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Abstract—In practical applications, we often encounter prob-
lems controlling weakly damped resonant systems. These are
devices which often include inertia masses and flexible connecting
elements. These devices are mainly gantry cranes, mechatronic
systems, elevators, filling lines for the food industry and many
others. One approach to improving the transition process in the
control of these weakly damped systems is a method of shaping
control signals. This method starts to be used in the control of
systems with flexible elements in the 90s of the twentieth century.
Over the next twenty years, we meet with successful applications,
especially in the control of positioning systems. When we are
talking about the theoretical description of input shaping today,
we meet mainly with two basic approaches. The first is based
on the selection of a proper sequence of pulses in the time
domain. The second is based on the design of such discrete
shaper, which compensates the effect of the complex poles of
a controlled system causing residual vibration. Irrespective of
the shaper design method, we must know either the systems
oscillations and controlled system damping, or the location of
the complex poles causing the vibration.

I. INTRODUCTION

T
HE AIM of the input shaper is to adjust the control
signals of the weakly damped system in order to eliminate

residual vibrations of the system. With its proposal, we try to
minimize transition time simultaneously. To illustrate this, let
us have oscillatory system with the transfer function:

F (s) =
1

T 2s2 + 2bTs+ 1
, b ∈< 0, 1), (1)

where b is the damping of the system and T is the time
constant.

The task is to propose such methods of the control signal
adjustment, that the transition process fits stated requirements.
The possible system arrangement is shown in figure 1. It is
evident that the shaper acts as a serial correction element that
is known from the classical theory of automated control.

Fig. 1. The input shaping process

For the shaping of the control signal, two approaches can
be used:

1) Signal shaping in the time domain, e.g. direct generation
of the control signals with suitable properties [1], [2].

2) Using discrete shaping members [6], [9].

Appropriately chosen shaper suppress residual vibrations
of the system. Note that the suppression ratio of residual
vibrations is often expressed as the ratio of the amplitude of
the output signal with the shapers input signal to the amplitude
of the output signal without the shaper [4], [7], [8].

II. PROPOSAL OF AN INPUT SHAPER IN THE TIME DOMAIN

The rate of suppression of residual vibrations can be
expressed as a function of the angular velocity ω and the
proportional damping factor b of the system as:

V (ω, b) = e−bωtn
√

(C(ω, b))2 + (S(ω, b))2, (2)

while:

C(ω, b) =
∑n

i=1 Ai · ebωti · cos(ω · ti
√
1− b2),

S(ω, b) =
∑n

i=1 Ai · ebωti · sin(ω · ti
√
1− b2),

(3)

where Ai is the amplitude, ti is the time of occurrence of the
ith pulse and n is the number of input shapers pulses. Ideally,
with complete suppression of the vibrations, the relation (2)
has to be equal to zero for its own circular speed and relative
system damping. It is obvious that for ω = ω0 is given:

C(ω0) = 0, S(ω0) = 0, (4)

If the shaped output is to have the same final value as the
unshaped (normalized shaper), then it is given that the sum of
the amplitudes of all pulses has to be equal to one:

n
∑

i=1

Ai = 1. (5)

Note that if the pulse amplitudes Ai are not limited, then
in terms of minimizing the total time of transition tn, it will
acquire an infinitely large value. When practical solutions, we
most often encounter with two restrictive conditions:
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3) The pulse amplitudes can take values from the range of
±Amax,

4) The pulse amplitudes can take only non-negative values
Ai ≥ 0.

It is obvious that if amplitudes of all the pulses are non-
negative, then respecting conditions (5), it must belong to the
interval 0 ≤ Ai ≤ 1. With respect to those limitations, by
solving the equations (2) we get for min(tn) the solution
describing positive ZV shaper whose design is often stated
in matrix form [3], [5], [6], [7]:

[

Ai

ti

]

=

[

1
1+K

K
1+K

0 0.5 · TD

]

, (6)

where:

TD =
2 · π · T√
1− b2

,K = e
− bπ√

1−b2 . (7)

ZV shaper (zero-vibration) (6) may be described in the time
domain by a relation:

y(t) = A1 · δ(t) +A2 · δ(t− t2). (8)

ZV shaper described, however, is quite sensitive to changes
in the parameters of the controlled system, in particular, to the
changes in its own circular speed. For this reason, more robust
input shapers have been developed. The most famous is ZVD
(zero vibration derivate) shaper. In deriving the ZVD shaper, it
is assumed that the derivative of the function V (ω, b) is equal
to zero.

