]. However, the literature on
this important subject is still very scarce.

One of very few research initiatives in that field is DIS-
ESOR – a Polish national R&D project aimed at creation
of an integrated decision support system for monitoring of
the mining process and early detection of viable threats to
people and equipment working underground [4]. The system
developed in the frame of DISESOR project integrates data
from different monitoring tools. It contains an expert system
module that can utilize specialized domain knowledge and an
analytical module which can be applied to make a diagnosis
of the mining processes. When combined, these modules are
capable of reliable prediction of natural hazards, such as those
related to increased seismic activity. The idea to popularize
this topic among the data science community by organizing
open data mining challenges originated within this project.

The competition described in this paper is the second
one in the series. The first one – IJCRS’15 Data Challenge
– was focused on the problem of active monitoring and
prevention of dangerous methane outbreaks [5]. The task was
to design an efficient classifier for multivariate time series data
that is generated by various sensors placed in corridors of
underground coal mines. The main difficulty in that task was
related to the problem of, so called, concept drift [6] and the
necessity of constructing robust representation of the available
data [7]. This competition was hosted by the Knowledge Pit
platform [8] which supports the organization of data mining
competitions associated with data science-related conferences.

Following the success of our first competition, AAIA’16
Data Mining Challenge was also organized at Knowledge
Pit. This time, however, the task was related to the problem
of foreseeing periods of increased seismic activity, that may
endanger miners working underground. The main motivation
for organizing this challenge as an open on-line competition
was the fact that such an approach allows to conveniently
review and evaluate performance of the available state-of-the-
art methods. It is also an objective way of verifying not only a
viability of the predictive models but also whole analytic pro-
cesses which include preprocessing, feature extraction, model
construction and post processing of predictions (e.g. ensemble
approaches). Additionally, a huge influence on the final shape
of AAIA’16 Data Mining Challenge had our research interest
in a severity of the cold start problem for prediction models.
In the coal mining context, this problem appears in a situation
when the exploration of a given working site has just started
and there is very little historical data available that can be
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utilized for a construction of the prediction model for the
assessment of seismic hazards.

In the following Section II we reveal details regarding
the organization of the data mining competition and then, in
Section III, we describe its course and results, including a
brief characteristic of the most interesting approaches among
the submitted solutions. Next, in Section IV, we show how
the competition results were used to conduct an analysis of
the cold start problem in the prediction of seismic hazards.
Finally, we conclude the paper in Section V by drawing our
plans for a continuation of this study.

II. AAIA’16 DATA MINING CHALLENGE

AAIA’16 Data Mining Challenge: Predicting Dangerous
Seismic Events in Active Coal Mines took place between
October 5, 2015 and February 27, 2016. It was organized
under auspices of 11th International Symposium on Ad-
vances in Artificial Intelligence and Applications (AAIA’16,
https://fedcsis.org/2016/aaia) which is a part of the FedCSIS
conference series.

The task in this competition was related to the assessment
of safety conditions in underground coal mines with regard to
a seismic activity and early detection of seismic hazards. In
particular, the data set provided to participants was composed
of readings from sensors, such as geophones, that monitor the
seismic activity perceived at longwalls of different coal mines
and measure energy released by, so called, seismic bumps.
Each case in the data was described by a series of hourly
aggregated sensor readings from a 24 hour period. The pro-
vided data also contained information regarding the intensity
of recent mining activities at the corresponding working site,
coupled by the latest assessments of the safety conditions made
by mining experts. Moreover, to further enrich the available
data, for each working site that occur in the data set some
additional meta-data were made available, such as an identifier
of the mine, an identifier of a region where the working site
is located or a working site’s height.

Participants of the competition were asked to design a
prediction model that would be able to accurately detect
periods of increased seismic activity. In particular, the target
attribute in the provided data (the decision) indicated cases
for which the total energy of seismic bumps observed in a
following 8 hour period exceeded a warning level of 5 ∗ 104

Joules (i.e. energy released in the period starting after the last
hour of aggregated readings describing the case and ending
8 hours later).

In total, the provided data was described by 541 main
attributes and 6 additional features related to particular working
sites. The competition’s data correspond to over 5 years of
readings, which to best of our knowledge makes this research
the most comprehensive study related to this domain, con-
ducted anywhere in the world.

