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Abstract—The development of complex software systems is
more and more based on the composition and integration of
autonomous component systems. This can be done either stati-
cally (proactive approach) at development-time or dynamically
through a reactive approach in which a new composite system
can possibly be created on-demand and/or at run-time from
existing systems. With the aim of constructing and managing such
complex and reactive software systems, we propose a megamodel-
based environment supporting dynamic tool integration. Such
an environment must therefore be consistent at any time (i.e.
before, during and after an integration) and should also have
to exhibit some self-* properties (such self management, self-
healing and self-configuration). In order to meet these challenges
we propose the use of Hoare’s Axiomatic Semantics and some
inference rules to maintain the integrity of the megamodel and its
components. For that we have defined a formal-safe execution as
well as an execution semantic for each operation likely to modify
the megamodel contents.

Index Terms—Dynamic Tool Integration, Complex System,
MDE, Megamodeling, Axiomatic Semantics, Verification.

I. INTRODUCTION

N
OWADAYS software systems, such Component-Based

Software Engineering (CBSE), are generally composite
systems which are becoming more and more complex. These
systems are usually built on top of a generic platform by
plugging into it many different software components and tools.

Such platforms are often extended or specialized for a given
domain by respectively adding or removing one or several
software components. This can be done either statically in
a proactive approach at development-time, or dynamically at
run-time through a reactive approach. We will present in the
following some advantages and drawbacks for both proactive
and reactive integration approach. A comparative study of the
two approaches are extensively developed in [10] to which we
refer the reader for further information.

Proactive approach

A proactive integration is an approach in which application
designers implement a new application manually by designing
correspondence or composition rules describing the interaction
patterns between its components. Such an approach is set up
when the architecture is still under development, namely at
design or development time.
Limits

It complicates the problem of ensuring consistency in the

software systems and is severely limited in flexibility;
Advantages

It supports more powerful integration methods and ensures
that the adaptation will not produce anomalous behavior. This
is due the fact that a proactive approach try to identify the
potential effect of making a change even before the change
has actually been made. It might also prohibit certain changes
that would otherwise lead to unexpected behavior [11].

Reactive approach

In a dynamic (or reactive) integration a new composite system
can possibly be created on-demand and/or at runtime from
existing systems, considering the user preferences and the
context to personalize the system maintenance process.
Limits

It is difficult to use traditional testing and formal verification
techniques to check safety and other correctness properties.
Advantages

Dynamic integration allows software components (module
behavior) and their interactions to be changed while modules
are executing. Such a reactive approach starts to work at the
moment the actual changes are being made, and typically try
to resolve potential inconsistencies interactively. Moreover it
may also enable a number of useful applications that could
not be envisioned during development time. Therefore, such a
kind of integration is suitable for end-user applications where
available components are dynamic and users needs may be
varying frequently.

Abstraction plays an important role in component-based
programming, it is taken into account through encapsulation
which ensures information hiding and independence between
components [20]. To provide such an abstraction while build-
ing complex software systems, Model-Driven Engineering
(MDE) seems to be a preferential solution. In fact, it is a
"recent" Software Engineering (SE) discipline which promotes
models as first class entities in the software system develop-
ment and maintenance. In the MDE field, a model is defined
as an artifact which consists of model elements, conforms to
a specific metamodel and represents a given view of a system.
A metamodel can be defined as a language that describes the
various kinds of contained model elements and the way they
are arranged, related and constrained [1]. However a system
is often represented by various kinds of interrelated models.
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Moreover, the architecture of a software system defines such
a system in terms of components and interactions between
them. MDE provides the concept of a megamodel as a
building block for modeling in the large [3], thus has to hide
fine-grained details that obscure understanding and focus on
the "big picture", i.e. system structure, interactions between

models, assignment of models as parameters or results for

model transformations, and so on. Indeed, megamodeling
offers the possibility to handle models (and metamodels) as
first-class entities, to specify relationships between them and to
navigate among them. Furthermore, by keeping track of all the
heterogeneous modeling artifacts (models, metamodels, DSL,
etc.) within a megamodel, all of them are treating as models.
This results in a homogeneous infrastructure which enables
the management of complex modeling artifacts [2].

