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Abstract—Fuzzy relation equations is an important tool for
managing and modeling uncertain or imprecise datasets, which
has useful applied to, e.g. approximate reasoning, time series
forecast, decision making, fuzzy control, etc. This paper considers
a general fuzzy relation equation, which has minimal solutions,
if it is solvable. In this case, an algebraic characterization is
introduced which provides an interesting method to compute
minimal solutions in this general setting.

I. INTRODUCTION

F
UZZY relation equations were introduced by E. Sanchez

in the seventies [11]. These equations have widely been

studied in different papers [1], [3], [6]. For example, they

have proven that the set of solutions of solvable fuzzy relation

equations is a upper-preserving complete lattice in which the

greatest solutions is completely determined. Nevertheless, the

computation of minimal solutions is not so direct. These

solutions have also been studied in several papers [2], [4],

[10], [12], [17], [15], [16], [18], [13] and several algorithms

have been developed, but in restrictive frameworks, restrictions

that limit the flexibility of the possible applications.

Hence, first of all, it is fundamental to study general

frameworks in which the minimal solutions of each solvable

fuzzy relation equation exist and that each solution will be

between the greatest solution and a minimal solution.

This paper considers a general setting, in which the opera-

tors may neither be commutative nor associative and they only

need to be monotone and residuated inf-preserving mappings

of non-empty sets on the right argument. The linearity of the

carrier, together with the inf-preserving property, ensures the

existence of minimal solutions whenever a solution exists.

Mainly, this paper introduces a procedure in order to obtain

the minimal solutions of a solvable of the introduced general

fuzzy relation equations. Moreover, we have presented a de-

tailed algorithm to compute these important solutions, together

with several illustrative examples.

II. GENERAL FUZZY RELATION EQUATIONS

Throughout this paper we will consider a complete linear

lattice (L,�), in which the bottom and the top elements exist

and they are denoted as 0, 1, respectively. Given a set V , the

ordering � in the lattice induces a partial order on the set of

L-fuzzy subsets of V , LV . This ordering provides to LV the

structure of a complete lattice.

A general residuated operator will also be used in this paper

to define the fuzzy relation equation, as in [8]. This residuated

operator will be denoted as ⊙ : L × L → L, which is order

preserving in both arguments and there exists another operator

→ : L×L→ L, satisfying the following adjoint property with

the conjunctor ⊙

x⊙ y � z if and only if y � x→ z (1)

for each x, y, z ∈ L. This property is equivalent to say that ⊙
preserves supremums in the second argument; x⊙

∨

{y | y ∈
Y } =

∨

{x⊙ y | y ∈ Y }, for all Y ⊆ L.

These operators, as were noted in [8], generalize other kind

of residuated pairs [7], [5], since only the monotonicity and

the adjoint property are considered.

Definition 1. Given the pair (⊙,→), a fuzzy relation equation

is the equation:

R ◦X = T, (2)

where R : U × V → L, T : U ×W → L are given finite L-

fuzzy relations and X : V × W → L is unknown; and R ◦
X : U ×W → L is defined, for each u ∈ U , w ∈W , as

(R ◦X)〈u,w〉 =
∨

{R〈u, v〉 ⊙X〈v, w〉 | v ∈ V }.

It is well known that the fuzzy relation equation (2) has a

solution if and only if

(R⇒ T )〈v, w〉 =
∧

{R〈u, v〉 → T 〈u,w〉 | u ∈ U}

is a solution and, in that case, it is the greatest solution, see

[7], [11], [14].

III. COMPUTING MINIMAL SOLUTIONS ON LINEAR

LATTICES

Definition 2. Given an operator ⊙ : L×L→ L, we will say

that it holds the IPNE-condition (making reference to that ⊙
is Infimum Preserving of arbitrary Non-Empty sets), if it verify

a⊙
∧

B =
∧

{a⊙ b | b ∈ B} (3)

for each element a ∈ L and each non-empty subset B ⊆ L.
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From now on, let us consider a general solvable fuzzy

relation equation (2), where R,X, T are finite and ⊙ satisfies

the IPNE-condition.

