
Pseudo-random Sequence Generation from Elliptic
Curves over a Finite Field of Characteristic 2

Omar Reyad
Warsaw University of Technology

Warsaw, Poland

Email: ormak4@yahoo.com

Zbigniew Kotulski
Warsaw University of Technology

Warsaw, Poland

Email: zkotulsk@tele.pw.edu.pl

Abstract—In this paper, the randomness of binary sequences
generated from elliptic curves over a finite field of characteristic 2
is studied. A scheme of construction based on the Chaos-
Driven Elliptic Curve Pseudo-random Number Generator (C-D
ECPRNG) is proposed. The generators based of this scheme are
verified by using tests from the NIST Statistical Test Suite to
analyze their statistical properties. An elliptic curve used in the
numerical example is defined over F28 . The investigations which
made for the generated series of two output sequences of the
lengths of 210 and 220 bits shown that 14 generators working
according to our general scheme exhibit good randomness
properties. Next, the binary sequences generated by these 14
schemes were used for encrypting a 256× 256 grayscale Lena
image as an application example and the security analysis of the
ciphered images was carried out.

I. INTRODUCTION

I
N 1985, Neil Koblitz [1] and Victor Miller [2] indepen-

dently proposed one of the most important public-key

cryptosystems named the elliptic curve cryptosystem, whose

security rests on the discrete logarithm problem over points

on an elliptic curve (EC) [3]. Elliptic curve public-key cryp-

tosystems over finite fields (F2m or Fp) have become widely

used in applications such as smart cards which provide limited

space for implementation of modular computations. Recently,

the operations (Add, Double, Multiply) of points on elliptic

curves over F2m or Fp have a well-developed technology in

both hardware and software implementations.

Elliptic curves applications in, both, cryptography and com-

munications are currently the subject of extensive investiga-

tion, as means for increasing security in transmission and

reception of data over an insecure communication channel.

The advantage is that elliptic curves over finite fields (F2m

and Fp) provide an inexhaustible supply of finite abelian

groups. It is found that different elliptic curves defined over

the same field have a different structure as finite fields of the

same order are isomorphic to each other. With the increase

in available computation power, it is found for a given key

size that an EC public-key cryptosystem has higher security

compared to RSA cryptosystem [4]. EC operations which used

in the generation of pseudo-random sequences with strong

cryptographic properties have been studied in the literature,

such as [5], [6], [7].

In this paper, new constructions for the generation of

pseudo-random sequences based on the properties of random

numbers and elliptic curves over a finite field of characteristic

2 (F2m) are proposed. These constructions are based on the

C-D ECPRNG which takes benefits from a chaotic generator

to reinforce the quality of an Elliptic Curve Pseudo-random

Number Generator (ECPRNG). The addition of chaos will

define a family of ECPRNGs that are chaotic while being fast,

statistically perfect and cryptographically secure as discussed

in [8], [9]. The randomness properties of the new constructions

are also tested and found to pass tests in the NIST randomness

test suite [26]. Such sequences can be used for generating

random numbers in the EC digital signature algorithm and a

session key in their encryption phases.

The paper is organized as follows. In Section II, the prelim-

inaries of EC are discussed. An overview of various EC based

pseudo-random sequence generators are given in Section III. In

Section IV, we present several construction methods of binary

sequences obtained from the C-D ECPRNG. An illustrative

example is presented in Section V. In Section VI, randomness

properties of the proposed sequences are discussed. A simple

application of the proposed sequences for image encryption

is executed in Section VII while conclusions are given in

Section VIII.

II. PRELIMINARIES

The definition of elliptic curves over a finite field of

characteristic 2 and their arithmetic are given here to provide

the general background for our exposition.

A. Elliptic Curve over a Binary Finite Field

The field F2m called a characteristic-two finite field or

a binary finite field, can be viewed as a vector space of

dimension m over the field F2 which consists of the two

elements {0,1}. A non-supersingular elliptic curve E over the

binary field F2m is defined by an equation of the form

y2 + xy = x3 + ax2 + b (1)

where the parameters a,b ∈ F2m with b 6= 0. The set E(F2m)
consists of all points (x,y),x ∈ F2m ,y ∈ F2m , which satisfy the

defining equation (1), together with a special point O called the

point at infinity. These set of points form an abelian group with

respect to the addition rules given in the following section.