Our purpose is to use megamodels for representing the
components of an architecture and the interactions between
them. Thereby to develop an integration management approach
based on operations defined in the megamodel. As already
stated a megamodel refers to a model that have models as
its elements and that captures the interconnections between
multiple models(component models) in the form of model
operations, generally represented as model transformations
(global operation models) [1]. All of these models will then
be represented in a single runtime megamodel which will
be handled as an execution environment or more simply as
a (mega-)program which is updated with each new (global)

operation execution [6]. The megamodel is therefore subjected
to frequent dynamic changes which consist of either adding or
removing components. However such changes must not violate
the integrity of the megamodel and its constituent components.
It is therefore necessary for one to be able to add or remove
components while maintaining some kind of integrity of the
entire system represented by a megamodel.

In order to meet these challenges we consider a megamodel
as a program and use techniques for proving program cor-
rectness. These techniques are known as Hoare’s axiomatic
semantics and are used with some inference rules for checking
the megamodel’s consistency by defining, for each global

operation likely to modify the megamodel contents, a formal
and safe execution as well as an execution semantic which
denotes the observable behavior of a program as it is executed.

The rest of the paper is organized as follows. Section II
presents the problem statements. Section III is reserved for
related works in which we present some papers that use meg-
amodeling techniques. Section IV presents our approach of
megamodel management of dynamic tool integration. Section
V is reserved for the use of axiomatic semantics in order to
provide a mean to check the megamodel’s consistency. Section
VI presents an example in which we illustrate the presented
approach. Section VII concludes the paper and gives its future
works.

II. PROBLEM STATEMENTS

In the MDE vision, software development and management
processes involve the creation and use of many related mod-

eling artifacts which are becoming increasingly important. As
a consequence, there is the need for efficient mechanisms to
manage this constantly growing number of models which is
due to many reasons, as those that follow [21]:

• Each viewpoint of the software is represented using
a model with respect to the most adapted formalism
(metamodel).

• Complex models need to be decomposed into smaller
ones with different levels of abstraction.

• On behalf of the "separation of concerns", different
models are created for different purposes.

Many aspects of model-management have been considered in
the literature in which the concept of megamodels ([1], [5],
[6], [15], etc.) and macromodels [21] have been proposed.
However all of them, except in [15], focus on the management
of development models whereas it could be very interesting to
extend the use of models such as macromodels and megamod-
els for the management of runtime artifacts through the use
of runtime models. Such runtime artifacts may include com-

ponent creation and destruction, exceptions/errors, operation

inputs and output, components invocation operations, dynamic

artifact types, dynamic component names, and so on.
Otherwise, causal connection between models and repre-

sented systems means that each time one read the model, he
gets the information representing the current system state, and
similarly, each time one writes the model, the information he
writes makes the proper system change [16]. Using models
at runtime for specifying runtime artifacts have two main
requirements. 1. the model as interrogated should provide up-
to-date and exact information about the system. 2. if the model
is causally connected, then adaptations can be made at the
model level rather than at the system level.

The importance of the use of models at runtime has been
extensively discussed in [20]. In that paper, several problems
for which runtime models could be useful have been proposed
without giving any piste about how to implement a solution.
Among those problems, one can cite the support of seman-
tic integration of software components represented through
runtime models. For example, suppose that we have a user
who expresses a request in order to merge two models into
one. To achieve this, most of the model-based approaches
such in [12], [13] and [14], use development models by
putting the system offline, at first. Then they specify a set
of correspondence or composition rules generally using the
respective metamodels of the two input models. Finally they
restart the system to apply changes in the system. Another
solution which does not necessitate of putting down the
system consists of describing directly the merging operation by
reasoning on runtime models. In this case, when implementing
such an approach, one has to recognize that the solution will
never stay constant. That is, it could happen a situation where
new models are introduced in the running system, and perhaps,
some models to be removed from it. This continuous change
necessitates the modeler to focus on how the system will react
to those frequent changes and therefore how it will evolve
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over time. An important challenge here is how to realize
such a solution while maintaining some kind of integrity
of the entire system. To achieve this, the approach should
therefore implement a reactive environment to face changes
in the running system. In order to satisfy users requests for
example, such an environment should have to exhibit some
self-* properties as self-management, self-healing and self-
configuration.

The presented model-based approaches ([12], [13] and [14])
solve the problem of integration of software components by
using the first solution through the use of development models,
therefore such approaches can be considered as proactive
integration. But we found no approach carrying out this
problem using runtime models.