First of all, the auxiliary sets Vuw need to be introduced,

which are associated with the elements u ∈ U , w ∈ W and

the greatest solution R⇒ T . Since for each u ∈ U , w ∈W
∨

{R〈u, v〉 ⊙ (R⇒ T )〈v, w〉 | v ∈ V } = T 〈u,w〉, (4)

L is linear and V is finite, there exists at least one vs ∈ V
validating the equation

R〈u, vs〉 ⊙ (R⇒ T )〈vs, w〉 = T 〈u,w〉. (5)

Therefore, the set

Vuw = {v ∈ V | R〈u, v〉 ⊙ (R⇒ T )〈v, w〉 = T 〈u,w〉}

is not empty and, for all v /∈ Vuw, the strict inequality

R〈u, v〉 ⊙ (R⇒ T )〈v, w〉 < T 〈u,w〉 holds.

Each vs in Vuw will provide a fuzzy subset Suws as follows:

Given vs ∈ Vuw, we have that

{d ∈ L | R〈u, vs〉 ⊙ d = T 〈u,w〉} 6= ∅

and the infimum
∧

{d ∈ L | R〈u, vs〉 ⊙ d = T 〈u,w〉} = es
also satisfies the equality

R〈u, vs〉 ⊙ es = T 〈u,w〉

by the IPNE-condition. These elements are used to define the

fuzzy subsets of V , Zuws : V → L , defined by

Zuws(v) =

{

es if v = vs
0 otherwise

which form the set Zuw, that is Zuw = {Zuws | vs ∈ Vuw}, for

each u ∈ U , w ∈ W . These sets will be used to characterize

the set of solutions of Equation (2) by the notion of covering.

Theorem 3. The L-fuzzy relation X : V×W → L is a solution

of a solvable Equation (2) if and only if X � (R⇒ T ) and,

for each w ∈ W , the fuzzy subset Xw : V → L, defined by

Xw(v) = X〈v, w〉, is a cover of {Zuw | u ∈ U}.

As a consequence, the minimal solutions are characterized

by the minimal covers.

Corollary 4. X : V ×W → L is a minimal solution of Equa-

tion (2) if and only if, for each w ∈W , Xw : V → L, defined

by Xw(v) = X〈v, w〉, is a minimal cover of {Zuw | u ∈ U}.

Hence, from the corollary above, minimal solutions of the

fuzzy relation equation (2) are obtained from R ⇒ T . Next,

the detailed algorithms are introduced.

Module MINIMAL_COVERING uses an usual algorithm in

order to compute minimal covering of subsets.

Example III.1. Let us assume the standard MV–algebra [9],

that is, L = [0, 1] is the unit interval, ⊙ : L × L → L is the

Łukasiewicz operator defined by x⊙ y = max{0, x+ y − 1}
and → : L × L → L its residuated implication, defined by

y → z = min{1, 1− y + z}, for all x, y, z ∈ [0, 1].

input : Universes U , V and W , the fuzzy relations

R : U × V → L and T : U ×W → L
output: MSS= Set of minimal solutions of the fuzzy

relation equation R ◦X = T

1 MSS := [ ];
2 S := R⇒ T , which is the greatest solution of

R ◦X = T ;

3 for k ← 1 to |U | and j ← 1 to |W | do

4 Zkj := [ ];
5 for i← 1 to |V | do

6 Zkji:= zeros row of |V |-order;

7 if R[k, i]⊙ S[i, j] = T [k, j] then

8 ei := min{y ∈ [0, 1] | R[k, i] & y =
T [k, j]};

9 update Zkji[i] by the value ei;
10 add Zkji to the list Zkj ;

11 end

12 end

13 end

14 for j ← 1 to |W | do

15 Zj := [Z1j , . . . , Z|U |j ];

16 [X1

j , . . . , X
lj
j ] :=MINIMAL_COVERING(Zj);

17 end

18 for h1 ← 1 to l1 and . . .h|W | ← 1 to l|W | do

19 Xh1...h|W |
:= zeros matrix of |V | × |W |-order;

20 for j ← 1 to |W | and i← 1 to |V | do

21 Xh1...h|W |
[i, j] := X

hj

j [i] ;

22 end

23 add Xh1...h|W |
to the list MSS;

24 end
Algorithm 1: PMINSOLUTIONS(R, T )

