

Documentation Management Environment for Software Product Lines

Stan Jarzabek

Faculty of Computer Science

Bialystok University of Technology, Poland

s.jarzabek@pb.edu.pl

Daniel Dan

Info-Software Systems ST Electronics Pte. Ltd.,
Singapore

ddan8807@gmail.com

Abstract--Similar documents arise in software and business

domains. Examples are user guides for different versions of a

software product, contracts between vendors and clients, or legal

documents. The usual practice is to capture common document

formats and contents in templates that must be manually

customized to a new context – often a slow, tedious, and error-

prone process. We propose a method based on a proven approach

developed for software reuse that simplifies and automates routine

tasks involved in creating and updating families of similar

documents. Our Document Management Environment (DME)

provides functions to create templates capable of higher levels of

document contents reuse than templates supported by word

processors such as MS Word. DME allows users to designate any

arbitrary document part as a template’s variation point that can

be customized to produce a specific document. DME automates

document production by syncing inter-dependent customizations

occurring at different variation points. The paper describes two

“proof of concept” implementations of DME as Word add-in: The

first one uses Content Control mechanism and is specific to MS

Word. The second one is based on ART (Adaptive Reuse

Technique), a general text manipulation method and tool, and can

be used to manage similar documents in any editor that provides

an access to the internal representation of documents.

Keywords: Documentation, Reuse, Productivity, Document

Generation, Templates

I. INTRODUCTION

Document Management Environment (DME) facilitates and

automates reuse of documents written in WORD. DME is useful

in Software Product Line (SPL) engineering [1], where we

manage a family of similar software products from a common

set of reusable SPL core assets such as SPL architecture shared

by products, source code components, documentation, test

cases, etc. SPL core assets help developers build a custom

product. They play the role of templates that are reused after

suitable adaptations to derive custom products. All the SPL

members are similar, but each one also differs from others in

client-specific features. The impact of features shows as many

changes that must be applied throughout the product code and

documentation.

Creation and evolution of documentation for SPL members

involves much repetitive work. Developers can benefit from

reuse of software documentation just as much as they benefit

from reuse of other SPL assets. For example, User Guides for

different SPL members are similar, but also different. The

differences in User Guide versions reflect product-specific

variant features implemented into some custom products, but

absent from others. With understanding of commonalties and

differences among User Guide versions, we can design

documentation templates from which to derive custom User

Guides for specific products.

Document versions typically share common structure with

possible variations such as optional sections. Various document

fragments may recur in variant forms in many places, within and

across documents. The usual practice is to capture similarities

in templates that must be copied and manually customized to

create new document versions. Templates of word processors

such as MS Word support reuse of text “as is”. However, in

reality, templates must be extensively adapted to form a new

document version by changing, adding or deleting text

fragments. Such adaptation is weakly supported by templates of

word processors known to the authors, which often hinders

documentation management, making it a slow, tedious, and

error-prone process.

Our proposed approach to managing families of similar

documents overcomes this limitation, providing means for

flexible and semi-automated adaptation of document templates.

DME automates routine tasks involved in creating and updating

similar documents. The goal is to boost document management

productivity.

The challenge of managing a document family is to

understand what’s common and what’s different among
document versions. The differences between any two

documents (irrespective of the degree of their similarity) can be

trivially expressed as a sequence of text addition/deletion

operations that applied to one document produce the other one.

However, such a simple-minded perspective on document

differences poorly addresses human-cognitive aspects of

document management. In the course of empirical studies, we

identified seven basic document variation types that collectively

provided a basis for building powerful document templates that

are easy to grasp and could be adapted in flexible ways to form

document versions (Section IV). DME provides seven text

manipulation operations that handle these basic document

variation types such as parameter instantiation throughout the

documents, selecting text from a list of options, inserting or

deleting text at designated points in documents, or repeatedly

generating custom text according to a specified template. DME

automatically propagates custom changes across templates in

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1325–1334

DOI: 10.15439/2017F106

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1325

the process of creating new document versions or in updating

existing ones. Our intention was to minimize the need for

manual customizations of templates, hoping to reduce effort

involved in managing documents.

Given popularity of MS Word, we decided that our “proof of
concept” implementation of DME would help users manage

families of MS Word documents. DME extends the concept of

MS Word templates and styles, to provide better controls over

reuse of document structure, contents and formatting. We

implemented DME user interface as an MS Word add-in.