III. RELATED WORKS

In this section, some approaches of model management are
presented. Such approaches use some specific models such as
megamodels or macromodels to manage changes in a complex
modeling environment. Megamodels and macromodels based-
approaches provide a framework for an efficient creation,
storage, access and execution of large amounts of modeling
artifacts and their interconnections [5]. Indeed each of these
approaches provides a mechanism to represent and control
changes that occur in the megamodel through various tech-
niques.

In [1], Bezivin and al. are experimenting through their
AMMP (Atlas Model Management Platform) environment the
need to consider separately the activities of modeling in the
small and modeling in the large. A megamodel is considered
as a kind of registry that can be seen as a model which

elements are models or refer to models. Thus a megamodel
will help the AMMP platform to know the available tools or
services. Authors use megamodels (which provide a global
view on models) for the support of model-driven software
development by using it for model management. Megamodels
are also applied to facilitate traceability between models and
their elements.

In [4], authors present MoScript which is a megamodel ag-
nostic platform and a textual DSL for accessing, querying and
manipulating modeling artifacts represented in a megamodel.
Several modeling tasks are performed using different kinds of
operations which involve operations without side effects and
operations with side effects. Operations without side effects

(QueryOp, TransformOp, ProjectOp, StateCheckOp) are those
that do not modify the megamodel contents. Operations with

side effects (SaveOp, RemoveOp, RegisterOp) are operations
that are likely to modify the megamodel contents. MoScript
also allows to write queries that retrieve models from a
repository or that register newly produced models back to the
repository.

In [21], a macromodel is defined as a model consisting

of elements denoting models and links denoting intended

relationships between these models with their internal details

abstracted away. For an efficient management of models, the
author considers different kinds of modeling artifacts (models

and relationships) which act on different layers (orders of

hierarchy. Applications of the use of these different models
could be twice : the consistency checking between constituent
models and the inference of relations from other relations.

In [6], the author considers a megamodel as a program

in which the declaration and definition of models within

a megamodel as statements of a model-based programming

language. Then the execution of a simple program composed
of a sequence of such statements manipulates the contents
of a megamodel. The important contribution of handling a
megamodel as being a program is that it enables the prevention
of typing errors during the execution of such programs. An
typing error is for example the application of a function on
arguments for which it was not defined.

In [15] authors propose the use of megamodels for the
management of models at runtime. A runtime model provides a
viewpoint, on a running software system, that is usually used
for managing the system. Authors present a set of models,
which have to be managed at runtime, as Reflection models,
Implementation models, Evaluation models, Change models,
Monitoring models and Execution models. In order to manage
these models authors also propose a set of operations such
Update, Effects, Check for failures, Failure analysis rules,
Repair strategies. They propose the use of megamodels at
runtime for both navigation and automation.

IV. OUR APPROACH : USE OF MDE TECHNIQUES FOR

DYNAMIC TOOL INTEGRATION

Our motivation here is to use MDE techniques, particularly
runtime models, in order to set up a megamodel-based en-
vironment supporting dynamic tool integration in a complex
software system. In fact, our management of changes must
ensure the consistency, correctness, and any desired properties
of runtime change in the megamodel. In other words, our
proposition for supporting dynamic integration should :

• Use a megamodel as a basis for model changes and man-
agement and which represents the dynamic architectural
model of the global system;

• Provide inference rules for reasoning about and prevent-
ing changes from violating the megamodel’s integrity ;

• Help identify what models are likely to be targeted/mod-
ified, for example, by the insertion of a new model into
the running system.

In this section we present at first the problem of tool in-
tegration, then we show how a tool is represented through
various kinds of models and their interconnections in the
megamodel. Finally we present our megamodel management
and its constituent components.

A. Tool integration

A problem for tool integration is the general lack of
standards for representing tools and their relationships. This
has slowed the creation of fully integrated environments. In
fact, one important barrier in current software engineering
environments is the difficulty of integrating tools that address
different aspects of the development process. As mentioned
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in [8], integration is not a property of a single tool, but of
its relationships with other elements in the environment. The
key notion is the relationships between tools but also the
properties of these relationships. These relationships can be
represented through dimensions or types; a very consistent
work on this purpose was attributed to Wassermann in [7]
whose dimensions of tool integration are quoted by almost the
totality of the other authors. The platform dimension for tool
integration is concerned with the framework services that are
commonly used by tools. Presentation integration deals with
user interaction and data integration with data interchange.
Control integration is concerned with interoperability between
tools, and finally process integration refers to the different
roles played by tools during a whole software process.