Given U = {u1, u2, u3}, V = {v1, v2, v3} W =
{w1, w2, w3} and the fuzzy relation equations, defined from

the following tables

R v1 v2 v3
u1 0.9 0.5 0.9
u2 0.2 0.9 0.7
u3 0.8 0.6 0.9

and

T w1 w2 w3

u1 0.8 0.4 0.7
u2 0.6 0.7 0.3
u3 0.8 0.4 0.6

direct computation shows that the relation R ⇒ T , defined

from the table

R⇒ T w1 w2 w3

v1 0.9 0.5 0.8
v2 0.7 0.8 0.4
v3 0.9 0.5 0.6

is the greatest solution of Equation (2). During the verification

we go through the following calculations:

When computing (R ◦ (R ⇒ T ))〈u1, w1〉 = 0.8, we consider

the maximum of

R〈u1, v1〉 ⊙ (R⇒ T )〈v1, w1〉 = 0.9 + 0.9− 1 = 0.8
R〈u1, v2〉 ⊙ (R⇒ T )〈v2, w1〉 = 0.5 + 0.7− 1 = 0.2
R〈u1, v3〉 ⊙ (R⇒ T )〈v3, w1〉 = 0.9 + 0.9− 1 = 0.8
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Notice that from v1 and v3 we get the maximum. Hence, in

order to obtain this maximum, we only need to consider {v1}
or {v3}. Moreover, the values 0.9 associated with v1 and

0.9 associated with v3 cannot be decreased because, if we

decrease them, a value less than 0.8 will be obtained in the

computation and we do not reach a solution. Therefore, the

first column of a solution of Equation (2) could be any column

in the set:

Z1,1 = {





0.9
0
0



 ,





0
0
0.9



}

However, we need to verify that the other two equalities also

hold. Consequently, the equality (R ◦ (R ⇒ T ))〈u2, w1〉 =
0.6 is studied similarly to the previous procedure. The value

(R ◦ (R⇒ T ))〈u2, w1〉 is the maximum of the values

R〈u2, v1〉 ⊙ (R⇒ T )〈v1, w1〉 = 0.2 + 0.9− 1 = 0.1
R〈u2, v2〉 ⊙ (R⇒ T )〈v2, w1〉 = 0.9 + 0.7− 1 = 0.6
R〈u2, v3〉 ⊙ (R⇒ T )〈v3, w1〉 = 0.7 + 0.9− 1 = 0.6

for which {v2} or {v3} is only necessary and so, the first

column of a solution of Equation (2) could be one element of

the set:

Z2,1 = {





0
0.7
0



 ,





0
0
0.9



}

Finally, when computing (R ◦ (R ⇒ T ))〈u3, w1〉 = 0.8 we

pass by

R〈u3, v1〉 ⊙ (R⇒ T )〈v1, w1〉 = 0.8 + 0.9− 1 = 0.7
R〈u3, v2〉 ⊙ (R⇒ T )〈v2, w1〉 = 0.6 + 0.7− 1 = 0.3
R〈u3, v3〉 ⊙ (R⇒ T )〈v3, w1〉 = 0.9 + 0.9− 1 = 0.8

In this case, only v3 is necessary and one column is only

considered:

Z3,1 = {





0
0
0.9



}

We observe that

K =





0
0
0.9



 ∈ Z1,1 ∩ Z2,1 ∩ Z3,1,

so K is the only minimal column which, in an intuitive

sense, covers the set Z1 = {Z1,1, Z2,1, Z3,1}. Moreover, we

conclude that a fuzzy relation X1, defined as

X1 w1 w2 w3

v1 0 0.5 0.8
v2 0 0.8 0.4
v3 0.9 0.5 0.6

solves the fuzzy relation equation (2).

Next, we consider the second column of R ⇒ T , which

provides a different case. For (R ◦ (R ⇒ T ))〈u1, w2〉 = 0.4
we have

R〈u1, v1〉 ⊙ (R⇒ T )〈v1, w2〉 = 0.9 + 0.5− 1 = 0.4
R〈u1, v2〉 ⊙ (R⇒ T )〈v2, w2〉 = 0.5 + 0.8− 1 = 0.3
R〈u1, v3〉 ⊙ (R⇒ T )〈v3, w2〉 = 0.9 + 0.5− 1 = 0.4

Hence, the maximum is obtained from v1 or v3 and, therefore,

the following set is considered:

Z1,2 = {





0.5
0
0



 ,





0
0
0.5



}

For (R ◦ (R⇒ T ))〈u2, w2〉 = 0.7 we have

R〈u2, v1〉 ⊙ (R⇒ T )〈v1, w2〉 = 0
R〈u2, v2〉 ⊙ (R⇒ T )〈v2, w2〉 = 0.9 + 0.8− 1 = 0.7
R〈u2, v3〉 ⊙ (R⇒ T )〈v3, w2〉 = 0.7 + 0.5− 1 = 0.2

