
Many-valued logic in manufacturing
Patrik Eklund
Umeå University

Department of Computing Science
SE-90187 Umeå, Sweden

Email: peklund@cs.umu.se

Magnus Löfstrand
Umeå University

Department of Computing Science
SE-90187 Umeå, Sweden
Email: maglof@cs.umu.se

Abstract—This paper shows how to enrich the language used in
the manufacturing industry regarding information structure and
its representation for products and production processes. This is
enabled because of our use of many-valued logic, and in order
to complement the numerical approach commonly appearing in
such representations. We underline the importance of utilizing
mathematical disciplines like algebra and logic side-by-side with
the utility of analysis and stochastics.

I. INTRODUCTION

W
ITHIN a communicating resources perspective, many-
valued logic will be applied to decrease Data Com-

plexity for applications in Big Data. We will further intro-
duce a structure for functioning classification in order to
complement and interact with the traditional view of faults
and failures in product and production subsystems. We will
develop a prototype information structure demonstrating the
potential use of a multi-valued logic enriched classification
of functioning in machines and manufacturing (MCFu), as
related to enriched classification of faults in machines and
manufacturing (MCFa). Our concept of digitalization, in or-
der to support manufacturing and machine simulation and
modelling as e.g. part of design processes, whether e.g. in
the case of cars and car production, related to subsystems
such as powertrain, electronics or interior, will be based on
nomenclatures, classification and ontology as part of pro-
duction and in particular production where information and
process is tightly connected. Our language and concept, with
MCFu and MCFa classifications, will support transformation
and transferal of data between robots, humans and companies
(Internet of Things 2.0), thus strengthening industry.

For machines and vehicles, faults and failures reduce their
function either partly or completely. The traditional enngineer-
ing view of functioning classifications does not always connect
well and accurately with corresponding faults classifications.
Machines and vehicles in the widest sense, e.g., including
operators and end-users of a wide variety, need to interact
with the environment, and therefore also need to appropriately
connect all resources. To facilitate the connections, these
respective resources need a common language for representa-
tion of faults and functioning and the relation between them.
Further, within and across various machine subsystems, infor-
mation and information structures are currently insufficiently
connected with respect to standard information representation.
Numerical approaches to standard and information structure

development and utility within the industry promotes uncer-
tainty and many-valued considerations mostly in directions
of analyzing variability, and indeed variability as related to
numerical values. Logical many-valuedness, and underlying
structures are basically missing in most numerical approaches.

Our approach to many-valued logic can be seen also to
enrich e.g. our anticipated combination of DSM [1] with
the Axiomatic Design model [2], which structurally extends
approaches dealing with the unstructured matrix view [3], [4].
The DSM view involves modularity of component, people
and activity, whereas the Axiomatic Design model involves
customer, function, product and production. The underlying
logical scope appears in Section II, including the view of
combination of models with respect to their granularity and
modularity.

Respective logical enrichment of DSM and Axiomatic De-
sign is prerequisite to a logical merger of these two models

into a unified conceptual framework for information and

process for products and production. Information basically
resides within some use-case subprocess task, in turn being
part of a larger process. Communication involving people
performing activities is therefore not just a transmission but
also requires transformation of data from a particular subpro-
cess to be integrated and used within another subprocess. We

thereby iterate complexity of problems and integration of

solutions. Because of our logical model, industrial applica-
tions and required systems-oriented research are done in iter-
ation, explained within a common interdisciplinary conceptual
framework.

II. LOGICAL APPROACH

A. Common Interdisciplinary Conceptual Framework

Smart [systems] basically means smart
[components-people-activities] in combination
and interaction, i.e., smartness of the multidomain in DSM.
This builds upon smart [components], smart [people]
and smart [products], and this also explicitly initiates the
explanation how smartness resides within a logical framework.
Smartness thus embraces being correct and consistent about
information. Further, we make a distinction between smart
[system of systems] and [smart system] of systems. Various
definitions appear in these contexts. Smart products are
typically expected at least to involve monitoring, allow
control, invite optimization and to be autonomous, each

Position Papers of the Federated Conference on Computer
Science and Information Systems pp. 11–17

DOI: 10.15439/2016F73
ACSIS, Vol. 9. ISSN 2300-5963

c©2016, PTI 11



capacity and capability building upon the preceding one, so
that e.g. in order to have control capacity, a product must
have monitoring capability.