We considered two different strategies for manipulating the

internal representation of MS Word documents. The first

strategy used the Content Control API. This solution was

straightforward, however it was specific to Microsoft

technology. In the second solution, we demonstrated how the

seven basic operations could be implemented in any editor

providing access to its internal textual representation of

documents. For that we applied a general-purpose mechanism

of ART (Adaptive Reuse Technique, http://art-processor.org/)

that we developed and used as a variability management

technique for software reuse. We demonstrated how the seven

document variation types could be expressed in ART and

illustrated document management with an example.

We believe our proposed solution to document management

will be particularly useful in any software or business domain

that involves large volumes of related documents, with many

repetition patterns, and detailed variations propagating across

documents in complex ways. DME complements capabilities of

commercially available document generation systems.

In Section II, we set our assumptions regarding the document

management process and explain the role of DME in that

process. We introduce a working example in Section III. We

discuss basic document variation types in Section IV. In Section

V, we present users’ perspective of DME implemented as a

Word Add-in, and in Section VI we comment on

implementation of DME. Section VII illustrates salient features

of a general-purpose text manipulation method and tool ART.

Discussion of future work, related work and conclusions end the

paper.

II. APPROACH AT A GLANCE

The lifecycle of DME-supported documentation processing

fits into the usual SPL lifecycle, with two major phases, namely

Domain Engineering and Product Development (Figure 1).

Document Architect (or Senior Clerk) analyzes similarities and

differences among subject documents (e.g., User Guides for

some products), and uses DME to create a template based on

text that recurs in documents in variant forms. Templates are

richly parameterized, to let our tool manage document

variability and reuse at coarse- and fine-granularity levels.

Document Architect

Senior Clerk
Document Developer

Clerk

Create User Guide

template

Refine User Guide

template

Create custom User

Guide for a client

Suggest refinement

of the template

User Guide

template
Custom

User Guide

Client

Understands similarities and differences

in product User Guides

Understands product for a specific client and

creates custom User Guide for that client

Figure 1. Managing User Guides with DME

To create a template for User Guides, we start with a User

Guide for a typical product. We designate various document

fragments – words, sentences, paragraphs, sections – as

variation points that can differ from the sample document. We

can also control each variation point’s characteristics, such as
its format and repeatability. DME converts this annotated

document into a User Guide template that we then use to

generate User Guides for other – similar but also different –

document variants. All variation points in a DME template are

formally inter-linked which allows DME to propagate

customizations within and across documents.

Document Developer uses DME to customize templates and

generate custom documents from them. DME propagates

custom changes across documents, streamlining and automating

customizations (adaptive reuse) of document variant parts.

Customizations defined for one User Guide can be easily reused

in creating other User Guides.

III. A WORKING EXAMPLE

Project Collaboration Environment (PCE) is a web portal

supporting software development teams in project planning and

1326 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

execution. PCE facilitates sharing of project information within

and across teams. In particular, PCE allows users to create and

maintain records of domain entities such as projects, staff, tasks

and relationships among them (e.g., tasks assigned to staff).

Suppose we developed a PCE for the mass market. There will

be many PCE versions in use. All such PCEs will be similar but

will also differ one form another depending on the team size,

development style, and other project- and team-specific details.

A User Guide for PCE describes how to Create, Edit, Delete

Staff, Project, or Task records. User Guide contains Staff-

Section, Project-Section, Task-Section and in each section

descriptions of relevant operations (Figure 2). The actual lists

of domain entities (Staff, Project, or Task), their respective

operations and the details of operation description may differ

across PCEs, and those differences must be reflected in User

Guides.

In the same way as PCE portals form a family of similar but

also different portals (that might be supported in reuse-based

way using a Software Product Line approach), PCE User

Guides form a family of similar, but also different documents

that could benefit much from reuse.

PCE for Agile Development: User Guide
Project Collaboration Environment is an integrated environment that supports project teams in software development. PCE stores

staff, project data, facilitates project progress monitoring, communication in the team, etc.

The following sections provide detail description of operations for domain entities supported by PCE.

Staff Section
This section describes operations to manage Staff information in a Project Collaboration Environment. A Staff profile contains the

following information:

Name: Full name of Staff

…

Create a new Staff
Create operation allows users to add new staff data to PCE. Once added, this new information can be manipulated by using Edit,

Delete or Display operations.