Consequently, the subset obtained is

Z2,2 = {





0
0.8
0



}

For (R ◦ (R⇒ T ))〈u3, w2〉 = 0.4 we have

R〈u3, v1〉 ⊙ (R⇒ T )〈v1, w2〉 = 0.8 + 0.5− 1 = 0.3
R〈u3, v2〉 ⊙ (R⇒ T )〈v2, w2〉 = 0.6 + 0.8− 1 = 0.4
R〈u3, v3〉 ⊙ (R⇒ T )〈v3, w2〉 = 0.9 + 0.5− 1 = 0.4

Hence, the assumed subset of columns is

Z3,2 = {





0
0
0.5



 ,





0
0.8
0



}

In this case, we observe that Z1,2∩Z2,2∩Z3,2 = ∅. However,




0
0
0.5



 ,





0
0.8
0



 ≤





0
0.8
0.5



 =





0
0.8
0



 ∨





0
0
0.5



,





0.5
0
0.



 ,





0
0.8
0



 ≤





0.5
0.8
0



 =





0
0.8
0



 ∨





0.5
0
0





and





0
0.8
0.5



 ,





0.5
0.8
0



 are the only minimal columns which,

again in an intuitive sense, cover the set Z2 =
{Z1,2, Z2,2, Z3,2}. Moreover, we conclude that the fuzzy re-

lations X2 and X3, defined as

X2 w1 w2 w3

v1 0 0 0.8
v2 0 0.8 0.4
v3 0.9 0.5 0.6

X3 w1 w2 w3

v1 0 0.5 0.8
v2 0 0.8 0.4
v3 0.9 0 0.6

solve the fuzzy relation (2). Finally, the values in the third

column of R⇒ T are reduced.

For (R ◦ (R⇒ T ))〈u1, w3〉 = 0.7, we compute

R〈u1, v1〉 ⊙ (R⇒ T )〈v1, w3〉 = 0.9 + 0.8− 1 = 0.7
R〈u1, v2〉 ⊙ (R⇒ T )〈v2, w3〉 = 0
R〈u1, v3〉 ⊙ (R⇒ T )〈v3, w3〉 = 0.9 + 0.6− 1 = 0.5
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Hence, Z1,3 = {





0.8
0
0



}.

For (R ◦ (R⇒ T ))〈u2, w3〉 = 0.3, we have

R〈u2, v1〉 ⊙ (R⇒ T )〈v1, w3〉 = 0.2 + 0.8− 1 = 0
R〈u2, v2〉 ⊙ (R⇒ T )〈v2, w3〉 = 0.9 + 0.4− 1 = 0.3
R〈u2, v3〉 ⊙ (R⇒ T )〈v3, w3〉 = 0.7 + 0.6− 1 = 0.3

two possibilities providing two columns: Z2,3 =

{





0
0.4
0



 ,





0
0
0.6



}.

For (R ◦ (R⇒ T ))〈u3, w3〉 = 0.6 we have

R〈u3, v1〉 ⊙ (R⇒ T )〈v1, w3〉 = 0.8 + 0.8− 1 = 0.6
R〈u3, v2〉 ⊙ (R⇒ T )〈v2, w3〉 = 0.6 + 0.4− 1 = 0
R〈u3, v3〉 ⊙ (R⇒ T )〈v3, w3〉 = 0.9 + 0.6− 1 = 0.5

Therefore, Z3,3 = {





0.8
0
0



}.

In this case, there are two minimal covering of the set Z3 =
{Z1,3, Z2,3, Z3,3}:




0.8
0.4
0



 =





0.8
0
0



∨





0
0.4
0



 and





0.8
0
0.6



 =





0.8
0
0



∨





0
0
0.6





This yields four fuzzy relations, defined as follows

X4 w1 w2 w3

v1 0 0 0.8
v2 0 0.8 0.4
v3 0.9 0.5 0

X5 w1 w2 w3

v1 0 0 0.8
v2 0 0.8 0
v3 0.9 0.5 0.6

X6 w1 w2 w3

v1 0 0.5 0.8
v2 0 0.8 0.4
v3 0.9 0 0

X7 w1 w2 w3

v1 0 0.5 0.8
v2 0 0.8 0
v3 0.9 0 0.6

that solve Equation (2). By their construction and the proper-

ties of the Łukasiewicz conjunctor, they are minimal solutions.