B. Tools as integrated models

In component-based programing a software system is con-
ceived as a collection of several tools. Each tool contains
some components which could encapsulate some services and
provides or requires some operations from other tools. The
components are always reached through the operations of the
tool. They are said to be encapsulated in the tool. For each tool
the problem is how to offer services, each one representing an
integration dimension, to other tools and if there is the need
how to use their services, in order to achieve a common goal.
For that, it is necessary that each time a tool is added into
the software system, it has to be registered as its supported
services. Such a situation supposes to have a common view of
what are a tool, its implemented services, operations it offers
or requires etc. With respect to these requirements, we assume,
as in [1], that tools will be handled as models.

Each tool consists of component models which could en-
capsulate some services. A service may correspond to any
element of the Wasserman’s integration dimension [7]. It can
then be data, a function, a process element, platform element or
presentation element. A tool may also provide or require some
operations from other tools. Indeed, given two different tools,
the interactions between two corresponding models come in
the form of model operations (global operation models). A
global operation model for example may also have input and
output parameters, each parameter being itself considered as
a component model. Thus a megamodel consists of component

models and global operation models. A component model

encapsulates artifacts which represent services of a tool. A
global operation model can be seen as a type of an operation
between component models. It therefore represents a model
of future interactions (global operation instances) that connect
some component instances. In other words, a global operation

model defines one or more interaction rules, can be instantiated
on component instances and allows to dynamically establish
links between components. A global operation model can only
be applied to component models already contained in the
megamodel, and its results are new component models which
are automatically added in the megamodel.

Manipulating a megamodel is then like programming where
the megamodel acts as an environment, or more simply as

a (mega-) program. It can be updated with each new global

operation execution. However considering a megamodel as a
program has already been proposed in [6]. In such contexts,
the megamodel is subjected to frequent and dynamic changes
which can due to the execution of operations (instructions)
on components such the introduction of new components;
the recreation of failed components; the modifications of

component interconnections; thechange component operating

parameters, etc. A global operation models corresponds to a
set of operations which are executed in response to changes
related to the underlying system state changes. Indeed, after
each execution of a global operation model, the megamodel
has to be updated. Then, each component has the possibili-
ty/responsibility to update the megamodel through the execu-
tion of global operation instances. However the corresponding
changes have not to violate the integrity of the megamodel
which have to stay consistent.

C. The megamodel management

The first step in creating any composite service is to
locate the service components (or tools) that provide the
functionality that is to be placed in the new service [19].
To facilitate this process in our approach, all component

models must be stored in a component directory, namely the
megamodel, which can be accessed and managed at runtime.
Each component model should be named and typed, and has
also to specify what information (services) it represents in
its corresponding integration dimension [7] represented by the
model. Component models should also provide a description
of its provided operations (through global operation models),
its required operations (from other components), as well as
the input and output services of all of these operations. Figure
1 represents the metamodel of the megamodel with respect to
such considerations. Hereafter we present its main concepts.

• Model : Specifies that an entity is a model;
• ModelLevel : Allows knowing if it is a terminal model

or a reference model ;
• ModelType : Allows giving the type of a model, to know

its metamodel ;
• ModelDimension : Allows knowing the information rep-

resented in the model (data, process, ...);
• GlobalOperation : Supports operation on component

models as :
– Load : Registers a component model in the Meg-

amodel if it is not already registered.
– Extract : Allows the extraction of component models

from the Megamodel.
– Refine: Allows to represent the refinement operation,

i.e. transforming a model in a given dimension into
another ;

– Change2Ref : Transforms a model in a given meta-
model to another.

– Match: Takes as input two models of the same
kind and performs especially well for detecting the
differences between two versions of a component

model
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Fig. 1. Megamodel’s Metamodel

– Map : Uncovers how two models "correspond" to
each other. It takes two models as input and returns
a morphism (which will be considered as a model)
between them.

– Merge: Merges two models into one based on a
mapping (Map) between them.