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 991–998

DOI: 10.15439/2016F94

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 991



B. Arithmetic of Elliptic Curve Group over E(F2m)

As mentioned in the previous section, when b 6= 0, the set

of all points on the elliptic curve E along with a point at

infinity constitute an abelian group under addition operation

with O serving as its identity element [10]. It is to be noted

here that this addition operation (+) is not the "conventional

addition" operation as it is based on the arithmetic of elliptic

curves [11].

The algebraic formula for the sum of two points and the

double of a point are the following:

1) P+O = O+P for all P ∈ E(F2m).
2) If P = (x,y) ∈ E(F2m), then (x,y)+ (x,x+ y) = O, note

that the point (x,x+y) is denoted by −P, and it is called

the negative of P; observe that −P is indeed a point on

the curve E .

3) Point addition: Let P = (x1,y1) ∈ E(F2m) and Q =
(x2,y2)∈ E(F2m), where P 6=±Q. Then P+Q = (x3,y3)
where

x3 =
(

y1+y2
x1+x2

)2
+( y1+y2

x1+x2
)+ x1 + x2 + a (2)

and

y3 =
(

y1+y2
x1+x2

)

(x1 + x3)+ x3 + y1. (3)

4) Point doubling: Let P = (x1,y1) ∈ E(F2m), where P 6=
−P. Then 2P = (x3,y3) where

x3 = x2
1 +( b

x2
1

) . (4)

and

y3 = x2
1 +(x1 +

y1
x1
)x3 + x3 . (5)

III. LITERATURE REVIEW

A pseudo-random number generator (PRNG) is a deter-

ministic algorithm which takes a random binary sequence of

length k and outputs a binary sequence of length n ≫ k which

"appears" to be random [12]. The input to the PRNG is called

the seed, while the output is called a pseudo-random sequence.

Different EC-based PRNG schemes suggested in literature use

different ways to proceed from seed value for ith iteration to

that for (i+ 1)th iteration and different predicates the output

sequences, while the used one-way function is the EC point

addition operation. Various suggestions for PRNG which based

on ECs and their brief analysis are presented below.

A. The EC Power Generator

The Power Generator on EC (EC-PG) is introduced in [13],

[14]. The definition of EC-PG for a given point G(x,y) ∈
E(Fp) of high order ℓ and an initial secret key e ≥ 2 provided

that the greatest common divisor (gcd) of (gcd(e, ℓ) = 1) is

generated by:

Ui = [e]Ui−1 = [ei]G , i = 1,2, . . . , (6)

where U0(x,y) ∈ E(Fp) is the "initial value". The output point

sequence is the truncated x-coordinate of the resulted points

Ui(x,y).

B. The EC Linear Congruential Generator

The Linear Congruential Generator on EC (EC-LCG) has

been suggested in [15] and then studied in a number of papers

such as [16], [17], [18]. For a given point G(x,y) ∈ E(Fp) of

high order ℓ, the EC-LCG is defined as the following sequence:

Ui = G+Ui−1 = [i]G+U0 , i = 1,2, . . . , (7)

where U0(x,y) ∈ E(Fp) is the "initial value". The output point

sequence is generated as the resulted points Ui(x,y) and passes

through the complete cyclic subgroup of the point G(x,y).

C. The Pseudo-random Bit Sequence Generator-B

The Pseudo-random Bit Sequence Generator (PBSG-B)

which presented in [19] is a modification of the EC-LCG

such that the periodicity is independent of the order of point

G(x,y) and the output sequence does not have any symmetric

properties which makes the cryptanalysis easier. For security,

the authors of [19] assume that both point G(x,y) and the seed

value of the Linear Feedback Shift Register (LFSR) are kept

secret.