[

Ai

ti

]

=

[

1
(1+K)2

2K
(1+K)2

K2

(1+K)2

0 0.5 · TD TD

]

(9)

From (9) it is clear that the increase of robustness is
penalized by the increase of the transition time. Transition
time rose from 0.5 · TD to TD.

III. PROPOSAL OF DISCRETE INPUT SHAPER

The problem of suppression of residual vibrations in the
control of weakly damped systems can be successfully re-
solved with the appropriate design of discrete systems (cor-
rection elements) regulating the spectrum of the control signal
to suppress residual vibration of the system. It is clear that the
task can be solved by the appropriate placing the zeros of the
z-transfer function characteristic element to the z-plane points
corresponding to the field effect system. As the controlled
system is characterized by a continuous transfer function, it is
necessary to find a suitable transformation of the continuous
system to a discrete equivalent. The discrete shaper will then
be the inverse of the discrete equivalent of the continuous
system. If the designed shaper compensates only selected
complex transfer poles, then it is sufficient to place zeroes
to the appropriate poles of the shaper. To find the discrete
equivalent of the continuous system F (s) defined by poles
which cause oscillation of the system, it is suitable to use the
transform between s and z plane by using the relation:

z = esTv , (10)

where Tv is the sampling period.
Recall that we want to compensate only complex poles,

therefore we consider the transfer in the form:

F (s) =
1

∏N

i=1(T
2
i s

2 + 2biTis+ 1)
, (11)

where N represents the number of pairs of complex conju-
gate poles to be compensated, Ti stands for the time constant
and bi is the damping coefficient of the ith subsystem. The
poles of the system with transfer (11) are:

pi,1,2 = − bi

Ti

± j

√
1− b2

T
, i = 1, 2, 3, ..., N (12)

In applying the transformation equation (10), for the poles
of discrete equivalent of continuous system (11) will apply:

pdi,1,2 = rie
±jφi = e

−Tvbi

Ti e
±j

Tv

√
1−b2

i

Ti , i = 1, 2, ..., N (13)

To compensate for the effect of selected poles of the
continuous system, the discrete shaper has to contain zeroes
in such points in the z-plane that correspond to poles of the
discrete equivalent (pi1,2) (Fig. 2).

If we place the zeroes of the shapers z-transfer function into
the points corresponding to the position of poles, then transfer
function shaper will be in the form:

F (z) =
N
∏

i=1

(z − zi1)(z − zi2), (14)

alternatively, when considering a 2N-multiple pole at the
origin of the plane:

F (z) =
∏N

i=1 Ci(1− zi1z
−1)(1− zi2z

−1),

F (z) =
∏N

i=1 Ci(ai2z
−2 + ai1z

−1 + ai0),
(15)

where

Fig. 2. Poles representation in the s-plane and z-plane
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Ci =
∏N

i=1
1

ai0+ai1+ai2

,

ai0 = 1, ai1 = −(z1 + z2), ai2 = z1 · z2,
(16)

alternatively:

ai0 = 1, ai1 = −2ricos(φi), ai2 = r2i ,

ri = e
−Tvibi

Ti , φi =
Tvi

√
1−b2

i

Ti

.
(17)

When defining the gain Ci, we assume that consistentely
with the continuous system transfer(11) is the shaper normal-
ized (shaper gain is equal to one). From (13) it is clear that the
position of poles of the discrete equivalent of the continuous
system (11) pdi,1,2 can be changed in the z-plane by selecting
the sampling period Tv . This is illustrated in figure 3.

The curves on the right side of figure 3 illustrate a possible
pd1,2 poles location of the discrete equivalent of a continuous
system, depending on the selection of sampling period Tv . The
left side of figure 3 shows the poles of the original continuous
oscillating system with the transfer function (1). It is clear
that the value Tv can be theoretically chosen in the range
of 0 to ∞. Recall that the settling time of system output is
proportional to the sampling period Tv . It follows that if we
focus on achieving good system dynamics shaper-system, we
are trying to make Tv minimal during the design of the shaper.
Obviously, the choice of Tv minimum value is related to the
energy options of the actuator and the constraints of system
input. More specifically, the input shaper synthesis and the
problem of choice of sampling frequency was discussed in
the paper [10].