V. USING HOARE’S AXIOMATICS FOR PROVING

MEGAMODEL’S CONSISTENCY

A. Hoare Triples To Define Proof System of Axiomatic Seman-

tics

In Hoare logic a program is considered a transformer of
states. A state here represents the values of all the variables
of a program. The execution of a program has the effect, if it
ends, to transform an initial state to a final state. The specifi-
cation of a program will be developing properties on these two
states. Axiomatic semantics provides a style appropriate to the
proof of programs. Thus, to prove a program, it just needed to
specify the means of assertions written using logical formulas

and then establish that the program meets its specification.
That is to say that the specification and the program comply
with the rules of an axiomatic semantics defining the valid
executions of each statement in the source language. The
technique used to prove an annotated program by assertions
reduces it into a set of logical formulas called verification

conditions, no longer refer to the instructions of the program.
Prove a program thus reduces to checking the validity of
logical formulas [9]. Properties of axiomatic semantics are
expressed in general as expressions of Hoare logic: {p}S{q}

where p and q are properties expressed in predicate logic, p

supposed to be verified by memory before execution of the
program S, and q to be checked after execution of S on
the same machine that have checked p. Starting from the
fact that one have to define a set of assertions that define
as pre-conditions and post-condition rules of equilibrium of
the system then the formalism of the Hoare logic is the most
appropriate to represent the development of the possible states
of the program, but also to make easier correction system.
Considering the triple "(x+1 > 0){ x := x + 1 }( x > 0)". Such
assertion means : if " x+1>0" is true before the execution
of " x := x+1 ", then after his execution, the condition "

x>0" becomes true. Or for the condition " x>0" is true after
execution of " x:=x+1", It is necessary that the condition "x+1

> 0" is verified, before performing the allocation.

B. Hoare’s axiomatic semantics for proving megamodels con-

sistency

As already said, the megamodel acts as an environment
which is updated with each new global operation execution. A
global operation model consists of a set of pre-conditions P, a
sequence of operations Seq , and a set of post-conditions Q.

{P}Seq{Q}

The pre-conditions define the set of states of the system
from which the sequence of operations can be invoked. Each
operation is to be invoked in the order that it appears in the
sequence, with the specified actual parameters and has possibly
a side effect which corresponds to the effect of that operation
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on other components. Indeed, each operation targets by default
one or more component models or other global operation

models in the megamodel. The post-conditions define the set
of states that satisfy the desired result after executing the
sequence of operations. The state of the megamodel is modeled
by a set of assertions. And hence, for each global operation

models to maintain this balance, it is necessary to know how its
statements and flow effect affect correctness of models based
on techniques available for proving programs consistency.
To achieve, this we have defined as in our previous works
[9], an execution semantics for each global operation in the
megamodel. Execution semantics of a global operation in the
megamodel denote its observable behavior (i.e. its effect on
the state of the megamodel and components) as it is executed.

With this intention, it is enough that all the Hoare’s triplets
are valid and for this reason, it is necessary to formally
define an execution semantic for each instance Seq of a global

operation model.

VI. EXAMPLE : DYNAMIC TOOL INTEGRATION

A. Defining semantic execution for global operations

Suppose that we have a megamodel M which represents
the overall structure of a software system S in terms of its
constituent components (component models) and their inter-
connections (global operation models). Given that we have a
new tool T to plug in the system S. The tool T is then
represented through multiple models, each one representing
an integration dimension. T is said to be well integrated
in S if for each dimension, the model representing a given
dimension is well integrated with the model of S representing
that dimension. To integrate two models we use the global
operator called Merge. Our goal is not to say how to integrate
two models (for that see [18]) but how the environment must
react to the integration of new tools.

The algorithm (see algorithm 1) only gives the framework
for implementing an environment supporting dynamic integra-
tion: it does not show how to implement an integration. When
implementing an integration approach one has to recognize
that the solution will never stay constant: new tools will be
added, and, perhaps tools will be removed. This continuous
change necessitates that the designer places emphasis on
how the megamodel will evolve over time. Hoare’s axiomatic
semantics allow us to fix this problem by proposing formal
safe and semantics execution for all the global operation
instances in the megamodel. The execution semantics of a
global operation is the effect of that operation on the state
of the megamodel and will be defined by a rule.