D. The Chaos-Driven Elliptic Curve Pseudo-random Number

Generator

The Chaos-Driven Elliptic Curve Pseudo-random Number

Generator (C-D ECPRNG) which presented in [20] for the

finite field Fp is considered to be the EC-LCG driven by a

chaotic map. Such a modification improves randomness of

the sequence generated and increases it’s periodicity. The C-

D ECPRNG for a given seed point G(x,y) ∈ E(F2m) as the

secret key, is defined as the following sequences generated by

additive EC-points operation:

Ui = [i(1+ bi)]G+U0

=

{

[i]G+U0 i f bi = 0

[2i]G+U0 i f bi = 1
, i = 1,2, . . .

(8)

where U0(x,y) ∈ E(F2m) is the "initial value" and bi is the

random bits generated by a chaotic map Φ

bi =

{

0 i f Φi(s) ∈ S0

1 i f Φi(s) ∈ S1
, i = 1,2, . . . (9)

where the state space S = [0,1] is the interval and S0 = [0,0.5],
S1 = (0.5,1] are two subsets of the interval equal to 0.5. (For

more details see [21]).

E. The EC Based Random Number Generator

The random number generator proposed in [22] has reduced

latency and increased periodicity with a single point multipli-

cation operation in each iteration. The output point sequence is

Ui = [ki]G and ki = (i−1)+xi−1 where xi−1 is the x-coordinate

of the point Ui−1(x,y). The random number generator has good

statistical properties and high periodicity.
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F. The Dual-EC Generator

The Dual-EC generator has appeared in NIST recommen-

dations [23]. It makes use of two points G(x,y) and Q(x,y)
on a non-super singular elliptic curve E(Fp) for generation of

random numbers. One point for generating the iterating key k

as ki = x([ki−1]G) and the other point for generating the output

bit sequence as ti = x([ki]Q) where t is the truncation function.

The Dual-EC generator mechanism represents an EC scalar

multiplication operation, followed by the extraction of the

x−coordinate for the resulting points followed by truncation

to produce the output sequence. We mention here that this

recommendation is now withdrawn.

G. The Pseudo-random Bit Sequence Generator-A

A modification of the Dual-EC generator with increased

periodicity named Pseudo-random Bit Sequence Generator-A

(PBSG-A) is published in [19]. In PBSG-A, the iteration key

k is modified as ki+1 = [ki]G+ [i]C where C = x([e]G) and

"e" is the seed value. In addition to two point multiplication

operations the modified algorithm requires a finite field mul-

tiplication of iteration number "i" and the value "C" to be

carried out in each iteration. This increases both the hardware

complexity and the time complexity of the system.

IV. PROPOSED CONSTRUCTIONS FOR EC BINARY

SEQUENCES

In this section, we propose 22 different schemes re-

sulted from different construction methods based on the C-D

ECPRNG discussed in Section III-D.

The points resulted Ui(x,y) with x− and y−coordinates

of each point are used to obtain the binary sequences. We

will shortcut the word sequence to (Seq) throughout this

paper and mention that an Initialization Vector (IV ) is a fixed

initialization vector that should be specified with the scheme.

The exclusive or (XOR) logical operation with the symbol ⊕
is used here and one can show that it can be replaced by any

operation that is an easy-to-invert permutation of one of its

inputs when the second input is fixed.

After applying the C-D ECPRNG, we get the resulted points

Ui(x,y) and the x− and y−coordinates of these points are

used according to the construction methods listed in table I.

These construction methods result in 22 different schemes by

applying the ith iteration function Ri. For example, Ri for the

first scheme is given by:

Ri = [Ri−1 ⊕Xi], , i ≥ 1 (10)

where R0 = IV and X is the x−coordinate of the first point

U1. The output Ri is the pseudo-random bit sequence. We

will use the notion of a permutation operation (appear in

table I as Perm) of the results from XOR operation for

mapping the bit elements then considering them into the output

sequence R for the next iteration process in some schemes.

In other schemes, the substitution-box operation (S − box)

which considers the heart of some ciphers because they are

highly nonlinear is also used. S− box takes the results from

XOR operation and transforms them into the corresponding

output then considering them into the output sequence R.

S− box is a basic component of symmetric key algorithms

which performs substitution. In our calculations we used the

Advanced Encryption Standard (AES) block cipher S− box

which discussed in [24].

