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Abstract—Models are commonly used in software testing to
select test suites. Application of mutation testing at a model level
can contribute to reliable and early assessment of the quality
of the test suites. It can also support selection of test suites
achieving high fault detection rates. The main issue related
to using mutation testing at the early development stage is to
determine how reliably the quality of test suites can be measured
at the model level. The research presented in this paper addresses
this problem for object-oriented systems. It focuses on describing
an experiment aiming at comparing results of applying mutation
testing at a model level with results of applying this technique at
an implementation level and presents and discusses the outcomes
of the experiment. The paper presents also mutation operators
applicable at the model level.

I. INTRODUCTION

M
ODELS play an important role in developing object-

oriented software systems. They are also commonly

used by researchers and practitioners involved in software

testing as a source of data for selecting tests [25]. As the

main goal of software testing is to detect faults in a tested

system, an adequate assessment of suites of tests provided by

any test generation approach is essential. Mutation testing is

a well established techniques that helps to assess the quality

of test suites with regard to their ability to detect faults [7].

To assess test suite quality, by means of this technique, a

number of faulty versions of the system (called mutants)

is generated, by introducing small changes into the original

system, and executed against tests from the suite. The ratio

of the number of mutants detected (killed) by these tests over

the total number of non-equivalent mutants (called a mutation

score for a test suite) determines the test suite ability to detect

faults. The higher the mutation score for a test suite, the better

the suite is in detecting faults. Although mutation testing is an

effective test suite assessment technique, its application area is

mostly limited to implementation level and high computational

costs still prevent it from becoming a practical approach.

Application of mutation testing at a model level could be a

good alternative or at least a valuable addition to the current

practice in assessing the quality of test suites derived from

models. It would allow to use the most reliable assessment

technique at the same early level and may also lower the costs

of generation and execution of mutants, as system models are

less complex than the implementations.

However, two issues should be considered before applying

the approach in practice:

1) choice of models for representing a system, and

2) evaluation of the reliability of results of a model level

test suite quality assessment.

The research presented in this paper concerns object-oriented

systems, therefore UML/OCL class diagrams were used to

describe the systems at the model level.

The second issue is essential, when increasing the level

of abstraction at which mutation testing is applied. A model

represents only certain aspects of a final system, thus it is

not possible to predict all implementation level faults based

only on faults that appear at a model level. Moreover, faults

introduced into a model target only features of the model,

not of the language used to implement the system, and hence

application of mutation testing at a model level assesses a

test suite ability to detect faults specific to that level. Even in

context of object-oriented systems modeled with UML/OCL

and implemented in an object-oriented language, there are

significant differences between both description formalisms.

Thus, it is unclear if test suite assessment results (provided

in the form of a mutation score) obtained at model level

are sufficiently reliable to be accepted as a measure of a

test suite quality in terms of its ability to detect faults in

a final, implemented system. To the author best knowledge,

the problem has not been studied before. The paper presents

an approach to model level, UML/OCL-based assessment of

test suite quality and describes an experiment carried out to

address the problem. It provides a description of mutation

operators applicable to UML/OCL models, the procedures for

conducting the experiment and its results.

II. RELATED WORK

Mutation testing was originally introduced at the implemen-

tation level [7] and the majority of papers describing different

aspects of mutation testing dealt with problems concerning

implementation level mutation only (a survey of such papers

can be found in [11]). However, application of mutation testing

at model level seems to gain popularity [1], [2], [16], [18],

[19], [23], [24]. Authors of the approaches have focused

mainly on selecting tests, but some of them have addressed

also the problem of assessing tests at the model level [24],

[23] and discussed selected aspects related to the problem of
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assessing tests quality at different levels [23]. Although the

problem considered by authors of the work in [23] is partially

related with the one studied in this work, their approach is not

applicable in the context of object-oriented systems, because

the formalisms used in the paper cannot support adequately

object-oriented aspects of the systems.

Relevant to this research are mainly papers describing appli-

cation of mutation testing to UML and OCL based models [1],

[2], [14], [16] and papers providing information that can help

to design mutation operators applicable to UML and OCL.

The set of UML/OCL related mutation operators introduced by

the author in [17] was developed based on the fault taxonomy

for UML [9], traditional mutation operators, operators adapted

from other formalisms [8], [15] and operators defined for spec-

ifications [5], [12] and contracts [12] and was supplemented

with five new OCL-specific operators.

The work presented in this paper differs from other works

concerning model or implementation level mutation testing,

as it targets UML/OCL class diagrams (standard models in

developing object-oriented systems) and attempts to find out

if test suites ability to detect implementation level faults can

be assessed reliable at the model level.

