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Abstract—The block subspace projection preconditioned 

conjugate gradient method for analysis of natural vibration 

frequencies and modes applying to large problems of structural 

mechanics is proposed. It is oriented at the usage in finite 

element analysis software operated on multi-core desktop 

computers with restricted amount of core memory as an 

alternative approach to widespread block Lanczos method and 

subspace iteration method. We focused our attention on 

achievement of high computational stability and parallelization 

of proposed algorithm. The solution of real-life large problems 

confirms the reliability of proposed approach. 

I. Introduction 

HE block Lanczos method as well as various versions of 

subspace iteration method widely is used for extraction 

of natural vibration frequencies and modes in modern 

engineering software applying to the problems of structural 

mechanics 

0=− iii MvKv λ  ,                                  (1) 

where K and M are the sparse symmetric stiffness and mass 

matrices arising when the finite element method is applied to 

problems of structural mechanics, {λi, vi} – eigenpair for i-

th mode, i ∈ [1, n], n << N, n – number of required 

eigenmodes, N – dimension of problem (1). 

The Lanczos method as well as subspace iteration (SI) 

approach produces the inverse iterations 

k
i

k
i MvKv =+1

,                                        (2) 

where vi
k
 is an approximation of eigenvector vi on iteration 

step k (k = 1, 2, … until converges). For large problems 

solved on desktop and laptop computers with restricted 

amount of core memory the lower triangular matrix L of 

factorized stiffness matrix K = L∙D∙LT
 is stored block-by-

block on disk. Therefore, on each iteration step k mentioned 

above eigenvalue solvers must read twice the lower 

triangular matrix L from disk. Taking into account that size 

of matrix L for large design models (N = 3 000 000 – 

6 000 000 equations) achieves 6 – 20 GB and more, 

performance of such eigenvalue solver drastically decreases. 
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Unlike mentioned Lanczos and SI approaches, the 

preconditioned conjugate gradient (PCG) method [8], [12] 

uses only RAM. However, for poorly conditioned problems, 

which are the most of problems of structural mechanics (see 

[7]), we have to construct an efficient preconditioning, 

because the conventional SSOR, symmetrical Gauss-Seidel, 

ICCG0 preconditioners result in unacceptable slow 

convergence. We found that the aggregation multilevel 

preconditioning [1], [2] and incomplete Cholesky 

factorization by value, realized in technique of sparse 

matrices [4], demonstrate a stable convergence for solution 

of linear equation sets (static analysis) as well as for 

extraction of natural vibrations frequencies and modes 

(modal analysis) for considered class of problems. 

Achieving of stable convergence of the conjugate gradient 

method for solving the eigenvalue problem (1) is much more 

difficult than in solving systems of linear algebraic 

equations. Most likely, for this reason, in modern 

commercial FEA software mainly used eigenvalue solvers 

based on inverse matrix iteration (2) [9]. In present article, 

we propose the block subspace projection preconditioned 

conjugate gradient (BSPPCG) method for solution of 

problem (1). 

II. BLOCK SUBSPACE PROJECTION PRECONDITIONED 

CONJUGATE GRADIENT METHOD 

A. State of problem 

To achieve the computational stability of PCG method at 

solution of poorly conditioned problems of structural 

mechanics, the aggregation multilevel preconditioning and 

shift technique have been used [1]. A little later, an 

aggregation multilevel preconditioning was replaced by an 

incomplete Cholesky factorization by value implemented in 

technique of sparse matrix [4]. 

Article [5] presents a block version of PCG method, 

where several vectors in block are iterated simultaneously. 

The Gram-Schmidt orthogonalization provides orthogonality 

of vectors in the block between themselves as well as their 

orthogonality to the eigenmodes, converged earlier. The shift 

technique is used for acceleration of convergence. 
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A very interesting idea of local block PCG (LOBPCG) 

method was proposed in [10]. The approximations on the 

next iteration step are presented as: 
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where m is a dimension of subspace span{z1
k,…, zm

k, 

v1
k,…, vm

k, p1
k,…, pm

k }, zj
k = B-1rj

k
, B – preconditioning 

operator, rj
k = λj

kMvj
k – Kvj

k
 – residual vector, pj

k
 – 

conjugate direction vector, j = 1, … , m . The projection 

matrix Q = {Z V P} has dimension N × 3∙m and consists of 

N × m submatrices Z = { z1
k,…, zm

k }, V = { v1
k,…, vm

k} 

and P = { p1
k,…, pm

k }. In matrix form: 
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where αj
k = {α1,j

k, … , αm,j
k}, τj

k = {τ1,j
k, … , τm,j

k}, γj
k = 

{γ1,j
k, … , γm,j

k} and iteration number k is omitted for 

matrices Q, q. Subscript j denotes a number of eigenmode in 

expansion (6). 