The data set was divided into a training part which was
made available along with the corresponding decision labels
and a test part. The labels for the test set were hidden from
participants. The division of cases between the training and
test sets was made based on a time stamps. In particular, the
training data set corresponded to a period between May 5,

2010 and March 6, 2014. It consisted of a total of 133, 151
data rows, each corresponding to a different 24 hour period
which were overlapping for consecutive cases. The test data
covered the period between March 7, 2014 and June 24, 2015.
Unlike for the training set, to facilitate an objective evaluation
of solutions and prevent a common problem with, so called,
data leakage [9], the test cases were not overlapping and
provided in a random order. For this reason the test set used
in the challenge was much smaller than the training data. It
is important to notice, however, that even though it consisted
of only 3, 860 cases, the test set covered a period of nearly
16 months.

Table I shows some basic characteristics of data from each
working site that occurs in the competition data. It is worth
noticing that not all working site that are present in training
data also appear in the test set and there are a few working sites
that are present in the test data but not in the training set. Such
a situation reflects a real-life problem when the exploration of
coal shifts to a new site for which there is no data available.
A similar issue can also be identified within other domains,
e.g. recommender systems, and is commonly referred to as
the cold start problem [10]. Noticeable is also the fact that the
distribution of cases with the ’warning’ decision label is quite
uneven for different working sites.

TABLE I. BASIC CHARACTERISTICS FOR DATA OBTAINED FROM

DIFFERENT WORKING SITES. THE FIRST COLUMN SHOWS WORKING SITES

IDS, WHEREAS THE FOLLOWING COLUMNS PRESENT INFORMATION

REGARDING INITIAL EXPERT ASSESSMENTS OF THE WORKING SITE’S

SAFETY, NUMBER OF DATA SAMPLES IN THE TRAINING AND TEST SETS,
AND THE PERCENTAGE OF CASES WITH THE ’WARNING’ DECISION LABEL.

main
working
site ID

initial
mining
assessment

number
of training
cases

number
of test
cases

training
warnings
(percent)

test
warnings
(percent)

146 a 5591 98 0.0014 0.0000
149 b 4248 98 0.0718 0.0018
155 b 3839 98 0.1681 0.0094
171 a 0 49 0.0000 0.0000
264 b 20533 0 0.0039 0.0000
373 b 31236 0 0.0113 0.0000
437 b 11682 0 0.0041 0.0000
470 c 0 258 0.0000 0.0078
479 a 2488 35 0.0000 0.0000
490 a 0 160 0.0000 0.0500
508 a 0 58 0.0000 0.0172
541 b 6429 5 0.0087 0.0000
575 b 4891 253 0.0045 0.0012
583 b 3552 215 0.0021 0.0029
599 a 1196 363 0.0148 0.0289
607 b 2328 209 0.0000 0.0000
641 a 0 97 0.0000 0.0103
689 b 0 83 0.0000 0.1205
703 a 0 145 0.0000 0.0069
725 b 14777 330 0.0920 0.0021
765 a 4578 329 0.0000 0.0022
777 b 13437 330 0.0000 0.0009
793 b 2346 330 0.0000 0.0045
799 a 0 317 0.0000 0.0000

total - 133151 3860 0.0226 0.0508

A. Evaluation of the uploaded solutions

Participants of the competition had to prepare their solu-
tions in a form of predictions of a likelihood that a given
record from the test set has the label ’warning’ and send
their solutions using the submission system of Knowledge Pit.
Each of the competing teams could submit multiple solutions.
Quality of the submissions was measured using Area Under the
ROC Curve (AUC) [11], [12]. The submitted solutions were
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evaluated on-line and the preliminary results were published on
the competition Leaderboard. The preliminary score was com-
puted on a subset of the test set, fixed for all participants. Size
of this subset corresponded to approximately 25% of the test
set and it was composed of data from four working sites with
different characteristics. The final evaluation was conducted
after completion of the competition using the remaining part
of the test data.

Apart from submitting their predictions, each team was
also obligated by competition rules to provide a brief report
describing its approach. Only the final solutions from teams
which sent a valid report could undergo the final evaluation
and be published among the competition results. In this way
we were able to collect a vast amount of information regarding
the current state-of-the-art in predictive analysis of multivariate
time series data and objectively verify different methods of
preprocessing, feature extraction and post processing of the
predictions (i.e. ensemble approaches [13]).