V. IMPLEMENTATION EXAMPLE

For experimental results we consider the EC defined over

F28 given by:

E : y2 + xy = x3 +αx2 + 1 (11)

where the parameters a = α,b = 1 ∈ F28 with b 6= 0 and the

EC is based on the irreducible polynomial x8+x4+x3+x2+1

over F2. The total number of EC points is found to be 288

including O (point at infinity) and the element α is a generator

of F28 . The EC point G = (α186,α225) is chosen as the base

point, which has the order ℓ = 288 and the initial point is

U0 = (α34,α99). Also, {G, [2]G, . . . , [288]G} generates all the

elements of EC over F28 , hence the given elliptic curve group

is cyclic. In the case of C-D ECPRNG, we use the Logistic

map [25] as our chaotic map to generate the random bits bi

defined in (9).

VI. RANDOMNESS PROPERTIES

The purpose of this section is to check experimentally the

randomness properties of the sequences generated in Section

IV. The whole sequences generated by Section IV should

have good statistical properties, we also decided to check the

statistical properties and test the randomness using six basic

statistical tests from [26], [27]. These tests are:

1) Frequency (Monobit) Test, it verifies if the number of

”1” bits in the sequence lies within specified limits.

2) 8-bit Poker test, it verifies whether bytes of each

possible value appear approximate the same number of

times.

3) Runs Test, it checks whether the number of runs (the

test is carried out for runs of zeros and runs of ones) of

length 1, 2, 3, 4 and 5 as well as the number of runs

which are longer than 5, each lies within specified limits.

4) Discrete Fourier Transform (Spectral) Test, it detects

the periodic features in the tested sequence that would

indicate a deviation from the assumption of randomness.

5) Linear Complexity Test, it determines whether or not

the sequence is complex enough to be considered ran-

dom. Random sequences are characterized by longer LF-

SRs. An LFSR that is too short implies non-randomness.

6) Cumulative Sums (Cusums) Test, it determines

whether the cumulative sum of the partial sequences

occurring in the tested sequence is too large or too small

relative to the expected behavior of that cumulative sum

for random sequences. The test has two modes, which

are either forward through the sequence or backward

through the sequence, named in the Tables Cusums

(forward) and Cusums (reverse), respectively.

All the generated sequences from Seq− 1 to Seq− 22 is

tested using the six basic tests discussed above. The test
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TABLE I
THE 22 PROPOSED SEQUENCE SCHEMES

No. scheme expression No. scheme expression
1 [Ri−1 ⊕Xi] 12 [Ri−1 ⊕Yi]
2 Perm[Ri−1 ⊕Xi] 13 Perm[Ri−1⊕Yi]
3 S−box[Ri−1 ⊕Xi] 14 S−box[Ri−1 ⊕Yi]
4 Xi ⊕Perm[Ri−1 ⊕Xi] 15 Yi ⊕Perm[Ri−1 ⊕Yi]
5 Yi ⊕Perm[Ri−1 ⊕Xi] 16 Xi ⊕Perm[Ri−1⊕Yi]
6 Ri ⊕Perm[Ri−1⊕Xi] 17 Ri ⊕Perm[Ri−1 ⊕Yi]
7 [Ri ⊕Yi]⊕Perm[Ri−1 ⊕Xi] 18 [Ri ⊕Xi]⊕Perm[Ri−1 ⊕Yi]
8 Xi ⊕S−box[Ri−1 ⊕Xi] 19 Yi ⊕S−box[Ri−1 ⊕Yi]
9 Yi ⊕S−box[Ri−1 ⊕Xi] 20 Xi ⊕S−box[Ri−1 ⊕Yi]
10 Ri ⊕S−box[Ri−1 ⊕Xi] 21 Ri ⊕S−box[Ri−1 ⊕Yi]
11 [Ri ⊕Yi]⊕S−box[Ri−1 ⊕Xi] 22 [Ri ⊕Xi]⊕S−box[Ri−1 ⊕Yi]

TABLE II
TEST RESULTS FOR SEQ-1 AND SEQ-5

Seq-1 Seq-5

Test name 210 220 210 220

Monobit 0.5737 0.6157 0.4917 0.2597
Poker 0.2122 0.2220 0.2872 0.2869
Runs 0.1204 0.8510 0.1735 0.8507
DFT 0.2561 0.6139 0.6264 0.8313