III. EXPERIMENTAL EVALUATION OF A RELIABILITY OF

MODEL LEVEL TEST SUITE QUALITY ASSESSMENT

RESULTS

The goal of the research was to determine how reliably one

can assess test suite quality, in terms of its ability to detect real

faults in an object-oriented software system, by assessing the

test suite using mutation testing at a the model level. Empirical

studies on mutation testing have provided evidences that appli-

cation of the technique at the implementation level provides

adequate measurement of test suite quality (in terms of its

ability to detect real faults in a final, implemented system)

[6], [13]. Thus, the implementation level measurements can be

referred to to determine the reliability of the test suite quality

assessment results obtained at the model level.

A. Experimental measures

Application of mutation testing provides a mutation score

for a test suite. The mutation score is a quantitative measure

of the suite ability to detect mutants. For the rest of the paper

let T denote a test suite, MSIL(T ) denote a mutation score

calculated for T at the implementation level and MSML(T )
denote a mutation score calculated for T at the model level.

Implementation level mutation score MSIL(T ) for a test

suite T expresses its ability to detect implementation level

mutants (and thus their ability to detect real faults) and is

defined in the following way:

MSIL(T ) =
MID

MIT
, where

• MID is the number of implementation level mutants

detected by T ,

• MIT is the total number of non-equivalent, implementa-

tion level mutants.

Model level mutation score MSML(T ) for a test suite

T expresses its ability to detect model level mutants and is

defined in the following way:

MSML(T ) =
MMD

MMT

, where

• MMD is the number of model level mutants detected by

T ,

• MMT is the total number of non-equivalent, model level

mutants.

The reliability of a model level test suite assessment result

is measured for a test suite T by comparing the value of

MSML(T ) with the value of MSIL(T ).

B. Mutation Operators

Mutation operators are defined as transformation rules that

produce faulty versions (so called mutants) of a program or

a model [7]. Each operator can produce a number of mutants

by changing instances of some construction of the formalism

to which the operator is applied.

Within the work generation of mutants was controlled by

two sets of mutation operators. At the implementation level

mutation operators designed for Java and implemented in

mujava [15] were used, and at the model level operators mod-

ifying UML/OCL class diagrams were used. The second set

was divided into two groups: class diagram related mutation

operators, and OCL related mutation operators.

The first group consists of the following operators:

• Hiding attribute deletion (IHD) - deletes in a subclass an

attribute having the same name and type as an attribute

in a parent class,

• Hiding attribute insertion (IHI) - inserts in a subclass an

attribute having the same name and type as an attribute

in a parent class,

• Attribute multiplicity change (CAMC) - changes a mul-

tiplicity of an attribute,

• Operation arguments order change (OAO) - changes the

order of arguments in an operation definition,

• Operation arguments type replacement (ADR) - changes

a declared type of a method argument to the parent of

the originally declared type,

• Overriding operation deletion (IOD) - deletes an overrid-

ing operation in a subclass,

• Generalization association deletion (GAD) - deletes a

generalization association between two classes,

• Generalization association direction change (GDC) -

changes a direction of a generalization association,

• Association type replacement (ATR) - replaces a type of

an association with another type,

• Association end multiplicity change (EMC) - changes

multiplicity of an association end to other one,

• Association end class replacement (ECR) - replaces an

association end class with a parent class or a subclass,

• Association role swap (ARS) - swaps role names of

two associations between the same two classes or their

subclasses.
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The second group consists of the following operators:

• Operand Replacement Operator (ORO) - replaces an

operand with another one, applies also for components

of a navigation path,

• Arithmetic Operator Replacement (AOR) - replaces a

binary arithmetic operator with another one,

• Arithmetic Operator Insertion (AOI) - inserts an unary

arithmetic operator,

• Arithmetic Operator Deletion (AOD) - deletes an unary

arithmetic operator,

• Relational Operator Replacement (ROR) - replaces a

relational operator with another one,

• Conditional Operator Replacement (COR) - replaces a

conditional operator with another one, supports operators:

and, or, xor,

• Conditional (unary) Operator Insertion (COI) - inserts an

unary conditional operator (not),

• Conditional (unary) Operator Deletion (COD) - deletes

an unary conditional operator (not),

• @pre Deletion (POD) - deletes @pre operator,

• @pre Insertion (POI) - inserts @pre operator,

• Collection Operation Replacement (OCR) - replaces an

invocation of a collection operation with another one,

• Collection Operation Deletion (OCD) - deletes an invo-

cation of a collection operation,

• Contextual Instance Replacement (CIR) - replaces a con-

textual instance with another one.

C. Experimental procedures

The experiment was divided into two stages (Fig. 1):

1) model level test suites quality assessment, and

2) implementation level test suites quality assessment.