B. A course of a competition

Since one of the main objectives in organization of
AAIA’16 Data Mining Challenge was to investigate the cold
start problem in the domain of natural hazard detection, we
designed this competition in an uncommon way. To gather
comprehensive data about an impact of the size of available
data on quality of predictions for a given working site, the
training data set described above was divided into five separate
parts and the course of the challenge was split into six phases.
Table II shows some basic participation statistics related to
each of the phase.

TABLE II. BASIC PARTICIPATION STATISTICS FOR EACH PHASE OF THE

CHALLENGE. IN THE LAST PHASE ALL TRAINING DATA WAS MADE

AVAILABLE TO ALL PARTICIPANTS, REGARDLESS OF THEIR ACTIVITY.

training set
size (cases)

number of
submissions

best prelim-
inary score

best final
score

phase 1 79893 99 0.9296 0.9290
phase 2 93211 278 0.9412 0.9320
phase 3 106527 1377 0.9452 0.9405
phase 4 119839 363 0.9451 0.9375
phase 5 133151 513 0.9452 0.9379

phase 6 133151 505 0.9452 0.9439

After the start of the challenge only the first part of the
training data was revealed to participants. The four consecutive
parts were made available in approximately monthly intervals
(each interval corresponded to a new competition phase),
however, only active teams that submitted a required number
of files with predictions could access the new data.

In the sixth phase, which lasted for the last two weeks of
the competition, all training data parts were revealed to all
participating teams regardless of their previous activity in the
challenge. It was done to equalize winning chances for teams
that decided to join the competition in its latest period.

III. OVERVIEW OF THE COMPETITION RESULTS

AAIA’16 Data Mining Challenge attracted many skilled
data mining practitioners who managed to submit a variety
of interesting solutions. In total, there were 203 registered
teams with members from 31 different countries. The most of
participating teams were from Poland (106), however, there

were also many teams from countries such as India (14),
United Kingdom (12), USA (12), Canada (9) and France (5).

Among the registered teams, 106 were active, i.e. submitted
at least one solution to the Leaderboard. In total they submitted
3, 236 solutions of which 3, 135 were correctly formatted and
successfully passed the evaluation procedure. Additionally,
50 teams provided a brief report describing their approach.
These reports turned out to be a valuable source of knowledge
regarding the state-of-the-art in the predictive analysis of time
series data related to early detection of seismic hazards.

TABLE III. FINAL RESULTS AND NUMBER OF SUBMISSIONS FROM THE

TOP RANKED TEAMS. THE LAST ROW SHOWS RESULTS OBTAINED SOLELY

FROM ASSESSMENTS MADE BY MINING EXPERTS, WHICH WERE

AVAILABLE IN THE DATA (ATTRIBUTES latest_seismic_assessment AND

latest_comprehensive_assessment)

team name rank n of submission final result

snm (organizers) – 2 0.9396
tadeusz 1 31 0.9393
deepsense.io 2 111 0.9384
yata 3 54 0.9342
podludek 4 71 0.9336
jellyfish 5 1 0.9335
millcheck 6 80 0.9329
kkurach 7 32 0.9312
gabd 8 21 0.9299
basakesin 9 30 0.9297
rough 10 4 0.9269
· · · · · · · · · · · ·

experts (18) – 0.9196

Table III shows scores achieved by the top-ranked teams. It
is worth to notice that the highest result in the final evaluation
was obtained by a team involved in DISESOR project and or-
ganization of the challenge (team snm). Its solution was created
using feature extraction methods developed for the purpose of
the DISESOR system [7], combined with a rough set approach
to reducing data dimensionality [14] and an ensemble learning
approach. In order to construct their solution, authors were
using only the data available to all participants, however, due
to their organizational involvement, team snm was excluded
from the final ranking. More details regarding this solution
can be found in [15].

Among the ranked teams, the highest score was obtained by
the team tadeusz which was also a subset of the second team
in the ranking – deepsense.io. Their solution was also based
on an ensemble technique. In their approach, authors carefully
select a subset of the training data which they later use for
constructing and validating the prediction models. Moreover,
authors make a significant effort to develop a procedure for
an unbiased performance evaluation for tuning parameters of
their models and the resulting ensembles. The whole approach
is comprehensively described in [16].