Edit Staff information
Edit operation allows users to edit staff data. Once edited, this new information can be manipulated again by using Edit, Delete or

Display operations.

Delete Staff record
..

Display Staff information
..

Sort Staff
..

Print an individual Staff
..

Project Section
…

Create a new Project
…

Edit Project information
…

Link a Project with another Project
…

Delete a Project link
…

Delete Project record
…

Display Project information
..

Sort Projects
.

Task Section
…

Figure 2. User Guide for PCE

IV. DOCUMENT VARIATION TYPES

We analyzed families of similar documents such as User

Guides to understand how we could capture their commonalties

and differences in an intuitive way, leading to templates that

would be both powerful in terms of reuse and easy to grasp for

users. Differences among documents look ad hoc at first, but

after analysis and conceptualization we decided that the

following seven basic document Variation Types would help us

achieve the goal:

Comment: Below, a ‘fragment’ means any arbitrarily selected

segment of contiguous text in a document such as word,

sentence, paragraph, section, or any part of them.

VT 1. Parametric variations: A parameter has the same values

within a given document, but may have different values across

document versions. Examples: date, section name, syntactic

variations: for example spelling (English or US), whether or not

we put “,” before “and”, etc. Parameters become placeholders

in document templates.

VT 2. Selection variation: This kind of a difference among

documents happens when at a specific point each document

version should include one or more pre-defined fragments

(options). Such variation point is represented by a selection

construct in a template that allows the required options to be

selectively included into document versions.

VT 3. Extra fragment: It is a fragment that appears in only

small number of documents. An extra fragment may recur in

many places in each of such documents. Such fragments must

be also parameterized, as each of its occurrences may differ

from other occurrences (in the same or in different document

versions). Extra fragments do not become an integral part of

templates, instead, they are included into documents when they

are needed.

STANISLAW JARZABEK, DANIEL DAN: DOCUMENTATION MANAGEMENT ENVIRONMENT FOR SOFTWARE PRODUCT LINES 1327

VT 4. “Almost common” fragment: It is a fragment that is a

part of most (but not all) of the document versions. An “almost
common” fragment may recur in many places in each of such
documents. “Almost common” fragments must be

parameterized. Unlike “extra” fragments that need be included

on demand in small number of documents, “almost common”
fragments become template defaults, simplifying template

customizations. As extra and “almost common” fragments
require different treatment during document management, they

are distinguished as separate Variation Types.

VT 5. Repeated section: A section that recurs a number of

times in a given document. Such section may recur different

number of times in different documents. Repeated sections must

be also parameterized.

VT 6. Formatting variations: A fragment that can be formatted

using different font type or color in different documents.

VT 7. Linked documents: Large documents can be

decomposed to parts that are stored in separate files. A link can

be placed in a template to show how documents should be

composed together. Document composition rules may be

different for each document being generated from a template.

Each variation point in a DME template (i.e., a point at which

a template can be customized) corresponds to one of the above

document Variation Types.

V. HOW DME WORKS

DME provides seven text manipulation operations

corresponding to seven basic Variation Types. In DME

interface implemented as an MS Word add-in, these seven

operations are accessed via menu buttons shown under

“Document Management Environment” toolbar (from

“Parameter” to “Link” in Figure 3).

Figure 3. DME menu extending MS Word toolbar

During template creation, these buttons allow a Document

Architect to create templates. The same buttons are used by

Document Developer to create custom documents from

templates.

A. Creating a User Guide template

As a Document Architect (Figure 1), we must first

comprehend variability in a document family such as User

Guides, i.e., identify common and variant document parts.

Common parts become “frozen” in a template, while variant
parts become variation points at which template can be

customized.

Figure 4. Staff and Project sections compared

The best is to start building a template from a “typical” User
Guide, i.e., the one that is “most similar” to other User Guides.
Such a User Guide already contains much of the common text

that can be reused among User Guides, and also a considerable

number of variant texts. The right choice of a User Guide

simplifies template creation.

Terms “typical” and “most similar” are not easy to formalize,
and our current approach to identifying a typical document is

1328 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

rather informal (we hint at better approaches to identifying

typical documents and creating templates in Section VIII on

Future Work): We run MS Word’s Compare function on

existing User Guides. Differences highlighted by MS Word are

candidates for variation points in a template. Of course, we

should add more variation points to accommodate variant text

found in yet other sections and in User Guides for yet other

PCEs. Figure 4 shows common (normal font) and variant

(shaded font) parts in Staff and Project sections.