Let us substitute (7) in (1) and multiple at left by QT: 

0=− mqΛkq ,                                                   (5) 

where k = QTKQ, m = QTMQ and Λ is a diagonal matrix 

with approximations of eigenvalues on iteration step k. The 

approximation of eigenmodes vk+1 on the next iteration step 

follows from (4) after substitution of q, which is obtained 

from solution of reduced eigenproblem (5). The conjugate 

direction vector is derived as 

qQP ′′=+ Tk 1
 ,                                                    (6) 

where Q΄ = {Z P} and q΄ = {αk γk}T
. Then, the Rayleigh 

quotient is used for approximation of eigenvalues on 

iteration step k+1 and evaluation of residual vectors rj
k is 

produced after it. 

The proposed approach in the form of [10] is little suitable 

to analysis of real-life problems of structural mechanics, 

since the columns in matrix Q become the linearly 

dependent as soon as the first eigenpair begins to converge. 

The authors of current article obtained the computational 

instability even for simple test problem – simply supported 

beam. The clear explanation of this fact is in [11]: the second 

expression in (3) is a linear combination between vectors zj
k 

and pj
k. Therefore, the first expression in (3) is possible to 

rewrite as 
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For instance, let vector v1 begins to converge. Then, basis 

vectors v1
k
 and v1

k-1
 are almost linearly dependent, because 

v1
k-1

, v1
k
 as well as v1

k+1
 tends to the same eigenvector v1 – 

an exact solution. In [11] for stabilization of computational 

process was suggested to remove the vectors zj
k, vj

k, pj
k
 of 

subspace span{z1
k,…, zm

k, v1
k,…, vm

k, p1
k,…, pm

k}, as 

soon as the corresponding vector vj
k converges. 

The drawbacks of such approach are: 

• For some problems of structural mechanics it turns out 

that the iterative process is falling apart even before the error  
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is still enough small (errj ≤ tol) to recognize the 

convergence of vector vj
k . 

• The dimension of subspace m must be not less than the 

number of required eigepairs n (m ≥ n). Such an approach 

results in enormous computational efforts if it is required a 

large number of eigenpairs (n = 100 – 200 and more). In 

addition, it is required a significant amount of core memory 

for allocation of matrix Q. 

The proposed in given article eigenvalue block subspace 

projection PCG (BSPPCG) solver uses the idea (3) of 

LOBPCG, but possesses the high computational stability and 

requires essentially less computational efforts when large 

number of eigenpairs is required. That allows us to 

recommend this solver for use in FEA software intended for 

analysis of problems of structural mechanics on widespread 

desktop and laptop computers as well as on shared memory 

workstations. 

B. Algorithm of BSPPCG method 

1. Set m ∈ [8, 32], m%np = 0; prepare linearly independent 

start vectors V0={v1
0,…,vm

0}, P0={p1
0,…,pm

0}, 

nconvmodes = 0;  

2. do k = 1, 2, … , until nconvmodes < n. 

3.       parallel loop for j = 1, …, m 

                (vj
k)T∙M∙vj

k = I (normalization procedure) 

         λj
k = [(vj

k)T K vj
k]/[(vj

k)T M vj
k] 

         rj
k = λj

kMvj
k – Kvj

k 

         B zj
k = rj

k → zj
k 

   end of parallel loop for 

4.       do j=1, m 

         if(errj ≤ tol) 

                nconvmodes++; 

                put {λj
 , vj} as final results, 

                prepare new start vectors vj
k and pj

k , 

               orthogonalize vj
k  against converged modes  

                and put to blocks Vk, Pk. 

