
DNS as Resolution Infrastructure for Persistent

Identifiers

Fatih Berber∗ and Ramin Yahyapour∗‡

∗Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen (GWDG), Germany
‡University of Göttingen

{fatih.berber, ramin.yahyapour}@gwdg.de

Abstract—The concept of persistent identification is increas-
ingly important for research data management. At the beginnings
it was only considered as a persistent naming mechanism for
research datasets, which is achieved by providing an abstraction
for addresses of research datasets. However, recent developments
in research data management have led persistent identification to
move towards a concept which realizes a virtual global research
data network. The base for this is the ability of persistent
identifiers of holding semantic information about the identified
dataset itself. Hence, community-specific representations of re-
search datasets are mapped into globally common data structures
provided by persistent identifiers. This ultimately enables a
standardized data exchange between diverse scientific fields.

Therefore, for the immense amount of research datasets, a
robust and performant global resolution system is essential.
However, for persistent identifiers the number of resolution
systems is in comparison to the count of DNS resolvers extremely
small. For the Handle System for instance, which is the most
established persistent identifier system, there are currently only
five globally distributed resolvers available.

The fundamental idea of this work is therefore to enable
persistent identifier resolution over DNS traffic. On the one side,
this leads to a faster resolution of persistent identifiers. On the
other side, this approach transforms the DNS system to a data
dissemination system.

I. INTRODUCTION

THE massive growth of digital data in many different

areas including the scientific area, has driven a series of

profound changes in the world. For commerce, this data deluge

for example provides a door for new markets. By analyzing

the purchase patterns of specific buyer groups, it is possible to

subject them with pinpointed advertisements which ultimately

could lead to a strong increase of the profits.

In the scientific area for instance, the increasing volume of

research datasets has led to an increase of their importance.

The overall goal in research data management is to provide

a sustainable cross-disciplinary exchange between different

scientific branches. This could ultimately help to enable the

discovery of new insights in various scientific fields.

The concept of persistent identification is becoming a

fundamental component for research data management. Its

basic function is to provide a sustainable access to research

datasets, which are currently retrievable by their locators.

Even small technological changes in a research data repository

could lead to many invalid locators. Hence for a long-term

sustainable access, locators are highly inappropriate. Since

research datasets are currently mapped into web resources,

the locators are URLs. Thus, persistent identifiers currently

provide an abstraction for URLs corresponding to individual

research datasets.

However, with the explosive research dataset growth, the

count of registered persistent identifiers is increasing enor-

mously as well. Therefore, persistent identifier systems are in-

creasingly subjected to high loads. Since persistent identifiers

are an essential component for research data management, the

performance of persistent identifier systems is highly critical

for research datasets exchange. The focus of this work is

therefore on the performance of the resolution procedure for

persistent identifiers.

The importance of persistent identifiers for global research

dataset exchange is comparable to the importance of the

well-known DNS system for the current general Internet

communication. The resolution procedure for both, persistent

identifiers and domain names, is in principle a node traversal

procedure, whereas the traversal starts at a specific root

node and terminates at a responsible child node. Hence, the

resolution time for domain names and persistent identifiers

are generally composed of the network latencies between

the traversed nodes. Moreover, the resolution procedure in-

volves a specific proxy resolver which is tasked with the

node traversal. A requesting application only submits a single

resolution request to the proxy resolver, which then responses

with the answer obtained from the traversal procedure. To

reduce the traversal procedure, the answer of frequent res-

olution requests is usually cached at the proxy resolvers.

In such a case, the resolution time only consists of the

network latency between requesting application and proxy

resolver.

For DNS, there are a myriad of publicly available proxy

resolvers, such that an application can always choose a proxy

resolver in its proximity. In contrast to that, the count of

persistent identifier proxy resolvers is in comparison to the

count of DNS proxy resolvers infinitesimally small. For the

Handle System, which can be considered as the most important

and established persistent identifier system, there are currently

only five globally distributed proxy resolvers. Therefore, the

fundamental idea of this paper is to enable the resolution of

persistent identifiers over DNS proxy resolvers. Due to the

global widespread of DNS proxy resolvers, with this approach,

the resolution time for persistent identifiers can be significantly

reduced.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1085–1094

DOI: 10.15439/2017F114

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1085



The remainder of this paper is structured as follows. Section

II gives an overview of the related work. In Section III we will

analyze the core idea behind the concept of persistent identi-

fication. In addition, we will discuss the different possibilities

to use DNS as resolution system for persistent identifiers. In

Section IV, we will provide a realization of our proposed idea

for the resolvability of Handle persistent identifiers over DNS

traffic. Finally, in Section V we will do an evaluation of the

proposed idea by means of an experimental setup. Ultimately,

in Section VI will present our conclusions and give hints for

future work.