In order to show how we use the axiomatic semantics for
checking the megamodel’s integrity, we consider an execution
of the above algorithm. We assume that we have a system S
which will be extended by plugging into it a tool T . Given
that the treatment is the same for all of the dimensions, we
will consider in this example that T will be integrated to S
according to the data dimension.

• M is the megamodel representing the system S .

Algorithm 1 : Integrating new tool in the megamodel

1.Input : Software System S, Tool T , Megamodel M
2.Output:M representing S in which T has been plugged
3.BEGIN

4. For each dimension di
5. Begin

6. Let msi representing the dimension di of S

7. msi ← Extract (S, di)
. /* Extract the model representing the dimension di in S */

8. Load (M, msi)
. /* Load the model representing the dimension di in M */

9. Let mti representing the dimension di of T

10. mti ← Extract (T, di)
. /* Extract the model representing the dimension di in T */

11. Load (M, mti)
. /* Extract the model representing the dimension di in M */

11. If (mti AND msi have different metamodels) Then

12. mti ← Change2Ref(msi)
. /* Transform a model in a given metamodel to another */

13. Let mapi be a morphism model defined as follows

14. mapi ← Map(msi, mti);
15. Load (M, mapi);
16. msi ← Merge(msi, mapi, mti);
17. Load (M, msi);
18. End

19. Return M
20.END.

• msd is the model representing the data dimension of the
system S .

• mtd is the model representing the data dimension of the
system T .

• mapd is the morphism (model) representing how msd
and mtd "correspond" to each other;

We will define an execution semantic for the global operation

Merge enabling to integrate the tool T with the software
S represented by the megamodel M according to their data
dimension:
Operation : Merge

merged ←− Merge (msd, mapd, mtd)

Pre-conditions

P ⇔
⋂































































P1 ::= msd ∈M
P2 ::= level(msd, ”terminal”)
P3 ::= type(msd, ”UML”)
P4 ::= dimension(msd, ”data”)
P5 ::= mtd ∈M
P6 ::= level(mtd, ”terminal”)
P7 ::= type(mtd, ”UML”)
P8 ::= dimension(mtd, ”data”)
P9 ::= mapd ∈M
P10 ::= merged /∈M
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Post-conditions

Q⇔
⋂































































Q1 ::= msd ∈M
Q2 ::= level(msd, ”terminal”)
Q3 ::= type(msd, ”UML”)
Q4 ::= dimension(msd, ”data”)
Q5 ::= mtd ∈M
Q6 ::= level(mtd, ”terminal”)
Q7 ::= type(mtd, ”UML”)
Q8 ::= dimension(mtd, ”data”)
Q9 ::= mapd ∈M
Q10 ::= merged ∈M

We have the triplet:

{P} Merge (msd, mapd, mtd) {Q}

In the same manner, we define an execution semantics for
each global operation defined in the megamodel. However,
carrying out a global operation may require the execution
of other global operations for standardizing the input models
(ripple effect). This means that the output of a global operation

may correspond to the inputs of another.

B. Inference rules for safe executions of global operations

The operation Merge takes as inputs two models represent-
ing the same dimension, in the contrary case, it would be
necessary to call the global operation model Refine. Then
if the two input models have not the same metamodel then
we can also use the global operation Change2Ref enabling to
transform a model specified in a given metamodel to another
metamodel. Before applying the Merge operation, we have to
earlier call the global operation Map with the two input mod-
els. Indeed the third parameter (map) to Merge is a morphism
that describes elements of msd and mtd that are equivalent
and should be "merged" into a single element mapd in M.
Once that all the models as inputs were described in the sound
formalism, then one can apply the operation of merging. One
thus realizes that it could exist a logical precedence between
two or more global operations defined in the megamodel. In
order to take into account these considerations we have to set
up, in addition to axioms, a deductive system which permits
the deduction of new theorem from one or more axioms or
theorems already proved. A rule of inference takes the form
"If ⊢ X and ⊢ Y then ⊢ Z", i.e. if assertions of the form X

and Y have been proved as theorems, then Z also is thereby
proved as a theorem.

For that we will use two rules of inference presented in [17],
namely the rule of consequence and the rule of composition.
After that, we present an example in which these two rules
are applied.
(i) Rules of consequence :

If ⊢ {P}S{R} and ⊢ R ⊃ Q then ⊢ {P}S{Q}

If ⊢ {P}S{R} and ⊢ P ⊂ Q then ⊢ {Q}S{R}

These rules state that if the execution of a global operation
ensures the truth of the assertion Q, then it also ensures the
truth of every assertion logically implied by Q.