Logically connecting activities and functioning, components
and production, and enabling information structures to enrich
availability, provide the foundations for describing the wide
variety of smartness. In a concept like time to failure it
is important to realize how failure needs to specified and
enhanced by the underlying signature. Otherwise a failure may
remain seen as an event, i.e., simply just a constant operator
in the signature.

Maintenance strategy, preventive schedule (prevention
guideline), predictive schedule (risk estimation), corrective (in-
tervention), and inspection (monitoring and assessment scales),
all appear in one form or another in the private and public
sector. From stakeholder point of view, the private and public
sectors are similar in that they share the logic of information

structures even if the content is entirely different. The private
and the public sectors, on the other hand, differ in that the
private sector is a B2B matter, whereas the public sector is
Triple Helix [5], including also a formal political dimension
in university-industry-government relationships.

B. Extending the relational-logical view

We define a logical SoS involving dialogue of various
form, interaction and integration, interfacing and transferral of
information and structures, within and between subsystems.
Further, system availability [3] and task scheduling [4] are
important disciplinary aspects. The provision of a functioning
standard will be extended to explain the potential use of
a multi-valued logic enriched classification of functioning
(MCFu) as related to a similarly enriched classification of
failures (MCFa).

The logical enhancement of DSM is briefly outlined as
follows. DSM uses a set X of system elements to create the
set product X ×X viewed as a matrix. Bivalent interactions
between elements form a relation R ⊆ X × X sometimes
viewed as a digraph. That bivalent relation can equivalently
be represented as a function ρR : X × X → {0, 1}, so
that aRb, i.e., (a, b) ∈ R if and only if ρR(a, b) = 1. The
set X is initially unstructured, i.e., no order or operations
of any kind are imposed on X . Elements x ∈ X therefore
have no initial annotation or attribution of any kind. However,
once elements are given names so as to represent components,
granularity is intuitively recognized, and respective modelling
approaches decide about levels of detail. A typical view is
that rolling up into lesser detail [1] is accepted if significant
information or insight isn’t lost. We formalize this by viewing
system elements as terms over a signature Σ = (S,Ω), where
S is the structure of sorts (types) and Ω is the structure
of operators. The set of system elements is then initially
enriched to a set of terms TΩX , where X is a set of
variables. As an example, an element actuator as a point
in set without structure is symbolically meaningless, whereas
actuator(f(x1, . . . , f(xn)) as term builds upon aactuator

and f as operators, and x1, . . . , xn as variables. Similarly, a

temperature control could be a term EATC(g(y, z)). A many-
valued interaction between the actuator and the temperature
control could then be given as

ρ(actuator(f(x1, . . . , f(xn)), EATC(g(y, z)))

where ρ : TΩX × TΩX → {no,weak, strong} is a three-
valued relation over TΩX , which unravels hidden information
as compared to modelling using X only. This notation is
based on category theory, where TΩ : Set → Set is a term
functor [6] that can be extended to a monad. The monad
properties allow substitutions of expressions within a term
to be composable, so that the substitutions x = g(y, z) and
z = 22 as composed and applied to EATC(x) leads to the
term EATC(g(y, 22)). This is obvious when we use relations
over TΩX , but once we want to have various structured sets
of terms, then we need monad compositions [6]. Powersets are
typical examples, where system elements in a rolled up view
are clustered into subsets of system elements, and that subset
is given a new name as a new element in the rolled up DSM.
This is the first steps in the logical modelling of SoS.

In a many-valued logical system for describing
a DSM, components and subcomponents can be
viewed in the same logical framework, e.g., with
piston(. . . ) and crankshaft(. . . ) as parts of a
crank(. . . , piston(. . . ), . . . , crankshaft(. . . ), . . . ). In a
bivalent view, this enrichment is still not dramatic. However,
when adding the possibility that the term functor acts over
various Goguen categories [7], TΩ : Set(Q) → Set(Q),
where Q is the algebraic structure for the selected view
of many-valuedness, then many-valuedness can be invoked
in a wide variety of ways in the DSM, Axiomatic Design
and TRIZ models. In order for this paper to be more
self-contained, we included some detail of the term functor
in the Appendix.