               λj
k = [(vj

k)T K vj
k]/[ [(vj

k)T M vj
k] 

               rj
k = λj

kMvj
k – Kvj

k 

               B zj
k= rj

k → zj
k, put zj

k to Zk. 
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        end if 

   end do 

5.       paralel loop for s = 1, 3m  

         loop for p = s, 3m (s, p – columns of matrix Q) 

               msp = Qp
TMQs – evaluation of matrix m 

        end loop for 

   end of parallel loop for 

6.       if(Chol(m): m = l∙lT) 

         paralel loop for s = 1, 3m  

            loop for p = s, 3m (s, p – columns of matrix Q) 

                     ksp = Qp
TKQs – evaluation of matrix k 

            end loop for 

         end of parallel loop for 

   else 

         Gram-Schmidt orthogonalization of all columns in  

         Q and normalization QTMQ = I 

         paralel loop for s = 1, 3m  

            loop for p = s, 3m (s, p – columns of matrix Q) 

                     msp = Qp
TMQs – evaluation of matrix m 

                   ksp = Qp
TKQs – evaluation of matrix k 

            end loop for 

         end of parallel loop for 

         Chol(m): m = l∙lT
 

   end if 

7.       solve reduced eigenproblem kq – mqΛ = 0 

8.       obtain Vk+1
 and Pk+1 using (4), (6). 

9.      parallel orthogonalization of Vk+1
 and Pk+1

 against  

  converged eigenmodes. 

   end do 

Algorithm 1. BSPPCG method 

We accept the fixed dimension of subspace m, which is 

multiple to available number of threads np (m%np = 0) for 

achievement a load balance between threads (point 1). Then, 

we prepare linearly independent start vectors V0
 and set pj

0
 

= ∅, j ∈ [1, m], where ∅ is a zero vector, and number of 

converged modes set to sero: nconvmodes = 0. 

The iteration loop do k =1, 2,… runs until nconvmodes 

< n, where n is the number of required modes (point 2). 

In parallel loop (point 3) for each mode j we produce the 

normalization of vj
k
, obtain the current approximation of 

eigenvalue λj
k, residual vector rj

k and vector zj
k
 from 

solution of linear equation set arising when preconditioning 

operator B is introduced for acceleration of convergence. On 

first iteration, the projection matrix Q contains only 

submatrices Z and V because submatrix P is zero. On all 

subsequent iterations, Q comprises Z, V and P submatrices. 

Iteration loop do j=1, m (point 4) checks of convergence. 

If convergence of j-th mode is achieved, we store the 

eigenpair {λj
 , vj} to structure of data containing the final 

results, increment nconvmodes and prepare the new linearly 

independent start vectors in addresses of vectors vj
k and pj

k
. 

In each starting vector pj
k we put only one element equal to 

unit, all remaining elements are zero. Due to such an action, 

all new vectors pj
k are linearly independent. All remaining 

elements of each vector pj
k
 are zero. In such a way, we avoid 

the linear dependency between columns of projection matrix 

Q. Then, we orthogonalize the new starting vectors vj
k 

against converged modes and compute the λj
k, rj

k and zj
k 

corresponding to new starting vectors vj
k. Vectors zj

k
, 

corresponding to new starting vectors, replace columns j in 

submatrix Z, corresponding to converged vectors on current 

iteration step k. 

The reduced matrix m is evaluated in parallel loop for 

s = 1, 3m. The sparse matrix M is multiplied by columns Qs 

of matrix Q in parallel region: ws = K∙Qs. The number of 

threads in team is np. In second loop (loop for p = s, 3m) 

we calculate the element msp as a dot product of column Qp
T 

and previously obtained vector ws. Matrix m is symmetrical 

therefore p starts with s.  

Chol(m) denotes the Cholesky factorization of matrix m 

and l is a lower triangular matrix. (point 6). We consider the 

matrix m as a weighted Gram matrix of subspace 

span{z1
k,…,zm

k, v1
k,…,vm

k, p1
k,…,pm

k}. Therefore, if 

Cholesky factorization completes successfully, the columns 

of matrix Q are linearly independent and basis vectors are 

OK. Otherwise, if Cholesky factorization of m is failed, the 

columns of matrix Q are almost linearly dependent, and we 

produce the Gram-Schmidt orthogonalization of all columns 

in Q and normalization QTMQ = I. After this, we prepare 

reduced matrices k, m using multithreaded parallelization 

and repeat Cholesky factorization of m. 