In general, the overview of the most successful approaches
used by participants suggests that the key steps to achieving
good results in this task were:

1) Extracting relevant features (computing a new data
representation) that aggregate time series data and are
robust with regard to a concept drift.

2) Designing an appropriate evaluation procedure for
testing performance of used prediction models and
tuning their parameters.

3) Using an ensemble learning techniques for blending
predictions of simpler models.
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Moreover, the results clearly showed that the proposed task
proved to be a challenging one for the most of participants.
From the 106 teams that submitted at least one solution only
18 were able to outperform in the final evaluation a simple
scoring model that was based on safety assessments made
by mining experts. These evaluations were available in the
data as two attributes, namely latest_seismic_assessment and
latest_comprehensive_assessment. Even though these features
could take only four ordinal values (a < b < c < d), a
simple logistic regression model that utilizes those two features
achieves AUC score of 0.9196 on the final evaluation data
(0.9028 on the preliminary test set).

The most likely reason for the weaker results of a large
share of participants is over-tuning of their models to the
preliminary evaluation set. In a case of many teams, prelim-
inary results were much higher the final scores – the biggest
difference was as high as 0.174 (over 17 percentage points).
Noticeable is also the fact that in the preliminary evaluation
64 teams obtained a score which was higher than the score of
the model based solely on the assessments of experts.

IV. ANALYSIS OF THE COLD START PROBLEM

The cold start problem is an important practical issue that
is related to real-world applications of many decision support
systems. In the case of coal mining, it typically appears when
a system for monitoring natural hazards becomes operations
for new, previously unexplored longwalls. One of our research
objectives motivating the organization of AAIA’16 Data Min-
ing Challenge was to investigate severity of this problem in the
context of systems for early detection of periods of increased
seismic activity.

For this reason the competition was divided into phases,
as it was described in Section II (see Table II for details
regarding availability of training data in consecutive phases).
Since in each phase a new subset of training data was made
available to active participants, we were able to verify the
impact of this additional information by examining quality of
solutions submitted in consecutive phases. Moreover, thanks
to the competition rules that encouraged active participation,
we received a large number of diverse solutions for analysis.

Figure 1 presents a distribution of evaluation scores ob-
tained by submissions during the course of the competition.
For this analysis we only used valid solutions with a reasonable
quality (we disregarded ’random’ submissions and those which
obtained the preliminary score lower than 0.65). On that plot,
black vertical lines denote dates on which additional parts of
the training data set were released. Each solution on that plot
is marked with a blue and red bar whose height corresponds
to the obtained evaluation score. The level of red color in a
bar indicates the final score, whereas the level of blue color
marks the preliminary evaluation score.

A detailed analysis of the distribution of scores in time
reveals some interesting observations. Firstly, in consecutive
phases there is a quite conspicuous decrease in differences
between the preliminary and final scores. In fact, in early
phases of the competition preliminary scores tended to be
much higher than the final ones, whereas in the last phase
the trend was opposite. In order to confirm the statistical
significance of this observation, we used a Wilcoxon rank sum

test of preliminary and final scores in consecutive phases. The
test confirmed that average differences in phases 1, 2 and 3 and
significantly higher (p−value << 0.01) than for the phases 4,
5 and 6. Interestingly, in the last phase the differences become
negative (final scores are usually higher than the preliminary
ones). This phenomenon can be explained by the fact that in
the last few days of every data mining competition participants
tend to focus on maximizing their score by blending their
previous solutions. For this reason we will exclude the last
phase from our further analysis of the cold start problem. Table
IV shows mean and standard deviation of evaluation scores for
each of the competition phases.