Note that typing is prerequisite to modularity, i.e., the
set of sorts in the signature, with related type constructors
[6]. Granularity then comes from using a more elaborate
structure of operators, ranging from the most coarse-granular
situation where Ω contains only constants (of different type)
to finer-granularity involving a wide range of operators with
various arities, and operating over a rich structure of sorts and
constructed types.

Rolling up into lesser detail will actually provide a name for
a subset or cluster of system elements. It is then immediately
important to note how symmetry and associativity, with trivial
reflexivity, of a relation, means that we have an equivalence
relation. These relational properties mean that X subdivides
into equivalent classes. Again, in the bivalent case, this is
apparent and straightforward, but when moving to the many-
valued case, symmetry and associativity are then also many-
valued, and the subdivision of TΩX becomes a non-trivial
matter. Another matrix approach example is the Pugh selection
matrix, where the arithmetic calculation ignores the intuitive
order among the design criteria, where e.g. ease and time of
an implementation precedes cost of it. Here is yet another

12 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



example where many-valued approaches to types and oper-
ations enable modelling of order, i.e., how different criteria
have precedence over other criteria, hidden in the matrix.

We further provide a logical enrichment of the matrix/rela-
tional models involved, so that relational types and strengths
are further enhanced by symmetries, associativities and

granularities. This brings in the mathematical disciplines of
logic and algebra as a complement to numeric and stochastics.
The lativity1 of systems is a key feature where design
precedes simulation, logic precedes design, statistics precedes
analytics, subsupply precedes supply.

III. SYSTEM-OF-SYSTEMS

A. System-of-systems definition

The definition of system of systems (SoS) is shown to be
logically extendable over current definitions [8], which mostly
describe types of systems of systems rather than their infor-
mation content. In doing so, we are thereby closer to a system
of systems views described as a collection of task-oriented or
dedicated systems that pool their resources and capabilities
together to create a new, more complex system, which offers
more functionality and performance than simply the sum of
the constituent systems [9].

The goal of a SoS architecture is to get maximum value

out of a large system, comprised of smaller systems, by
understanding how each of the smaller systems work, and
developing industrially suitable interfaces based on industrial
needs and usability studies. Since industrial applications are
significantly diverse, and manufacturing industries communi-
cate both within and across their boundaries, they are therefore
complex and involve people with diverse backgrounds. Hence,
complexity and cooperation are very important challenges,
and robust cooperation and coordination between systems of
humans and computing devices is crucial for progress in
development of research results and in application develop-
ment. Additionally, and perhaps most importantly, in particular
applications, implementation, verification and validation

activities must attain high robustness and trustworthiness,
which requires underlying logical structure from complexity
and facilitating cooperation as well as improved product and
production development process data management.

B. The information and process view of SoS

Our language and concept, given the logic framework with
MCFu and MCFa classifications, will support transformation
and transferal of data between robots, humans and companies
(Internet of Things 2.0), to optimally support the manu-
facturing industry in their contractor-subcontractor business
relations, where sustainable production is measurable by key
performance as described by our logical framework.

1’Lative’ is related to motion, and more specifically, motion ’to’ and ’from’,
so when terms appear in sentences, terms ’move into’ sentence, and ’appear
within’ sentences. At the same time, sentences ’move away from’ terms, and
separates terms from sentences. In comparison, ’ablative’ is motion ’away’,
and nominative is static.

Formal process modelling languages, like UML with its
Behavioral Modeling, SysML and BPMN, from the Object
Management Group (OMG), will enable formal information
structures to be integrated with the process structures in man-
ufacturing applications. The logic and ontology of information
structures in industrial applications will be used for markup
purposes. Upscaling of applications should follow an overall
strategy as well as concrete suggestions and specific steps for
the upscaling process and progress.

C. Application domains

For example, in forest products and mining industries, the
general need is to ascertain optimal operation and utility of
their subsystems, i.e., within the normal operation parame-
ters. The goal is to maintain normal operation and optimal
efficiency e.g. by avoiding unplanned stops and energy loss.
The supplier-customer relation e.g. with respect to service and
maintenance is important in particular from a SoS perspective.