Suppose we observe that sections for Staff, Project, and Task

are similar to each other. We could choose to create a Section-

Template first. The advantage of creating Section-Template is

that Sections recur (and therefore Section-Template can be

reused) within a User Guide for one PCE, as well as across User

Guides for different PCEs.

At each variation point in a template we define a default value

which DME uses when generating custom documents unless the

user overrides the default values. DME function “Toggle View”
toggles views between variation point names and their default

values. Figure 5 shows a Section-Template with variation

points highlighted by DME in different colors.

To convert Staff Section into a Section-Template, we

position cursor on fragments highlighted by MS Word as

different and click on suitable DME button to turn variant text

into a template parameter – a variation point at which template

can be customized. For example, we turn ‘Staff’ into parameter
sectionName (VT1), and then qualify other document variant

fragments as selection (VT2), extra fragment (VT3) or almost

common fragment (VT4). Each of the above actions creates a

variation point that DME highlights in different color,

depending on its type. DME propagates variation points across

a document using Find-Replace buttons.

Figure 5. Section-Template created with DME

B. Creating new User Guides from templates

A Document Developer can customize templates to create

User Guides. This is done by overriding default values at

template variation points. Whenever this happens, DME

automatically propagates new values to all the other relevant

variation points in the current template and all templates linked

to it. DME rules for propagating values across documents are

carefully designed to maximize template reuse and to simplify

template customization. DME function “Toggle View” toggles
between template view (showing variation point names) and

custom document view.

Still, template customization can be tedious. Sometimes, it

may be better to start with an existing User Guide that is most

similar to the one we want to create. We can now ask DME to

show this document in a template view. This will show all the

variation points in the document, with values assigned to them

during document creation. We can accept values that suit us (no

action required for that), and override the remaining values.

C. Extra DME features

Document fragments that recur many times should be

reusable, after suitable customizations. Domain Engineer

should place such reusable fragments in separate templates for

inclusion with ‘Link’ DME button and function. DME traverses
all templates linked together to compose a custom document

during document generation. Any customizations are

propagated to linked templates, making it possible to

STANISLAW JARZABEK, DANIEL DAN: DOCUMENTATION MANAGEMENT ENVIRONMENT FOR SOFTWARE PRODUCT LINES 1329

consistently instantiate templates in many different ways,

depending on the context.

The ability to Link templates and to propagate customizations

via links during document generation is critical for scaling the

DME approach. Often, many inter-related documents (e.g., a

User Guide and Technical Manual) need be customized in sync

one with another. Similar document fragments may spread

through such documents, even though each document may be

derived from different master templates. Common fragments

can then be customized and included in variant forms in these

documents via ‘Link” connection.
We presented DME as an interactive tool in which Document

Developer enters customizations via DME user interface.

However, it is also possible to import customization data from

a file, database or from other tools that understand document

variability.

VI. COMMENTS ON TWO IMPLEMENTATIONS OF A TEXT

MANIPULATION MECHANISM IN DME

A key question now is how to implement text manipulation

operations corresponding to seven Variation Types described in

Section IV. We implemented DME’s internal text manipulation

mechanism in two ways, using MS Word Content Control API,

and a general-purpose variability management method and tool

ART (Adaptive Reuse Technique, http://art-processor.org/).

Since Microsoft Office 2007, Microsoft introduced XML-

based file format Office OpenXML for MS Office documents.

Developers can programmatically manipulate documents via

APIs, and enhance MS Word with new functions (Word add-

ins). Content Control API released by Microsoft provided a

convenient set of operations for text manipulation for our

purpose. Content Control API allowed us to treat document

fragments as objects, and associate tags and other meta-data

with them. Content Control was giving us good control over

variation points in an MS Word document. Protecting the text

contained at variation points from accidental changes was not a

problem either. For better performance, we implemented

Document Variability Management (DVM) engine in C#, using

Visual Studio Tools for Office 4.0. DVM engine provided us

with text manipulation primitives sufficient for implementing

DME functions. It took five person-months to develop DME as

an MS Word add-in. This effort also included brainstorming and

formalizing DME requirements.