TABLE IV. MEAN AND STANDARD DEVIATION OF SCORES IN EACH OF

THE COMPETITION PHASES. THA LAST COLUMN GIVES MEAN

DIFFERENCES BETWEEN THE PRELIMINARY AND FINAL SCORES.

phase prelim. mean prelim. sd final mean final sd mean diff.

phase 1 0.8590 0.0579 0.8251 0.0672 0.0339
phase 2 0.9059 0.0420 0.8851 0.0587 0.0207
phase 3 0.8683 0.0693 0.8307 0.1058 0.0376
phase 4 0.8868 0.0669 0.8772 0.0831 0.0096
phase 5 0.8943 0.0553 0.8857 0.0625 0.0086

phase 6 0.8820 0.0667 0.8942 0.0696 -0.0122

Another interesting observation related to analysis of the
results shown on Figure 1 and displayed in Table IV is that
the use of additional training data has a diminishing impact on
performance of prediction models. For instance, if we compare
average results from the second phase to results from the fourth
or fifth phase, we see that the difference is minimal, even
though in these phases we received a comparable number of
submissions and the available training set data in, e.g. phase 5,
was by nearly 43% larger than in phase 2. This was even less
expected due to the fact that the data available in phase 2
contained information about only 9 out of 21 main working
sites present in the test data (these sites corresponded to ≈ 45%
of the test set), whereas in phase 5 this number was much
higher (13 out of 21 sites; ≈ 70% of the test set).

To confirm the second observation, in each phase we
analyzed the solutions with highest preliminary scores from
teams that obtained scores higher than 0.85 – results of such
teams better reflect performance of the state-of-the-art models.
Figure 2 visualizes basic statistics (min,max,quantiles and
mean values) for the preliminary and final evaluations of those
submissions.

Conspicuous is the lack of significant differences in the
best preliminary evaluation results in consecutive phases. The
average final scores slightly increase from phase to phase,
however, when we checked the statistical significance of the
changes it turned out that a significant difference (p-value
lower than 0.01) is only between results from the fifth and sixth
phases. For other consecutive phases the p-value of Wilcoxon
test was always higher than 0.175.

The above observations allow to formulate a hypothesis
that having a sufficiently large data set it is possible to
construct efficient prediction models for assessment of seismic
hazards. The created models can outperform the currently used
expert methods even for completely new working sites, as
long as these sites have comparable geophysical properties
and the same methodology is used for collecting new data. In
order to verify this claim we decided to thoroughly investigate
performance of top-ranked solutions submitted in each phase,
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with regard to individual working sites.

For the purpose of this analysis we disregarded working
sites for which there was no examples with the ’warning’
label in the test set. The reason for that was the inability to
compute values of AUC on such data subsets. In this way, for
the remaining part of our analysis there were 15 working sites
left, which corresponded to ≈ 81.5% of the test data.

From solutions submitted in each competition phase, we
have chosen 6 with the scores in top 10% for a given phase.
During the selection process we considered only solutions

uploaded by teams actively participating in the competition,
which fulfilled the criteria for obtaining all additional training
data. Table V shows their average AUC values with respect to
individual working sites. Additionally, the last two rows of the
table give average values of AUC for working sites that are
present in the training set and for those which are unavailable
in the training data, respectively. Finally, the last column of
Table V shows AUC values obtained for individual working
sites using only the assessments made by experts.

For the most of working sites there is a statistically
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TABLE V. AVERAGE SCORES OF TOP SOLUTIONS FOR INDIVIDUAL

WORKING SITES, IN DIFFERENT PHASES OF THE COMPETITION.
EVALUATIONS OF EXPERT ASSESSMENTS IS GIVEN FOR A COMPARISON IN

THE LAST COLUMN. ADDITIONALLY, THE LAST TWO ROWS DISPLAY

AGGREGATED VALUES (AVERAGES) FOR WORKING SITES WITH DATA IN

THE TRAINING SET AND WITHOUT ANY AVAILABLE TRAINING DATA.

working
site ID

phase 1 phase 2 phase 3 phase 4 phase 5 phase 6 expert as-
sessments

149 0.8984 0.9056 0.8523 0.9062 0.8766 0.9005 0.9306
155 0.6578 0.7328 0.7492 0.7393 0.7242 0.7487 0.6845
470 0.9749 0.9922 0.9876 0.9935 0.9922 0.9964 0.9707
490 0.8013 0.8122 0.8340 0.8021 0.7892 0.8289 0.8109
508 0.9825 0.9971 1.0000 0.9942 0.9854 1.0000 1.0000
575 0.9348 0.9845 0.9859 0.9826 0.9820 0.9825 0.9723
583 0.9000 0.9419 0.9363 0.9388 0.9370 0.9401 0.9280
599 0.8391 0.8585 0.8678 0.8445 0.8670 0.8710 0.8020
641 0.9809 0.9983 1.0000 0.9965 1.0000 1.0000 1.0000
689 0.7723 0.8812 0.8523 0.8685 0.8582 0.8938 0.8884
703 0.9346 0.9792 0.9826 0.9699 0.9873 0.9722 0.9722
725 0.8968 0.9188 0.9251 0.9151 0.9176 0.9099 0.8955
765 0.7989 0.7911 0.7367 0.7608 0.7423 0.7808 0.7587
777 0.9118 0.9354 0.9242 0.9252 0.9175 0.9408 0.9444
793 0.9499 0.9545 0.9585 0.9538 0.9361 0.9468 0.8868