Further, the automotive industry faces new SoS challenges
e.g. due to the ambition to develop self-driving cars. Doing
so brings developments much more outside the car itself,
with needs to consider traffic and the environment as parts
of the overall SoS. Customer experience, including safety and
quality, also becomes extended with other aspects still not
considered. From SoS point of view, traffic as a conglomerate
of cars is composed differently as compared to a car being
assembled from its components. Apart from industrial applica-
tions, also in health care there are several well-known systems-
of-systems that can be logically treated similarly with respect
to modelling of information and process. Ageing is a typical
area where health and social care need to interact and become
integrated in common care pathways. Falls prevention can be
view as a specific example. Falls represent a major cause of
burden and death in older adults [10]. Enhanced models of care
pathways, with enriched data attached to targeted subsystems
based on the herein presented logics framework, will enable
monitoring of the overall care SoS performance, including
macro-, meso- and micro- levels.

IV. STATE-OF-THE-ART

Originality of our logical approach is two-fold. On the
one hand, the use of classification of functioning, as clearly
separated from but connected with taxonomies of products and
classifications of structure, is an original approach in the man-
ufacturing industry. Further, many-valuedness annotated with
codes, and the way codes as well as structures of codes are
many-valued, is a novelty not yet seen within manufacturing.
On the other hand, and still from disciplinary research point of
view, our approach to enable many-valuedness at all levels and
modules within a logical machinery, is unique within the logic
and in particular within the many-valued logic community.
Traditional many-valuedness e.g. in form of fuzzy sets and
fuzzy logic, and in particular as appearing within fuzzy control
techniques, is an untyped and numeric based technique that
further relies only on unstructured relations, like in Zadeh’s

PATRIK EKLUND, MAGNUS LÖFSTRAND: MANY-VALUED LOGIC IN MANUFACTURING 13



compositional rule of inference [11], and invokes many-
valuedness only as far as truth values are concerned. Whereas
statistics produce uncertainty quantification, many-valued

logic provides algebraic computing with uncertainties.
Logic is a structure containing signatures and constructed

terms and, and statements or sentences latively constructed
based on terms. Similarly, sentences and conglomerates of
sentences are fundamental for entailments, models and sat-
isfactions, in turn part of axioms, theories and proof calculi.
This lativity is suitably expressed in category theory using
functors and monads, where constructions act over underlying
categories in form of monoidal categories. Category theory
is thus a suitable metalanguage for logic, in particular when
applications and typing of information must be considered.
Uncertainty may reside in generalized powerset functors, and
may be internalized in underlying categories. In both cases,
suitable algebras must motor this uncertainty representation,
and quantales are very suitable in this context. [20]

From a systems-oriented research point of view, logical en-
richment of availability simulation, faults and functioning,
DSM, Axiomatic Design, TRIZ, and other information and
process related models, connect not only to methods in modern
logic, but also to the historical traditions in logic such as
represented by sets and types in Principia Mathematica or type
theory as initiated by Schönfinkel’s Bausteine [12], Curry’s
functionality [13] and Church’s simple typing [14]. Göttingen
and Hilbert’s foundations of mathematics were a driving force
for Gödel and his work in Vienna, and many-valued logic was
started by the Lwow-Warsaw school. Kolmogorov’s Aufgabe
[15], related to the TRIZ view of inventiveness, as a task rather
than a problem is a broader foundation for algorithm as later
developed by Turing [16].

For classification purposes, type constructors must make
use of category in order to enable underlying categories that
represent uncertainties, using a three-level signature [6], where
structured powerset constructors can be handled properly. The
generic scale of uncertainties resides in those underlying cat-
egories, and the algebraic use of the scale [19] is a technique
that is unavailable in traditional type theory approaches e.g.
within homotopy type theory (HoTT) [17]. A typical first
step to many-valuedness is adding an unspecified to two-
valuedness.

Relations like trees and matrices are basically unstruc-
tured sets and relations, which e.g. means that our approach
potentially enriches design methodologies which basically
use matrix computations to relate physical product structure
with function. Values in matrices are always just numerical
values, and also detached from any nomenclatures. Logic
enables representation where relations become enriched with
more structure and attached with classifications. Enrichment
of structure for products then spills over to enrichment of
structures in production. Thus, engineers are potentially pro-
vided with tools that enables improved quantification for
design evaluation as well as for quality assurance and control,
e.g. as those appearing in failure mode and effects analysis
(FMEA) [18].