The reason why we considered yet another method to handle

text manipulation operations in DME was to demonstrate that

our proposed approach to document management could be

applied in any text editor that allows users to access its internal

textual representation of a document under editing. ART is a

general-purpose variability management technique that works

with any information represented in textual form. Document

parts are instrumented with ART commands to form highly

parameterized, adaptable templates. Each of the seven Variation

Types discussed in the last section could be handled with proper

combination of ART commands (the reader will find details in

Section VII.A). This was not surprising as ART was designed

to handle much more complex variability situations.

We kept ART commands in comments embedded at

designated variation points in a document. Using OpenXML

API, we could extract the document text and pass it to ART

Processor for executing commands. The actual variability

processing with ART was completely hidden from DME users.

It took six person-months to develop DME prototype in ART.

This effort included the time to learn ART.

We concluded that both MS Word Content Control and ART

were viable strategies for text manipulation required in reuse-

based document management.

VII. MANAGING DOCUMENT VARIABILITY IN ART

Here are general rules: ART templates contain document text

parameterized with ART commands. ART Processor reads

templates, and outputs custom documents. ART commands are

interpreted, while text is emitted to the output as is. The

processing sequence is defined by ART commands. Required

customizations related to the seven Variation Types are defined

in the specification file called SPC which is also a start point for

processing.
start.spc

% Global variable settings

#set var1 = ͞Test͟
#set var2 = ͞Vϭ ,͟ ͞VϮ ,͟ ͞Vϯ͟

#adapt ͞teŵplateϭ.art͟
#adapt ͞teŵplateϮ.art͟

template1.art

<Content of Template1>

<Using variables: ?@var1?>

#adapt ͞teŵplateϭ_Ŷext.art͟

template2.art

<Content of Template2>

<Using variables: ?@var2?>

#adapt ͞teŵplateϮ_Ŷext.art͟

template1_next.art

<Content of Template1_next>

<Adapted by Template1>

template2_next.art

<Content of Template2_next>

<Adapted by Template2>

ART output

<Content of Template1>

<Using variables: Test>

<Content of Template1_next>

<Adapted by Template1>

<Content of Template2>

<Using variables: [V1, V2, V3]>

<Content of Template2_next>

<Adapted by Template2>

ART

Processor

Figure 6. Processing of ART templates

1330 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

ART commands in SPC, and in each subsequently processed

ART template, are processed in the sequence in which they

appear. When ART Processor encounters #adapt f2 command

in template file f1, it suspends processing of file f1 and starts

processing file f2. Once processing of file f2 is completed, ART

Processor resumes processing of file f1 just after #adapt

command. In that way the processing ends when the Processor

reaches the end of the SPC.

Figure 6 illustrates the sequence of processing ART template

files. On the right-hand-side side of the figure we see the output

emitted by ART Processor after processing the files starting

from SPC file and moving along the #adapt links.

Variables can be assigned values with #set command, and

?@name? retrieves their value. Values of the variables

propagate to the adapted files.

A. Document Variation Types in ART

In this section, we describe how we can express in ART the

seven Variation Types discussed in Section IV.

VT 1. Parametric variations
ART variables handle parametric document variations.

Command #set SectionName = "Staff" defines variable

SectionName and initializes it to “Staff”. ?@SectionName?

refers to the value of that variable. ART Processor emits

variable value to the output file (Figure 7).

#set SectionName = "Staff"
…
?@SectionName? Section
<Section template text>

Figure 7. Sample ART template tempSection.art

Typically, variables are set in SPC and ART Processor

propagates their values down to all adapted files. Suppose there

is a command #set SectionName = “Project” in SPC that

adapts tempSection.art. Then, ART Processor would emit text

“Project Section”. Otherwise, should there be no #set

SectionName = … command in SPC, ART Processor would

emit text “Staff Section”, as a default value. This way of

handling variable values propagation allows ART Processor to

emit document variants from the same templates. This is also

illustrated in Figure 6.

VT 2. Selection
 ART command #select - #option works in a similar way as

switch statements in programming languages. #select lets us

select one of the many variant parts that should be included at a

designated point in a document.

#select SectionName
 #option "Staff"
 <Extra section(s) for Staff>

 #endoption
 #option "Customer"
 <Extra section(s) for Customer>

 #endoption
 #endselect

In the above example, if the value of SectionName is

"Staff", ART Processor emits the content of the first #option

to the output document; otherwise if the value of SectionName

is "Customer", ART Processor emits the content of the second

#option.