We apply procedures from LAPACK of Intel math kernel 

library (Intel MKL) [13] for solution of the generalized 

algebraic eigenproblem (5). 

Submatrices Vk+1
 and Pk+1 (point 8) is derived using (4), 

(6). We apply the multithreaded version of dgemm procedure 

from Intel MKL for multiplication of dense matrices. 

The Gram-Schmidt orthogonalization provides 

orthogonality of vectors in the submatrices Vk+1
 and Pk+1 to 

the converged eigenmodes (point 9). The columns in Vk+1
 as 

well as in Pk+1
 can be independently orthogonalized against 

converged eigenmodes, therefore, this algorithm can be 

easily parallelized. Also, orthogonalization, made in point 4, 

can be easily parallelized. Unlike these algorithms, the 

Gram-Schmidt orthogonalization procedure applied to all 

columns of matrix Q (point 6) has a strongly sequential 

nature and cannot be successfully parallelized. 

We emphasize the fundamental differences between 

proposed method and LOBPCG. 

1. BSPPCG method keeps constant the dimension of 

subspace m, which does not depend on number of required 
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eigenmodes. This allows us to reduce the amount of core 

memory and computing time and makes proposed approach 

applicable for solution of large problems on desktops and 

laptops. 

2. As soon as the vectors converge, we immediately remove 

them from the block and replace with new starting vectors. 

In many cases, this allows us to keep a linear independence 

of the columns in matrix Q. 

3. If in spite of everything, linear dependencies between base 

vectors still appears, we make the full reortogonalization of 

columns of the matrix Q. 

4. We apply an efficient preconditioning for considered class 

of problems – incomplete Cholesky factorization by value 

developed in technique of sparse matrices [4]. 

III. NUMERICAL RESULTS 

We consider example “stadium” taken from computational 

practice of SCAD Soft IT Company, developer of the SCAD 

FEA software, one of the most popular software used in the 

CIS countries for structural analysis and design, certified 

according to the regional norms. 

We use computer with 16-core processor AMD Opteron 

6276, 2.3/3.2 GHz, 64 GB DDR3 RAM, OS Windows 

Server 2008 R2 Enterprise SP1, 64 bit. The large amount of 

RAM allows us on application of incomplete Cholesky 

factorization for preparation of preconditioning with very 

small value of drop parameter ψ = 10-16 [4] and keep all data 

in core memory. In addition, 16 processor cores provide the 

opportunity to explore the speed-up of method when we 

increase the number of cores. The tolerance is accepted as 

tol = 10-3 – see (8). 

The design model of stadium comprises 4 033 620 

equations and consists of several types of finite elements: 

spatial frames, triangular and quadrilateral flat shell finite 

elements, elastic supports and rigid links One hundred 

eigenpairs are extracted (n = 100). The large number of 

almost multiple natural vibration frequencies occurs due to 

local vibration modes of bars in spatial trusses. 

For accepted values of ψ, tol the number of iterations is 

121 and number of reorthogonalizations, when Cholesky 

factoring of matrix m was failed, is 20. If there is at least one 

reorthogonalization, that means that LOBPCG method in 

version [10] would fail, since the columns of the matrix Q, 

which are basis vectors, are linearly dependent. 

Reorthogonalization of columns in matrix Q allows us to 

successfully continue a computation process. The shortest 

computational time is achieved on 16 threads. 

Table I presents the total time of eigenvalue analysis of 

considered problem using proposed BSPPCG method, 

shifted block PCG (SBPCG) method [5] and shifted block 

Lanczos (SBLANC) method [3]. Method SBLANC solves 

this problem in core memory using PARFES [6], [7] – one 

from fastest for today sparse direct solvers on shared 

memory computers. 

TABLE I 

COMPARISON OF COMPUTATIONAL TIME FOR DIFFERENT METHODS. 

COMPUTER A, PROBLEM 1. 

Method Total time, s 

BSPPCG 6 466 

SBPCG 20 708 

SBLANC (core mode) 6 228 

The proposed BSPPCG demonstrates the solution time, 

which is slightly bigger than solution time of SBLANC 

method. The SBPCG method solves this problem 

considerably slower. 
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