Industrial product development challenges relate, on the
one hand, to information structures, respectively, for customer,
function, product and production, and, on the other hand, to
compatibility and transformations between these structures.
DSM is typically used for internal structure descriptions,
whereas Axiomatic Design is typically used for the transfor-
mations. See [1], [2] for details and examples. In both models,
matrices only, with numerical and untyped values, are used to
represent relational structures. Transformation of information
within these models should indeed not just restrict to mapping
of matrix content in an unstructured manner, but rather start
from identifying the relational content, and thereby enable
expansion and enrichment towards using structure preserving
transformations.

A. DSM

In its most rudimentary form, a Design Structure Matrix [1]
is a relation ρ : X×X → {no, yes}, where X is a set of sys-
tem elements. The engineering understanding of such a system
element may be very complex, but in the mathematical model
of it, it is just an element, or actually a name of an element.
A matrix is more appealing if yes values appear close to the
diagonal, which implies a certain nearness between system
elements. With values distant from the diagonal, clustering
can provide conglomeration points with values that make the
clustered matrix appear more diagonal.

The bivalent interaction is sometimes extended to a three-
valued interaction with names in the three-valued set of
truths being ’strong interaction’, ’weak interaction’ and ’no
interaction’. There are no logical connectives, so there is
no explicit propositional logic annotated with DSM. In the
traditional DSM model there is also no considerations for
a ’not specified’, which would invite to viewing that three-
valued truth set as a non-commutative quantale [20] or com-
mutative Bocvar-Kleene algebra [21], [22]. Kleene called
than in-between value ’unspecified’, whereas Bocvar called it
’senseless’. Kleene used his three-valued logic e.g. to model
partial functions within recursion, so ’unspecified’ in logical
connection with something specified is an interchangeable
(commutative) operation.

In addition to bivalent interaction, multivalent interaction
exists also as related to the use of typed interactions, like
the one with four types, respectively, for ’spatial’, ’energy’,
’information’ and ’materials’. Each type is valuated within a
5-scale {−2,−1, 0,+1,+2}, with −2 for ’detrimental’, and
+2 for ’required’. The internal algebraic structure of the set
of components is, however, not given.

Product, organization and process structures, respectively,
involving components, people and activities, also appear as
integrated in a multidomain architecture.

B. Axiomatic Design

Information and process development addresses the chal-
lenge to combine components and product taxonomies with
activity and process hierarchies, in order to support decision-
makers, engineers and customers. Many-valued logic enriches

14 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



the anticipated combination of DSM with the Axiomatic
Design model [2], which in effect goes far beyond approaches
dealing only with the unstructured matrix view. Whereas
the DSM view involves modularity of component, people
and activity, the Axiomatic Design model involves respective
domains for customer, function, (physical) product and (ob-
servable) process.

Decoupled design, in case of a triangular matrix, is de-
sirable, as this enables sequential consideration within the
domains. Axiomatic Design theory is product design which
start from using customer attributes (CA) as a basis for
functional requirements (FR), in turn to map over to design
parameters (DP), and from there arriving at process variables
(PV). The FR to DP mapping is the most critical one.

Attributes, requirements, parameters and variables are all
identified by names only, i.e., they are logically constants
(0-ary operators). Independence and Information Axioms are
formulated using these constants, and decomposition within
and between (zigzagging) domains is simply saying that a
constant becomes the name of a set of new constants, building
up a hierarchy of constants.

Axiomatic Design involves a matrix view between domains,
but not within a domain as in the case of DSM. Integrat-
ing DSM into Axiomatic Design using the unstructured and
traditional models is suggested in [23]. Integration based on
our structured approach will additionally involve structure-
preservation.

Respective logical enrichment of DSM and Axiomatic De-
sign is prerequisite to a logical merger of these two models into
a unified conceptual framework for information and process
for products and production. Information basically resides
within some use-case subprocess task, in turn being part of
a larger process. Communication involving people performing
activities is therefore not just a transmission but also requires
transformation of data from a particular subprocess to be
integrated and used within another subprocess. We can thereby
iterate complexity of problems and integration of solutions.