VT 3. Extra Fragments

Extra fragments are managed by ART commands #insert

into #break. ART Processor emits to the output document

fragments or sections contained in #insert at points designated

by matching #break in templates. Matching is done by names

associated with #insert and #break. There are three variations

of #insert that append, prepend or replace the content marked

with matching #break.

 SPC_Staff file:
#set SectionName = "Staff"
#adapt: "sectionTemplate.art"
 #insert: "additional_content"
 <Staff extra fragment content>

 #endinsert
#endadapt

 sectionTemplate.art file
<template content>

#break "additional_content"

In the above example, ART Processor emits extra fragment

for Staff when processing #break “additional_content”,

ignoring any text contained in #break.

VT 4. ”Almost common” fragment
Text in #break is a default output in case there is no matching

#insert for a given #break. So “almost common” fragments are

conveniently handled by making them #break’s defaults. In

cases when the “almost common” fragment should be omitted
(or replaced by other fragment), we place a suitable #insert

matching the #break in SPC.

VT 5. Repeated section

ART command #while iterates over its body a predefined

number of times emitting output accordingly.

#set SectionName = Staff,Project,Task
#while SectionName
 #adapt "PCE_UserGuide.art"
#endwhile

SectionName is a multi-value variable, and #while iterates

over its values adapting template PCE_UserGuide.art each time

in different way.

VT 6. Formatting variations

We can use ART variables or selection to handle formatting

variations.

VT 7. Linked Document

If we wish to split large documents into parts, then we use

command #adapt to compose the whole document from its

parts.

In creating of ART templates, we could address any

conceivable differences among documents with a single

operation such as #select or #insert. The reason why we have

STANISLAW JARZABEK, DANIEL DAN: DOCUMENTATION MANAGEMENT ENVIRONMENT FOR SOFTWARE PRODUCT LINES 1331

seven DME operations is to let the user intuitively think about

document differences in terms of the seven Variation Types and

map them to DME operations. Also, from our experience with

using ART we know that by skillful use of these seven

operations ART templates are much simpler than if we tried to

address all the document Variation Types with a smaller number

of operations.

B. User Guide Template

Document Architect creates templates using DME interface,

for which she does not need to know ART or internal

representation of Word documents. Document Architect’s view
of a template is shown in Figure 5. Figure 8 shows an internal

representation of a template and SPC to create the Staff User

Guide (Figure 4). Our templates and SPC are written in Rich

Text Format (RTF) parameterized with ART commands.

Consequently, ART Processor also emits RTF documents. The

choice of the format is irrelevant to our ability to parameterize

document with ART commends. However, RTF makes text

manipulation easy, as the whole document including formatting

is defined as a text file.

Document Developers define the required customizations via

DME interface, from which DME generates an SPC. The

internal representation in RTF instrumented with ART is not

easy to read, but it is hidden from users, generated and

manipulated by DME user interface operations.

SPC:
#set SectionName = "Staff"
#adapt "PCE_UserGuide.art"

PCE_UserGuide.art:
{\rtf1\ansi\deff0 \fs20 {\fonttbl {\f0 Times New Roman;}}
{\pard\sb120\sa240 \qc \fs40 PCE for Agile Development: User Guide \par}
Project Collaboration Environment is an integrated environment that
supports Project teams in software development…
#select SectionName
 #option "Staff"
 #adapt: "sectionTemplate.art"
 #set extraLinkOperation = ""
 #insert "data"
Name: Full name of Staff\line
Office: Room number of Staff\line
…
 #endinsert
 #endadapt
 #endoption
 #option "Project"
 #adapt: " sectionTemplate.art"
 #set extraLinkOperation = ", Link with other projects"
 #insert "data"
Title: Project's title\line
Type: Type of project Internal or External\line
…
 #endinsert
 #insert "extra_actions"
 #adapt "Project_extra_actions.art"
 #endinsert
 #endadapt
 #endoption
#endselect

sectionTemplate.art:
This section describes operations to manage ?@SectionName? Information
in a Project Collaboration Environment.\line
A ?@SectionName? profile contains the following information:\par}
#break "data"\par}
Available operations for ?@SectionName? module includes Create,
Edit?@extraLinkOperation?, Delete,
and Display ?@SectionName?'s information.\line
The following sections provide detail instructions for each available
operation for ?@SectionName? module
Create a new ?@SectionName?}

Figure 8. RTF document output from ART code

1332 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

VIII. FUTURE WORK

The approach to managing families of similar documents

presented in this paper, as well as DME are a proof of concept.