IV. THE PROBLEM OF OSCILLATING SUBSYSTEM

IDENTIFICATION

As already indicated, the basic assumption of the successful
suppression of residual vibrations of a transition process by
input shaper is the knowledge of the controlled oscillating
subsystem parameters. Due to the rapid adaptation, it is
advisable to devote to the identification of only that part of
the system, which causes vibration. The proposed solution
is illustrated in figure 4. This example does not discuss the

Fig. 3. Locus of the poles of discrete equivalent of the continuous system

identification of the drive of subsystem M , but only analyze
the dependence of the pivot position x(t) and the load position
y(t).

In order to verify the proposed comprehensive solutions,
wireless acceleration sensors have been developed in our de-
partment. The sensors were used to measure the displacement
x(t) and the load movement y(t). Based on the input to the
oscillating system section x(t) and the corresponding output
y(t), parameters T and b of the oscillating section were
identified with the transfer function:

F (s) =
1

T 2s2 + 2bTs+ 1
(18)

V. CASE STUDY

In general, it is common to face to the problem of identifica-
tion in control applications. In order to be able to appropriately
modify the control signal and thus the system response to this
signal, it is important to know the transfer function of the
system. For this purpose, the modules providing collection and
data transfer were designed.

A. Description of used nodes

When designing the node, microcontroller ATmega168 was
chosen as an element controlling the data collection and
transfer. Considering that the system frequency and damping
have to be known in the identification, we decided to retrieve
data through LSM303DLHC module that includes a 3D digital
linear acceleration sensor and a 3D digital magnetic sensor.
Data obtained from the accelerometer is sent via I2C serial
bus interface to the microcontroller. The microcontroller uses
a timer/counter for timing each data collection process, and
it ensures equidistance sampling (fs = 400Hz). The output
of the accelerometer is represented by three 16-bit words,
where each represents one of the axes x, y, and z. Gathered
data is further sent through the wireless module RFM70. The
proprietary module operates at a 2.4GHz frequency, and can be
configured as a transmitter and as a receiver. Communication
with RFM70 is ensured via the SPI interface. The data
from the nodes is sent at each subsequent reading of the
accelerometer, which means that we have a real-time data.

In order to get the data to the PC for processing, the node
consisting of a microcontroller ATmega8 was proposed. Its
role is to ensure the data reception from two transmitters via
wireless module RFM70 and subsequently to send the data to

Fig. 4. Oscillating subsystem identification
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Fig. 5. Step response of weakly damped system

the PC via the UART interface. Here the data is visualized
and further processed.

B. The measured results

Data obtained from the 3D accelerometers is sent via the
RS232 interface to the PC where it is rendered over Matlab
environment in the graph in real-time. In addition to displaying
operation, the received data is recorded to the file, which forms
the basis for further processing. Considering the change of
the sensor position is not recorded only in one accelerometer
axis, the data measured at the same time is summed. The data
obtained through sensors WS1 and WS2 is represented in
figure 5.

C. System identification

In order to identify the system, it is important to describe the
output signal. As can be seen in figure 5, the output signal has
damped oscillatory character after excitation (Fig. 6) [11]. As
the input signal, the output signal is stabilized at the original
level.

From the data obtained, it is approximated (determined) the
system equation. After the system excitation, we get the local
minimum K−y2 and the local maximum y1−K. These values
are in equation 19 represented as x1 and x2.

Fig. 6. Step response of weakly damped system

b = ln(
x1

x2
) · 2

T
, (19)

where b represents the damping of the system output. Period
T , and thus the natural frequency of the system is defined
by a difference between the times when there was a local
minimum t2 and the local maximum t1. Substituting the
obtained parameters in equation 18, we get the system step
response (Eq. 20).

F (s) =
1

0.982s2 + 2 · 0.1702 · 0.98s+ 1
(20)

VI. CONCLUSION

In this paper, conventional methods of input shaping tech-
niques were reviewed. To propose suitable input shaper the
controlled system should be identified. For this reason, nodes
providing data from the accelerometer and wireless communi-
cation were constructed. These devices are small so they can
be used also in other applications (e. g. to identify weaknesses
of construction proposal and getting its mathematical model).

As the results show, the identification of second order sys-
tem is not computationally demanding but captured data suffer
from unwanted noise. To improve the process of identification
data gathered from the accelerometer should be appropriately
filtered.

There is a need to propose new nodes involving the
gyroscope coming to the fore. This fact will result in the
future work that will be focused on data fusion, particularly
combining data from accelerometer and gyroscope.
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