C. TRIZ

TRIZ [24] as a theory of inventive problem solving is
a general model, and an informal model as more formal
data, logical or computational models are not included. For
algorithms in ARIZ [25], data models are required, but are still
on a very general level. Objects and classes, like those modeled
e.g. by Class Diagrams in UML, can be used, but will not
suffice in order to represent and solve contradictions in TRIZ’
contradiction matrix, since TRIZ inherently involves processes
and behavior. The UML Class Diagram is simply a data model.
Furthermore, the features in the contradiction matrix are of a
wide variety of types, which are lumped together into one “set
of features”. This makes it unsuitable to view the matrix as
a basis for a relational model. The set of features must be
dissected and structured, and the features themselves must be
enriched and further specified.

The 40 TRIZ Principles are also very different in nature and
content, and are more like principle of common sense than

principles of reasoning. The ’Preliminary action’ principle for
the related features ’Reliability’ and ’Loss of time’ basically
recommends prevention of faults, prior to detection of faults,
should they happen. Improving feature ’Ease of repair’ as
related to worsening feature ’Device complexity’ involves
the ’Segmentation’ principle with respect to the need for
increasing transparency and modularity. In logic we would say
that “this logic is sound but not complete” is a metalogical
statement, whereas “if you have to use a logic that sound but
not complete, try to use a logic that is as complete as possible”
is a principle more in the style of common sense.

Several features in the contradiction matrix are physical
and/or geometrical, which logically can be expressed by struc-
tured terms rather than as unstructured concepts, as typically
seen within description logic. However, description logic can
be enriched [26] in order to make it better fit as a logic for
TRIZ like ontologies. Features like ’measurement accuracy’
and ’manufacturing precision’ can be managed by adopting
a logical framework with underlying signatures acting over
a monoidal category [27] representing multivalence and un-
certainty. Features like ’loss of ...’ and ’reliability’ can be
logically detailed for particular problem contexts, where ’loss
of ...’ features are related to functioning rather than faults
and failures. The ’Ease of ...’ features can only be described
by subprocesses, so in the case of UML we would need to
consider to use Behavior Diagrams, or, if staying within OMG
standards, move to using SysML. The ’Productivity’ feature is
closer to being analyzed within the BPMN model. Examples
with applications in crisis management have been developed
in [28].

V. UPSCALING

Industrial upscaling is more than just replication or multi-
piloting, i.e., not just going from a small pilot to a large pilot.
Specific pilots and cases expand within and across companies,
and this expansion requires availability and acceptance of the
common language, so that when scaling up, geographically
distributed teams and cooperating stakeholders realize the need
to be even more precise about underlying logical-relational
information structures as compared to just doing specific and
local pilots. Thus, the logical approach presented here supports
improved upscaling.

A. Upscaling strategy

Upscaling should follow an overall strategy as well as con-
crete suggestions and specific steps for the upscaling process
and progress. Guidelines are required in order to manage the
framework that involves the critical elements in scaling up.
Logic as an ingredient in manufacturing has its upscaling focus
(at least) on the following:

• Design and manufacturing issues, which are supported by
company specific and locally generated well proven prac-
tices of systematic effectiveness and feasibility, are key
factors that help to increase the likelihood for successful
and sustained upscaling.

PATRIK EKLUND, MAGNUS LÖFSTRAND: MANY-VALUED LOGIC IN MANUFACTURING 15



• The balance between the rigid scaling up models and
the pilot implementations residing within that scaling up
process and structure needs to be maintained.

• Scaling up may often require additional managerial and
financial input, and also an acceptance that upscaling usu-
ally implies a longer timeframe as compared to typically
seen in ordinary company project cycles.

B. Steps in upscaling

A general upscaling model, building upon our logical-
relational machinery, includes the following steps:

i. Descriptive identification of good practices using our
language and classification, and enabling refined and
broadened data collections and monitoring.

ii. Prescriptive analytics (numerics) and assessment (logics)
of the viability and benefits of upscaling within domains
of industries.

iii. Logical classification of good practices for replication,
whenever feasible, and for suitably adapted implemen-
tation with respect to a variety of competences and
industrial circumstances.

vi. Facilitation of partnership for scaling up within and
across corporations, making resources available.

v. Identify key success factors for generalized implementa-
tion, and recognize lessons learnt.