The experiment was performed on six experimental test

suites provided for two object-oriented systems. The exper-

iment, at each stage, was carried out following the same

scenario, but dealt with the systems at different levels of ab-

straction (i.e. models or implementations) and was supported

by different tools.

test
suites

UML/OCL
class diagram

UML/OCL
mutation operators

JAVA
mutation operators

USE test scripts

JAVA test programs

JAVA
program

mutantsgenerate

map to

implement

run results (MS )ML

map to

mutantsgenerate
run results (MS )IL

compare

Fig. 1. An outline of the experiment

In the first stage each system was specified in a form of

a UML/OCL class diagram, according to USE notation and

each test suite was described as a USE command script [10].

Next, for each system, mutants of the system model were

manually generated by applying mutation operators designed

for UML/OCL models, and executed against tests from the test

suites prepared for the system. The undetected mutants were

then analyzed manually to remove the equivalent ones and for

each test suite T its model level mutation score (MSML(T ))
was calculated. At this stage the execution of the mutants

was automated by use of USE (UML based Specification

Environment) [10].

At the beginning of the second stage the UML/OCL models

developed in the first stage were used to implement the sys-

tems in Java and the test suites for the systems were mapped

into muJava test programs [15]. Next, for each system, its

implementation was mutated by applying mutation operators

defined for Java. The mutants were then executed against

the test suites provided for the system and implementation

level mutation score (MSIL(T )) for each test suite T was

calculated. This stage was fully automated due to the use of

mujava [15].

Finally, for each test suite T the values of MSML(T )
and MSIL(T ) were compared. Results of the experiment are

presented and briefly discussed in Section III-D.

D. Experimental results and discussion

During the experiment each test suite T was assessed

twice: first to get its model level mutation score (MSML(T ))
and then to get its implementation level mutation score

(MSIL(T )). Table I shows the results of the experiment.

As it can be observed in Table I, for each test suite T the

values of its MSML(T ) and MSIL(T ) are very close to each

other, in fact the results show that for each assessed test suite

its model level mutation score differs from its implementation

level mutation score by no more that 3%.

The results of the experiment let us to observe that:

• the model level mutation score of all test suites, but T4,

was slightly (between 0.015 and 0.028) higher than their

implementation level mutation score, and

• the difference between MSML(T ) and MSML(T ) for

test suites that reached the model level mutation score

over 0.80 remained at nearly constant level of about 0.02.

Both observations seem to suggest that the model level test

suite assessment results may be seen as a reliable measurement

of the test suite quality in general. The slightly higher fault

detection rate observed for most of the test suites at the

model level was to be expected, as the UML/OCL models

do not define the processing of data as the implementations.

TABLE I
MUTATION SCORE FOR EXPERIMENTAL TEST SUITES

T T1 T2 T3 T4 T5 T6

MSML(T ) 0.78 0.87 0.90 0.76 0.83 0.84

MSIL(T ) 0.75 0.85 0.89 0.79 0.81 0.83
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Nevertheless, the nearly constant difference between the model

level and the implementation level results seems to indicate a

regularity that would predict the quality of test suites based

on the assessment results obtained at the model level alone.
The results obtained for test suites T1 and T4 shows that,

for test suites attaining low model level mutation score, the test

suite quality assessment performed at model level provides less

predictable results than for the suites attaining higher model

level mutation score. However, neither the overestimation of

the quality of T1 nor the underestimation of the quality of T4

did not exceeded the 3% threshold. Moreover, a test designer,

having developed a suite of such a low quality as T1 and T4,

would most likely tend to improve it to achieve better score.

Thus, it seems that the irregular behavior of T1 and T4 does

not contradict the earlier conclusion regarding the reliability

of model level test suite assessment results.

IV. CONCLUSIONS AND FUTURE WORKS

Mutation testing is an effective and reliable technique for

assessing test suite quality with regard to their ability to

detect faults specific to the given level, but a transferability of

the assessment results between different levels of abstraction

was not evaluated before. An experimental way to assess the

relability of results obtained at model level was proposed in

this paper. The results of the experiment let us to presume that

for object-oriented systems, modeled in a form of UML/OCL

class diagrams, the test suite’s ability to reveal real faults

can be reliably assessed at the model level. However, more

experiments on larger systems should be carried out to verify

the preliminary conclusions.
Future research concerning model level mutation testing

should deal with the costs reduction problem. It seems that

the migration to the model level alone lowers the number of

generated and executed mutants, but other techniques should

also be considered. The most efficient techniques should be the

ones taking into account individual characteristics of modeled

systems, such as proposed in [20], [21], [22].
Works on applying mutation testing at the model level

should also include development of tools supporting genera-

tion of mutants. Availability of such tools would significantly

increase the possibility of adapting such approach in practice.
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