We applied DME to a small number of documents. We also did

usability tests to evaluate if the approach can be easily

communicated to others, and if the DME’s user interface was

simple and intuitive. We received mostly encouraging feedback

from the evaluation. Some comments allowed us to refine the

DME’s user interface.
Still, much work needs be done before DME becomes a

production quality tool (in terms of usability and reliability) that

can be applied in real situations. Some issues, such as more

intelligent user interface, may considerably improve usability of

DME, but require further research, as we explain below.

Our current DME prototype implements functions related to

all document Variation Types except VT6 – repeated section.

We are clear about internal mechanism to manage reuse of

repeated sections, but still unclear about how to let DME users

specify and then instantiate repeated sections in an easy way.

DME described in the last section communicates with users

in terms of variant document parts such as sentences or

paragraphs. Such DME can provide effective assistance in

managing documents in hands of technical staff, but it is too low

level for non-technical staff.

DME usability can be enhanced by allowing a Document

Architect to model document variability and map it to template

variation points. Feature diagrams [3] commonly used in

Software Product Line [1] research and practice might be used

to model document variability. Feature diagrams explicate

common and variant features in an intuitive, hierarchical form

that can be comprehended by non-technical staff. Document

Architect can create feature diagrams for a given document

family based on understanding of commonalities and

differences in subject documents. When creating a custom

document, Document Developer would select required variant

features from the feature diagram, and DME would

automatically inject relevant customizations to a template. This

can eliminate (or at least substantially reduce) the need for

manual customizations.

Even higher-level of interaction can be achieved by letting

DME users work on documents in terms of concepts of their

application domain. Domain-specific languages and their

generators can be implemented using Visual Studio’s DSL
Toolkit. Both feature diagram-based and domain-specific mode

of communication between users and DME will be more

intuitive than the mode of communication described in the

previous section. DME enhanced with the above features will

provide higher levels of automation for document management,

and will be easy to use for non-technical staff.

Here is summary of functions that we plan to implement to

further enhance usability of DME:

1) DME will display a summary of customizations that

occurred at specific variation points in custom documents

created so far.

2) Query-based analysis will allow users to selectively retrieve

information from a customization history repository.

3) DME will have a flexible rights-control system to

allow/disallow different classes or users to perform certain

actions. User rights will be applied to control which parts are

read-only.

4) DME will accept customization data from external sources

such as databases, spreadsheets, data files, requirement

management databases (such as DOORS), or already mentioned

feature diagrams.

5) Assistance will be provided for analysis of

similarities/differences in existing document variants. If many

documents already exist, identification of document variability

may become difficult just using MS Word’s Compare function

(described in Section A). Document analysis tool can compute

editing distance similarity metrics to help Document Architects

understand document variability, build a feature model, and

identify a “typical” document, suitable for template creation.
This will help Document Architect to create templates.

6) DME will support Variation Point Documentation (VPD).

VPD will allow users to enter/read meta-data of variation

points. VPD will contain information such as variation point

name, description, possible values, suggested customizations,

etc. User customization rights will be contained in VPD.

IX. RELATED WORK

The presented approach has been inspired by research on

software reuse. In Software Product Line (SPL) engineering [1],

we manage a family of similar software products (e.g., financial

products) from a common set of reusable software artifacts such

as architecture shared by systems, source code components,

documentation, test cases, etc. All SPL products are similar, but

each one also differs from others in client-specific features. The

impact of client-specific features shows as many changes that

must be applied through code and documentation - a repetitive,

time-consuming and error-prone process if done manually.

Methods have been proposed to manage variability in software

to address this problem, increasing productivity via software

reuse, one of which is ART.

DME can be viewed as a template engine, a tool that

generates custom output from templates and a data model.

Templates represent the textual contents in parameterized form,

while data model defines parameter settings. In DME,

parameter settings can be either imported or the user can define

them in the interactive session, via DME user interface. DME is

unique in fine-granular level of customizations, and in

providing template engine capability for MS Word.