avail. in
training

0.8653 0.8915 0.8818 0.8852 0.8778 0.8912 0.8670

unavail. in
training

0.9077 0.9433 0.9428 0.9374 0.9354 0.9486 0.9404

significant improvement (tested using t-test with a confidence
level of 0.05) of results from the later competition phases in
comparison to the first phase. However, in nearly all cases the
improvement between the second and later phases becomes
marginal (one exception is the working site with ID 599).
Interestingly, there are event sites (e.g. 689, 777) for which
there is a noticeable drop in average quality of solutions
between the second phase and phases 3, 4 and 5. Interesting is
also the fact that the top solutions obtained consistently higher
scores for working sites that were not present in the training
data. Explanation of this fact require further analysis.

A comparison of the selected solutions to predictions that
were based solely on assessments made by experts revealed
that more complex models were able to quickly attain signif-
icantly higher scores for working sites with available training
data. In the case of the remaining working sites the advantage
of complex prediction models was not that clear. The average
results for selected models in phase 6 were only slightly higher,
however, for a part of investigated solutions the difference was
much more favorable than for others.

V. CONCLUSIONS

In this paper we summarized AAIA’16 Data Mining
Challenge: Predicting Dangerous Seismic Events in Active
Coal Mines which was held at Knowledge Pit platform in
association with 11th International Symposium on Advances
in Artificial Intelligence and Applications (AAIA’16). We
explained research goals that motivated us to organize this
competition. We also explained the task in the challenge and
briefly described its course. Finally, we showed a detailed
analysis of competition’s results with an emphasis on the cold
start problem.

The conducted analysis revealed several interesting find-
ings regarding the influence of additional training data on
performance of prediction models for assessment of seismic
hazards. It showed that in order to train prediction methods
that aim to work well for a wide range of locations, it is
sufficient to provide training data for only several different

working sites. Adding more data may have a minimal impact
on prediction quality but it definitely helps in computing more
reliable estimations of expected prediction performance, as
well as in avoiding over-fitting of models to the training data.

Moreover, our analysis confirmed usefulness of the expert
methods for assessment of natural hazards. Not only these
assessments were able to robustly predict the seismic activity
(they outperformed solutions of more than 80% of teams
participating in the competition), but also they could be suc-
cessfully applied to completely new working sites, without a
need for using additional training data and complex algorithms.

This observation allows to formulate a general strategy
for dealing with the cold start problem: for new working
sites start predicting seismic hazards using the expert methods
and concurrently gather data for training a more sophisticated
prediction algorithm. Initiate your model using data from other
working sites and then adjust it using the newly obtained data.
Periodically compare performance of your model to results of
the expert assessments and switch to your predictions when
they become more accurate.

There are still several unanswered questions and research
problems that we plan to investigate in our future work.
For instance, the competition setting does not allow to study
performance of incremental learning methods which can be
applied to this problem. We would also like to more thoroughly
analyze severity of the concept drift problem which in this
context can be related to temporal nature of the data, as well as
to changes in characteristics of different working sites. Another
important issue is related to a development of methods for
identification of good data subsets for training a prediction
model for a given working site. Such methods could be based,
for instance, on a comparison of similarities between different
sites and choosing the data from those with the most similar
characteristics.

Finally, in order to guarantee practical applicability of
models for the mining industry it is important that mining
experts could easily interpret and explain their predictions.
For this reason, interpretability of a prediction model may
be as important as its performance. The development of effi-
cient algorithms that yield interpretable results is also directly
related to a problem of extracting informative, yet compact
representation of the training data. These two issues indicate
prominent research directions for our future work.
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