Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 11

Proceedings of the 2017 Federated Conference on Computer Science and Information Systems

Internet connected wireless combustible gas monitoring system for apartment buildings

,

DOI: http://dx.doi.org/10.15439/2017F311

Citation: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 873876 ()

Full text

Abstract. Despite the modern gas equipment, combustible gas leakage related emergency situations still take place and lead to building demolitions and human losses. Leak integrity failures because of anthropogenic and natural factors make impossible to prevent such emergency in other ways except providing continuous monitoring of combustible gas concentration and notification for people and special services. In this work, the design results of the Internet connected wireless sensor network for combustible gas concentration monitoring in apartment buildings is presented. The system consists of wireless autonomous gas sensors, actuators, routers and a gateway and it's connected to a web service where it posts its data and gets events to react them in WSN.

References

  1. Huang Z., Li J. Assessment of fire risk of gas pipeline leakage in cities and towns //Procedia Engineering. – 2012. – Т. 45. – С. 77-82. https://doi.org/10.1016/j.proeng.2012.08.124
  2. Kapitulík J., Miček J., Jurečka M., Hodoň M. (2014). Wireless sensor network-value added subsystem of ITS communication platform. In Computer Science and Information Systems (FedCSIS), 2014 Federated Conference on (pp. 1017-1023). IEEE. https://doi.org/10.15439/2014F370
  3. Pei Zhou, Gongsheng Huang, Linfeng Zhang, Kim-Fung Tsang, "Wireless sensor network based monitoring system for a large-scale indoor space: data process and supply air allocation optimization", Energy and Buildings, Volume 103, 15 September 2015, Pages 365-374. http://dx.doi.org/10.1016/j.enbuild.2015.06.042
  4. Ferdoush Sheikh, and Xinrong Li. "Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications." Procedia Computer Science 34 (2014): 103-110. https://doi.org/10.1016/j.procs.2014.07.059
  5. Gutiérrez J., Villa-Medina, J. F. Nieto-Garibay, A., Porta-Gándara M. Á. (2014). Automated irrigation system using a wireless sensor network and GPRS module. IEEE transactions on instrumentation and measurement, 63(1), 166-176. https://doi.org/10.1109/TIM.2013.2276487
  6. A. Somov, A. Baranov, D. Spirjakin, A. Spirjakin, V. Sleptsov, R. Passerone, "Deployment and evaluation of a wireless sensor network for methane leak detection", Sensors and Actuators A: Physiscal 202 (2013) 217-225. http://dx.doi.org/10.1016/j.sna.2012.11.047
  7. Olešnaníková Veronika, Peter Ševčík, and Peter Šarafín. "Monitoring of CO 2 amount in closed objects via WSN." Computer Science and Information Systems (FedCSIS), 2015 Federated Conference on. IEEE, 2015.
  8. Jeličić V., Magno M., Paci G., Brunelli D., Benini L. (2011, June). Design, characterization and management of a wireless sensor network for smart gas monitoring. In Advances in Sensors and Interfaces (IWASI), 2011 4th IEEE International Workshop on (pp. 115-120). IEEE. https://doi.org/10.1109/IWASI.2011.6004699
  9. Yang J., Zhou J., Lv Z., Wei W., Song H. (2015). A real-time monitoring system of industry carbon monoxide based on wireless sensor networks. Sensors, 15(11), 29535-29546. https://dx.doi.org/10.3390%2Fs151129535
  10. Alexander Baranov, Denis Spirjakin, Saba Akbari, Andrey Somov, "Optimization of power consumption for gas sensor nodes: A survey." Sensors and Actuators A 233 (2015) 279–289. http://dx.doi.org/10.1016/j.sna.2015.07.016
  11. Spirjakin D., Baranov A. M., Somov A., Sleptsov V. “Investigation of Heating Profiles and Optimization of Power Consumption of Gas Sensors for Wireless Sensor Networks”. Sensors and Actuators A: Physical 247 (2016) 247-253. http://dx.doi.org/10.1016/j.sna.2016.05.049
  12. Electrical Apparatus for the Detection of Combustible Gases in DomesticPremises. Test methods and performance requirements, EN 50194-1:2009
  13. Miorandi D., Sicari S., De Pellegrini F., Chlamtac I.: "Internet of Things: Vision, Applications and Research Challenges". J. Ad Hoc Networks 10, 1497-1516 (2012). http://dx.doi.org/10.1016/j.adhoc.2012.02.016
  14. Abraham S., Li X. A cost-effective wireless sensor network system for indoor air quality monitoring applications//Procedia Computer Science. -34 (2014). -Р. 165-171.
  15. Zheng, Z. B. Design of distributed indoor air quality remote monitoring network//Advanced Materials Research. -850-851 (2014). -Р. 500-503.
  16. Baranov A. M., Spirjakin D., Akbari S. Somov A., Passerone R. “POCO: 'Perpetual' operation of CO wireless sensor node with hybrid power supply”// Sensors and Actuators A: Physical. 238 (2016) 112-121 .https://doi.org/10.1016/j.sna.2015.12.004