Publishing tools such as Adobe FrameMaker™, DocBook™

and DITA™ generate documents and facilitate reuse of

document fragments. However, these tools do not support

customizations of reused fragments which is a key feature of

DME approach.

Generation of documentation for Software Product Lines is

addressed in [4][5][6][7]. Research tools [4][7] extend

STANISLAW JARZABEK, DANIEL DAN: DOCUMENTATION MANAGEMENT ENVIRONMENT FOR SOFTWARE PRODUCT LINES 1333

DocBook with document variability management, while

commercial tools [5][6] generate custom documents from

variability models. pure:variants [6] allows one to

include/exclude optional sections in MS Word documents

based on selected features. DME supports optionality and yet

other six document variation types (Section IV), and provides

interactive means to manage document variability as well as

importing of customization data.

Commercial tools implement various approaches to

document generation. Many tools provide general means for

document design; Q-Pulse stores document versions, provides

facilities to track changes, but does not instantiate and propagate

specific customizations of document templates; we do;

Intelledox generates documents based on selected rules;

Corticon focuses on management of companies’ business
rules/decisions as enterprise assets, and document generation in

the context of supported business processes; Wizilegal supports

end-user document creation via Web service; MS Word

templates can be used to generate documents according to

inputs from a database, Excel, XML or other data sources (data-

driven document generation). The general goal of these tools is

the same as ours – to improve productivity of some aspects of

document management. However, the specific goals and

capabilities of these tools differ from ours mainly in the

granularity and the nature of document variability that is

addressed. We have not identified a document management tool

on the market that focuses on managing client-specific detailed

differences among multiple document versions, which is the

strength of our approach. We believe our approach

complements rather than competes with existing documentation

tools.

X. CONCLUSIONS

We presented a method and tool called DME for managing

families of similar documents. Implemented as an MS Word

add-in, DME extends the concept of MS Word templates to

achieve documentation reuse with automated propagation of

custom changes during custom document generation. DME

supports template creation and instantiation (document

generation), automated propagation of customizations across

documents and ease of adoption due to seamless integration of

DME into the usual document processing model (Figure 1) and

MS Word. We presented two implementation strategies for

handling text manipulation: The first one uses Content Control

API and is specific to MS Word technology, and the second one

applied general-purpose text manipulation method and tool

ART.

We believe the ideas and technical approach to document

management described in this paper could find applications in

both software and non-software domains, where information

reuse based on clear understanding of commonalties and

differences among artifacts is important.

Presented here DME is a proof of concept. In future work, we

will apply DME in real world projects, validate basic

assumptions, and build domain-specific interfaces to enhance

DME’s usability.

ACKNOWLEDGEMENT

Authors thank Mr. Paul Bassett, the inventor of Frame

Technology™ and a co-founder of Netron, Inc, for his generous

contributions to our projects on ART and XVCL, his suggestion

to work on the DME project, and insightful comments on this

paper.

This study was supported by a grant S/WI/2/2013 from

Bialystok University of Technology and founded from the

resources for research by Ministry of Science and Higher

Education.

REFERENCES

[1] Clements, P. and Northrop, L. Software Product Lines:

Practices and Patterns, Addison-Wesley, 2002

[2] Jarzabek, S. Effective Software Maintenance and

Evolution: Reused-based Approach, CRC Press Taylor and

Francis, 2007

[3] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E. and

Peterson, A.S., Feature-oriented domain analysis (FODA)

feasibility study. Technical Report CMU/SEI-90-TR-021,

SEI, Carnegie Mellon University, November 1990

[4] Koznov, D. and Romanovsky, K. “DocLine: A Method for
Software Product Lines Documentation Development,”
Programming and Comp. Soft., vol. 34, no. 4, pp. 216-224

(DOI: 10.1134/S0361768808040051)

[5] Krueger, C. “The BigLever Software Gears Unified
Software Product Line Engineering,” Proc. 12th Int Soft.

Product Line Conf. Limerick, 2008, p. 353

[6] Pure:systems GmbH

[7] Rabiser, R., et al “A Flexible Approach for Generating
Product-Specific Documents in Product Lines,” Proc. Int.

Soft. Product Line Conf, SPLC’10, Jeju, S. Korea, Sept.

2010, pp. 47-61 (DOI: 10.1007/978-3-642-15579-6_4)

[8] XVCL, XML-based Variant Configuration Language, a

reuse method and tool, http://art-processor.org

1334 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