Compliance within upscaling and reinforced changes in work-
ing pattern is strongly emphasized, where also personal skill
and personalized behaviour is fundamental. Upscaling should
build upon excellence achieved within information structuring
cultures in the production industry, and aims at enriching these
structures using the logical-relational approach.

VI. CONCLUSIONS

We have shown how to enrich the language used in the
manufacturing industry regarding information structure and its
representation for products and production processes. This is
achieved using many-valued logic, in order to complement the
numerical approach commonly appearing in such representa-
tions. We underline the importance of utilizing mathematical
disciplines like algebra and logic side-by-side with the utility
of analysis and stochastics. Within a communicating resources
perspective, many-valued logic will potentially contribute to
information structuring and management of data complexity
in big data applications.

In future papers we will further introduce a structure for
functioning classification in order to complement and interact
with the traditional view of faults and failures in product
and production subsystems. Our concept of logic modelling
is based on nomenclatures, classification and ontology as
information structures part of and supporting production, and
indeed in production where information and process is tightly
connected. Support for manufacturing, machine simulation,
and modelling, then becomes part of design processes, e.g.
in cases like cars and car production, as related to subsystems
such as powertrain, electronics or interior,

ACKNOWLEDGEMENT

This work is supported by the Logic in Manufactur-
ing (LiM) project, with gratefully acknowledged funding
from the Swedish Innovation Agency (VINNOVA) PRODUK-
TION2030 programme.

REFERENCES

[1] S. D. Eppinger, T. R. Browning, Engineering Systems: Design Matrix
Methods and Applications, MIT Press, 2012.

[2] N. P. Suh, Axiomatic Design: Advances and Applications, Oxford
University Press, 2001.

[3] M. Löfstrand, M. Karlberg, J. Andrews, L. Karlsson, Functional product
system availability: simulation driven design and operation through
coupled multi-objective optimization, International Journal of Product
Development 13 (2011), 119-131.

[4] S. Reed, J. Andrews, S. Dunnett, P. Kyösti, B. Backe, M. Löfstrand, L.
Karlsson, A modelling language for maintenance task scheduling, In:
11th International PSAMS and ESREL 2012 Conference. vol. 1, 201-
211.

[5] H. Etzkowitz, L. Leydesdorff, The Triple Helix—University-Industry-
Government Relations: A Laboratory for Knowledge-Based Economic
Development, EASST Review 14 (1995), 14-19.

[6] P. Eklund, M.A. Galán, R. Helgesson, J. Kortelainen, Fuzzy terms, Fuzzy
Sets and Systems 256 (2014), 211-235.

[7] P. Eklund, J. Kortelainen, L. N. Stout, Adding fuzziness using a monadic
approach to terms and powerobjects, Fuzzy Sets and Systems 192
(2012), 104-122.

[8] M. Jamshidi, System-of-Systems Engineering - A Definition, IEEE SMC
2005, 10-12 Oct. 2005.

[9] S. Popper, S. Bankes, R. Callaway, D. DeLaurentis, System-of-Systems
Symposium: Report on a Summer Conversation, July 21âĂ¿22, 2004,
Potomac Institute for Policy Studies, Arlington, VA.

[10] H. Blain, F. Abecassis, P. Adnet, B. AlomÃĺne, M. Amouyal, B. Bardy,
et al., Living Lab Falls-MACVIA-LR: The falls prevention initiative of
the European Innovation Partnership on Active and Healthy Ageing (EIP
on AHA) in Languedoc Roussillon, Eur Geriatr Med. 5 (2014), 416-425.

[11] L. Zadeh, Outline of a new approach to the analysis of complex systems
and decision processes, IEEE Trans. Systems, Man and Cybernetics 3

(1973), 28âĂ¿44.
[12] M. Schönfinkel, Über die Bausteine der mathematischen Logik, Mathe-

matische Annalen 92 (1924), 305-316.
[13] H. B. Curry, Functionality in combinatory logic, Proc Natl Acad Sci

USA 20 (1934), 584-590.
[14] A. Church, A formulation of the simple theory of types, The journal of

symbolic logic 5 (1940), 56-68.
[15] A. N. Kolmogorov, Zur Deutung der intuitionistischen Logik, Mathe-

matische Zeitschrift 35 (1932), 58-65.
[16] A. M. Turing, On Computable Numbers, with an Application to the

Entscheidungsproblem, Proceedings of the London Mathematical Soci-
ety. Ser. 2, Vol. 42 (1937), 230âĂ¿65.