L. Comp. 0.9196 0.2846 0.9196 0.4670
Cusums (F) 0.3999 0.7256 0.8035 0.3911
Cusums (R) 0.8831 0.9280 0.3999 0.1933

results are shown that 14 schemes of the proposed 22 schemes

exhibits good randomness properties. The other 8 schemes

are found to have non-random properties especially with long

binary sequences (220 bits) and fail to pass most of the

six tests. We presented in Tables II and III the test results

for four schemes as examples to discuss. In Table II are

presented results for the sequence Seq− 1 and Seq− 5. As

it is noted, the generator works correctly for short and long

binary sequences (210 and 220bits). In Table III, results for the

sequence Seq−12 and Seq−16 are presented. Also it is clear

that the C-D ECPRNG enables generating correctly short and

long sequences and the generator passes all the presented tests.

For the rest of the paper, we will consider only the 14 schemes

(namely Seq− 1, Seq− 2, Seq− 3, Seq− 5, Seq− 8, Seq− 9,

Seq− 11,Seq− 12, Seq− 13, Seq− 14, Seq− 16, Seq− 19,

Seq− 20, Seq− 22) that had good randomness properties.

VII. IMAGE ENCRYPTION APPLICATION EXAMPLE

Image encryption is a potential application where stream

cipher is highly preferred over block cipher due to the bulky

nature of the data and high correlation between the adja-

cent pixels. The pseudo-random sequence used for image

encryption must have good randomness properties and high

periodicity so that the encrypted image is secure. Recently,

several attempts for using ECs in image encryption has been

TABLE III
TEST RESULTS FOR SEQ-12 AND SEQ-16

Seq-12 Seq-16

Test name 210 220 210 220

Monobit 0.1691 0.8177 0.4917 0.1351
Poker 0.2771 0.0548 0.0849 0.7276
Runs 0.1028 0.9765 0.1071 0.9068
DFT 0.4905 0.3124 0.5980 0.4599

L. Comp. 0.9196 0.6583 0.1246 0.2629
Cusums (F) 0.0488 0.5020 0.8579 0.2025
Cusums (R) 0.2219 0.3369 0.3011 0.1273

proposed in literature such as [28],[29],[30]. In this section,

the pseudo-random sequences generated by the considered 14

schemes are used for encrypting a 256× 256 grayscale Lena

image in which each pixel has a 8-bit value of between 0

and 255 and the security analysis of the ciphered images are

carried out.

A. Entropy Analysis

Entropy is defined to express the degree of uncertainties

in the system. It is well known that the entropy H(m) of a

message source m can be calculated as:

H(m) =−
255

∑
i=0

P(mi)log2P(mi) (12)

where P(mi) represents the probability of symbol mi. For all

the considered cipherimages shown in Figs. 3(a – n), the

number of occurrence of each gray level is recorded and the

probability of occurrence is computed. Table IV indicates the

various values of the entropies for the plain and encrypted

images by the considered 14 schemes. It can be noted that the

entropy of the encrypted images are very near to the theoretical

value of 8 indicating that all the pixels in the encrypted images

occur with almost equal probability. Therefore, the information

leakage in the considered cipher schemes is negligible, and it is

secure against the entropy-based attack. Also it is comparable
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Fig. 1. Lena image and it’s Histogram

to the entropy values presented by references [30], [31]

and [32].