Example III.2. In this example, we consider the Gödel

structure [9], then L = [0, 1] and ⊙ : L × L → L and

→ : L× L→ L are defined by x⊙ y = min{x, y} and

y → z =

{

1 if y ≤ z

z otherwise

for all x, y, z ∈ [0, 1]. Given U = {u1, u2}, V = {v1, v2, v3},
W = {w} and

R v1 v2 v3
u1 0.6 0.4 0.5
u2 0.8 0.7 0.6
u3 0.9 1 0.9

T w
u1 0.6
u2 0.7
u3 0.9

the direct computation shows that

R⇒ T w
v1 0.7
v2 0.9
v3 1.0

is the maximal solution of Equation (2). In order to verify the

equality (R ◦ (R⇒ T ))〈u1, w〉 = 0.6 we compute

R〈u1, v1〉 ⊙ (R⇒ T )〈v1, w〉 = 0.6 ∧ 0.7 = 0.6
R〈u1, v2〉 ⊙ (R⇒ T )〈v2, w〉 = 0.4 ∧ 0.9 = 0.4
R〈u1, v3〉 ⊙ (R⇒ T )〈v2, w〉 = 0.5 ∧ 1.0 = 0.5

Note that we only need the value associated with v1. Moreover,

this value can be reduced until 0.6. Hence, the first (and only)

column of a solution has to be contained in the following set

Z1,1 = {





x
0
0



 | 0.6 ≤ x ≤ 1}

Focusing on our main goal, the least one is the column

associated with a minimal solution. Hence, we only consider

the column Z1,1 = {





0.6
0
0



}

For (R ◦ (R⇒ T ))〈u2, w〉 = 0.7 we have

R〈u2, v1〉 ⊙ (R⇒ T )〈v1, w〉 = 0.8 ∧ 0.7 = 0.7
R〈u2, v2〉 ⊙ (R⇒ T )〈v2, w〉 = 0.7 ∧ 0.9 = 0.7
R〈u2, v3〉 ⊙ (R⇒ T )〈v3, w〉 = 0.6 ∧ 1.0 = 0.6

Now the values associated with v1 and v2 provide the max-

imum. Furthermore, the value for v2 can also be decreased,

specifically, any element x in [0.7, 1] provides the same maxi-

mum result: 0.7∧x = 0.7. Therefore, focusing on the minimal

solutions we only need to consider:

Z2,1 = {





0.7
0
0



 ,





0
0.7
0



}

Finally, for (R ◦ (R⇒ T ))〈u3, w〉 = 0.9 we calculate

R〈u3, v1〉 ⊙ (R⇒ T )〈v1, w〉 = 0.9 ∧ 0.7 = 0.7
R〈u3, v2〉 ⊙ (R⇒ T )〈v2, w〉 = 1.0 ∧ 0.9 = 0.9
R〈u3, v3〉 ⊙ (R⇒ T )〈v3, w〉 = 0.9 ∧ 1.0 = 0.9

In this last case v2 and v3 are involved in the computation

of the maximum and the value associated with v3 can be

decreased until 0.9. These considerations yield the following

minimal solutions




0.6
0.7
0.9



 ,





0.7
0
0.9



 ,





0.6
0.9
0





IV. CONCLUSION AND FUTURE WORKS

The main aim of this research is to define as generally as

possible an algebraic structure that allows the existence of

minimal solutions of the fuzzy relation equations defined based

on this structure. For that, a general increasing operation ⊙,

which only satisfies the adjointness property, i.e. is residuated,

and satisfies the IPNE-condition, has been considered to define

a general fuzzy relation equation, which has minimal solu-

tions whenever a solution exists. Moreover, a new algebraic

characterization using the notion of covering is introduced,

22 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



which provides a method to obtain the minimal solutions and,

consequently, the whole set of solutions.

As future work, the obtained results will be applied to

several problems in fuzzy logic, such as to abduction rea-

soning. It is well-known that implications in MV-algebras are

infinitely distributive. A topic of future study is to characterize

all structures where implication is infinitely distributivity.

Algebraic structures that satisfy the INPE-condition are not

studied much; also they will be a topic of future research.
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