[17] Homotopy Type Theory: Univalent Foundations of Mathematics, The
Univalent Foundations Program, Institute for Advanced Study, 2013.

[18] MIL-P-1629 - Procedures for performing a failure mode effect and
critical analysis, United States Department of Defense (9 November
1949).

[19] P. Eklund, U. Höhle, J. Kortelainen, A Survey on the categorical term
construction with applications, Fuzzy Sets and Systems, Available online
13 July 2015.

[20] P. Eklund, U. Höhle, J. Kortelainen, Non-commutative quantales for
many-valuedness in applications, Proc. IPMU 2016, to appear.

[21] D. A. Bocvar, Ob odnom trechznacnom iscislenii i ego primenenii
k analizu paradoksov klassiceskogo funkcional’nogo iscislenija, Mat.
Sbornik 4 (1938), 287-308.

[22] S. C. Kleene, On notation for ordinal numbers, J. Symbolic Logic 3

(1938), 150-155.
[23] D. Tang, R. Zhu, S. Dai, G. Zhang, Enhancing axiomatic design

with design structure matrix, Concurrent Engineering: Research and
Applications 17 (2009), 129-137.

[24] G. S. Altshuller, Creativity as an Exact Science, Gordon & Breach,
1984.

16 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



[25] G. S Altshuller, The Innovation Algorithm: TRIZ, systematic innovation
and technical creativity, Technical Innovation Center, Worcester, MA.,
1999.

[26] P. Eklund, The syntax of relations, Proc. IPMU 2016, to appear.
[27] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts

in Mathematics 5 (second ed.), Springer, 1998.
[28] P. Eklund, M. Johansson, J. Karlsson, R. Åström, BPMN and its

Semantics for Information Management in Emergency Care, Fourth
2009 International Conference on Convergence and Hybrid Information
Technology (ICCIT 2009), IEEE Computer Society, 273-278.

APPENDIX

In the following we briefly introduce notation and construc-
tions needed in our descriptions related to our SoS related
logic, and in particular for its underlying signatures and terms.
The many-sorted term monad TΣ over SetS , the many-sorted
category of sets and functions, where Σ = (S,Ω) is a signa-
ture, can briefly be described as follows. For a sort (i.e. type)
s ∈ S, we have sort specific functors TΣ,s : SetS → Set, so
that

TΣ(Xs)s∈S = (TΣ,s(Xs)s∈S)s∈S .

The important recursive step in the term construction is

Tι
Σ,s(Xs)s∈S =

∐

s1,...,sm

(Ωs1×···×sm→s)SetS × args1×···×sm ◦
⋃

κ<ι

Tκ
Σ(Xs)s∈S

and then with

Tι
Σ
(Xs)s∈S = (Tι

Σ,s(Xs)s∈S)s∈S ,

we finally arrive at the term functor

TΣ =
⋃

ι<k̄

Tι
Σ
.

The term functor construction can be extended so that
TΣ : C → C operates more generally over monoidal biclosed
categories C. If C is Set, we have the construction above, and
with the Goguen category Set(Q), where Q is a quantale, we
have a multivalent and typed situation enabled by the signature
acting over the selected underlying category.

Term functors constructed in this way can be extended to
monads, so that substitution can be composed. A substitution
in this categorical context is a morphism in the Kleisli category
of the related monad.

Monad compositions further enable to arrive at generalized
sets of terms, where the typical example is composing the term
functor TΣ with the powerset functor P in order to obtain the
monad P◦TΣ. More elaborate generalized set functors Φ can
be applied in order to make use of the composition Φ ◦TΣ.

For more detail, and for the purely categorical constructions
of the corresponding term monads, the reader is referred to [6].

PATRIK EKLUND, MAGNUS LÖFSTRAND: MANY-VALUED LOGIC IN MANUFACTURING 17