TABLE IV
ENTROPY AND CORRELATION COEFFICIENTS FOR LENA IMAGE

Scheme Entropy Horizontal Vertical Diagonal
Lena 7.5807 0.93915 0.96890 0.91686
Seq-1 7.9973 -0.00201 0.04720 0.00132
Seq-2 7.9971 -0.00431 0.00513 -0.00443
Seq-3 7.9975 0.00061 -0.00319 -0.00572
Seq-5 7.9970 0.00390 0.00879 -0.00030
Seq-8 7.9972 0.00591 -0.03651 0.00481
Seq-9 7.9977 -0.00007 -0.00345 0.00378
Seq-11 7.9972 0.00638 -0.01068 -0.00391
Seq-12 7.9973 -0.00071 0.03101 0.00501
Seq-13 7.9972 0.00220 -0.01799 -0.00583
Seq-14 7.9973 -0.00331 -0.00323 0.00588
Seq-16 7.9968 0.00690 0.01358 0.00325
Seq-19 7.9972 -0.00287 -0.04253 -0.00174
Seq-20 7.9973 -0.00076 -0.00670 0.00003
Seq-22 7.9967 0.00026 0.00259 -0.00645
Ref.[30] 7.9964 -0.00079 -0.0013 -0.0046
Ref.[31] 7.9885 0.0132 0.0017 0.0034
Ref.[32] 7.9968 0.0025 0.0037 0.0011

B. Correlation Analysis

It is known that two adjacent pixels in a plainimage are

strongly correlated vertically, horizontally and diagonally. This

is the property of any ordinary image. The maximum value

of correlation coefficient is 1 and the minimum is 0. A

robust encrypted image to statistical attack should have a

correlation coefficient value of ˜0 as discussed in [33]. Results

of horizontal, vertical and diagonal directions are obtained

as shown in Table IV for Lena plainimage and the ciphered

images by the considered 14 schemes respectively. These

results demonstrate that there is negligible correlation between

the two adjacent pixels in the encrypted images, even when

the two adjacent pixels in the plainimage are highly correlated.

C. Sensitivity Analysis

In order to avoid the known-plaintext attack, the changes

in the cipherimage should be significant even with a small

change in the plainimage. If one small change in the plainim-

age can cause a significant change in the cipherimage, with

respect to diffusion and confusion, then the differential attack

actually loses its efficiency and becomes practically useless.

To quantify this requirement, two common measures are used:

Number of Pixels Change Rate (NPCR) and Unified Average

Changing Intensity (UACI) [34]. We have tested the NPCR

and UACI with the considered 14 sequence schemes to assess

the influence of changing a single pixel in the plainimages

on the encrypted images. From the results, we have found

that the average values of the percentage of pixels changed in

encrypted image is greater than 99.60% for NPCR and 30.50%

for UACI for all the 14 generated sequences. This implies that

the considered 14 schemes are very sensitive with respect to

small changes in the plainimage.

D. Histogram Analysis

To prevent the leakage of information to an adversary,

it is important to ensure that cipherimage does not have

any statistical resemblance to the plainimage. A good image

encryption scheme should always generate a cipherimage of

the uniform histogram for any plainimage. In this work, the

histograms are plotted for Lena plain and encrypted images.

The histogram of Lena plainimage contains large spikes as

shown in Fig. 1 while the histograms of it’s cipherimages are

almost flat and uniform which indicates equal probability of

occurrence of each pixel as shown in Figs. 2(a – n). They

are significantly different from the respective histogram of

the Lena plainimage and hence does not provide any clue

to employ any statistical attack on the considered 14 image

encryption schemes.

VIII. CONCLUSION

In this paper, we have presented several construction meth-

ods based on a common general scheme for generating binary

sequences from EC over a binary finite field (F2m). The

proposed scheme is based on the C-D ECPRNG with simple

arithmetic transformations (XOR and permutation or S−box)

to produce long size binary sequences with good randomness

properties. The generated sequences are tested using tests from

the NIST randomness test suite to analyze their statistical prop-

erties. It is found that 14 schemes of the 22 proposed specific

schemes have passed the selected six complementary tests and

the sequences generated by these 14 schemes work correctly

OMAR REYAD, ZBIGNIEW KOTULSKI: PSEUDO-RANDOM SEQUENCE GENERATION FROM ELLIPTIC CURVES 995



Fig. 2. Histogram of encrypted Lena image with the considered 14 sequences

with short (210 bits) and long (220 bits) size sequences. The

pseudo-random sequences generated by these 14 schemes are

applied to image encryption as an application example and

the security analysis of the ciphered images are carried out.

It is found also that the sequences generated using the C-D

ECPRNG had high periodicity so that the encrypted images are

secure. In addition, it has large key space, which is by far very

safe for image encryption applications, and outperforms the

competitive image encryption algorithms in terms of efficiency

comparing to other encryption schemes.
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