Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 11

Proceedings of the 2017 Federated Conference on Computer Science and Information Systems

On the Use of Nature Inspired Metaheuristic in Computer Game

, , ,

DOI: http://dx.doi.org/10.15439/2017F385

Citation: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 2937 ()

Full text

Abstract. This paper describes a new, metaheuristic-based approach of swarm intelligence techniques as applied in computer gaming: utilizing the Krill Herd Algorithm (KHA). In this work, KHA is employed to find a bots movement strategy in a computer racing game. The complete algorithm is implemented using a Unity Engine in C# language. Herein, the triggering of the metaheuristic optimization task was conducted by the way of a KHA internal parameter investigation. In this approach, the goal of the race (the KHA evaluation function) for both the human and computer player is to finish a lap in the shortest time possible.

References

  1. J. van Waveren, “The quake iii arena bot,” University of Technology Delft, 2001.
  2. X. Yang, Nature-Inspired Optimization Algorithms. London: Elsevier, 2014.
  3. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989. ISBN 0201157675
  4. E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “Gsa: A gravitational search algorithm,” Information Sciences, vol. 179, no. 13, pp. 2232 – 2248, 2009. https://doi.org/10.1016/j.ins.2009.03.004 Special Section on High Order Fuzzy Sets. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0020025509001200
  5. X. S. Yang and S. Deb, “Cuckoo search via levy flights,” in 2009 World Congress on Nature Biologically Inspired Computing (NaBIC), Dec 2009. http://dx.doi.org/10.1109/NABIC.2009.5393690 pp. 210–214.
  6. G.-G. Wang, S. Deb, and L. Coelho, “Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems,” International Journal of Bio-Inspired Computation, 2015.
  7. Z. W. Geem, J. H. Kim, and G. Loganathan, “A new heuristic optimization algorithm: Harmony search,” SIMULATION, vol. 76, no. 2, pp. 60–68, 2001. http://dx.doi.org/10.1177/003754970107600201
  8. X. Yang, “Firefly algorithm, stochastic test functions and design optimisation,” Int. J. Bio-Inspired Comput., vol. 2, no. 2, pp. 78–84, Mar. 2010. http://dx.doi.org/10.1504/IJBIC.2010.032124. [Online]. Available: http://dx.doi.org/10.1504/IJBIC.2010.032124
  9. S. Łukasik and P. A. Kowalski, “Fully informed swarm optimization algorithms: Basic concepts, variants and experimental evaluation,” in 2014 Federated Conference on Computer Science and Information Systems, Sept 2014. http://dx.doi.org/10.15439/2014F377 pp. 155–161.
  10. S. K. Panigrahi, A. Sahu, and S. Pattnaik, “Structure optimization using adaptive particle swarm optimization,” Procedia Computer Science, vol. 48, pp. 802 – 808, 2015. http://dx.doi.org/10.1016/j.procs.2015.04.218. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1877050915007279
  11. M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,” Theoretical Computer Science, vol. 344, no. 2, pp. 243 – 278, 2005. http://dx.doi.org/10.1016/j.tcs.2005.05.020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0304397505003798
  12. X.-S. Yang and X. He, “Bat algorithm: Literature review and applications,” Int. J. Bio-Inspired Comput., vol. 5, no. 3, pp. 141–149, Jul. 2013. http://dx.doi.org/10.1504/IJBIC.2013.055093. [Online]. Available: http://dx.doi.org/10.1504/IJBIC.2013.055093
  13. D. Zou, J. Wu, L. Gao, and S. Li, “A modified differential evolution algorithm for unconstrained optimization problems,” Neurocomputing, vol. 120, pp. 469 – 481, 2013. https://doi.org/10.1016/j.neucom.2013.04.036 Image Feature Detection and Description. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S0925231213005717