(ii) Rule of composition :

If ⊢ {P}S1{Q1} and ⊢ {Q1}S2{R} then ⊢ {P}(S1; S2){R}

This rule states that if the proven result of the first part
of a global operation is identical to the pre-condition under
which the second global operation produces its intended result,
then both global operations will produce the intended result,
provided that the pre-condition of the first global operation is
satisfied. We will use the notation :

⊢ {P}S1{Q1} ⊢ {Q1}S2{R}

⊢ {P}(S1;S2){R}
global operation

We can then define the inference rule for the Merge global

operation which enables us to carry out the integration of two
models.
Considering the previous example. We have to describe an
execution of Merge between the two models : msd and mtd.
However before applying the Merge Operation, it must be
necessary to invoke at first the Operations : Change2Ref and
Map.
Operation : Change2Ref

mtd ←− Change2Ref(msd)
Pre-conditions

P ⇔
⋂















P1 ::= mtd ∈M
P2 ::= msd ∈M
P3 ::= type(msd)! = type(mtd)
P4 ::= dimension(msd) == dimension(mtd)

Post-conditions

Q⇔
⋂















Q1 ::= mtd ∈M
Q2 ::= msd ∈M
Q3 ::= type(msd) == type(mtd)
Q4 ::= dimension(msd) == dimension(mtd)

We have : A1 ←− {P}Change2Ref{Q} (i)

Operation : Map

mapd ←− Map(msd, mtd)
Pre-conditions

M ⇔
⋂























M1 ::= mtd ∈M
M2 ::= msd ∈M
M3 ::= mapd /∈M
M4 ::= type(msd) == type(mtd)
M5 ::= dimension(msd) == dimension(mtd)

Post-conditions

N ⇔
⋂























N1 ::= mtd ∈M
N2 ::= msd ∈M
N3 ::= mapd ∈M
N4 ::= type(msd) == type(mtd)
N5 ::= dimension(msd) == dimension(mtd)

We have : A2 ←− {M}Map{N} (ii)

Using the rules of consequence on (i) and (ii) we obtain :

⊢ {P}Change2Ref{R} and ⊢ R ⊃ M then ⊢ {P}MAP{N}
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We have : A3 ←− {P}Map{N} (iii)

Operation : Merge

merged ←− Merge(msd, mapd, mtd)
Pre-conditions

I ⇔
⋂































I1 ::= mtd ∈M
I2 ::= msd ∈M
I3 ::= mapd ∈M
I4 ::= merged /∈M
I5 ::= type(msd) == type(mtd)
I6 ::= dimension(msd) == dimension(mtd)

Post-conditions

R⇔
⋂































R1 ::= mtd ∈M
R2 ::= msd ∈M
R3 ::= mapd ∈M
R4 ::= merged ∈M
R5 ::= type(msd) == type(mtd)
R6 ::= dimension(msd) == dimension(mtd)

We have : A4 ←− {I}Merge{R} (iv)

Using the rules of consequence on (iii) and (iv) we obtain :

⊢ {P}Map{N} and ⊢ I ⊃ N then ⊢ {P}Merge{R}

We have : A5 ←− {P}Merge{R} (v)

More formally, using the rules of composition we obtain :
⊢{P}Change2Ref{Q} ⊢{M}Map{N} ⊢{I}Merge{R}

⊢{P}Merge{R} Merge

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a model-based environment
of dynamic tool integration based on a MDE vision. We
use a megamodel in order to manage dynamic changes in
the software architecture. For that we have considered the
megamodel as being a program and accordingly we have
proposed an approach (namely Hoare’s axiomatic semantics)
already used for proving program’s correctness which enables
to keep the megamodel consistent.

As we look at future works, we will certainly be looking to
set up Domain-Specific Modeling Language (DSML) which
enables us to automatize the management of the megamodels
and whose instructions will be the global operation instances.
Therefore, each instruction, which consists of global operation
execution, is likely to modify the megamodel structure and
semantics. That is why such a DSML should also integrate an
inference engine in order to provide a mean to reason about
the elements of the megamodels. This is the inference engine
that will be used to check the megamodels integrity and its
elements through the validation of Hoare’s triplets.
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