II. RELATED WORK

Persistent identifiers are in principle widely acknowledged

for research data management. However, their importance

is significantly increasing due to the ability of imposing

semantic information into the persistent identifier record itself.

Therefore, the perception for persistent identifiers increasingly

moves from a simple redirection mechanism towards a global

data structure for research datasets, which ultimately enables

information exchange between diverse research data reposito-

ries.

A prime example for an early perception for persistent

identifiers is the work [1]. The authors consider the concept

of persistent identification only as a redirection mechanism.

Therefore, their focus is to devise a bridge from persistent

identifiers to HTTP URIs, which are associated with semantic

information about research datasets. But they do not take

into account the possibility of persistent identifier records for

holding semantic information.

The work [2] proposes trusty URIs for providing trust

and reliability for scientific datasets. The focus is on using

cryptographic hash values in URIs corresponding to identified

scientific datasets, so called trusty URIs. A trusty URIs can

then be used to determine whether the identified datasets has

been subjected to manipulations. However, it becomes critical

for this approach when the identified research datasets moves

to another location.

One of the first works which considers persistent identifiers

as a more complex concept than just a redirection mecha-

nism is given by [3]. The basic approach is an ontological

refinement of metadata sets contained in persistent identifier

data records, which enables a common information set for the

various persistent identifier systems.

The first work which considers persistent identifiers as a

data structure for semantic information is provided by [4].

The focus is the integration of common abstract datatypes into

persistent identifier data records, which can be consumed by

machine actors. In contrast to [3], their core emphasize is to

provide a standardized set of information entities about the

identified dataset itself.

Due to the versatility of persistent identifiers, they are also

considered in various other fields. An example for that is the

work [5]. The authors are discussing the usage of persistent

identifiers in the field of Named Data Network (NDN). Their

focus is to use existing persistent identifier concepts within

NDN environment for delivering big datasets.

Another example is from the field of scientist identification,

the authors in [6] introduce the concept of persistent identifi-

cation for scientists. In their concept, an individual persistent

identifier data record corresponds to a single scientist, which

also contains the respective bibliography.

However, the versatility of the concept of persistent iden-

tification can also be important for the Internet-Of-Things

paradigm. For IoT, persistent identifiers can be more than just

a naming component, in fact, they are perfectly suitable as

the global platform for device communication. The work [7]

is an example for the need of a naming component in IoT.

The main idea is in principle to provide a DNS-like system

specifically targeted for IoT devices. However, this is de facto

already existing: The Handle System, which can be considered

as the most sophisticated persistent identifier system, is already

productively in use. In addition, the data structure of the

Handle System is generic enough to hold any kind of data

including device information. Another major advantage of the

Handle System is that there are guarantees for a long-term

operation.

Ultimately, all the aforementioned research efforts do not

specifically address the performance of the concept of persis-

tent identification.

In a previous work [8], we have proposed a high-

performance identification concept for huge research data

repositories, which already provide a sophisticated data struc-

ture and immutable identifier scheme for its research datasets.

However, in that work we did not emphasize on the perfor-

mance of the resolution of persistent identifiers, which is the

focus of this current work.

Persistent identifiers are very well comparable with domain

names of the DNS system. In both systems, basically a name

is registered once and resolved many times. Therefore, the

concepts which are applied for accelerating domain name

resolution are also suitable for persistent identifier resolution.

The resolution of domain names can be considered as a

latency problem, which is caused by the traversal of the

hierarchical architecture. Therefore, in order to shorten the

traversal path, usually aggressive caching is applied. The

authors [9] focus on analyzing the resolution performance

from the client point of view. In addition, they analyze the

effectiveness of caching.

A special caching strategy of DNS records is proposed by

[10]. The authors introduce a concept for proactive caching

of expired DNS records, whereas particular DNS records are

unsolicited refreshed before clients queries them.

Usually, individual DNS zones are composed of multi-

ple servers for ensuring high-availability and load-balancing.

Since, the domain name resolution procedure can be consid-

ered as a node traversal problem, an optimal choice of the

appropriate nodes can significantly improve the performance.

Thus, the impact of the DNS server selection algorithms of

popular DNS proxy server implementations is provided by the

work [11].

1086 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



Often, nameservers of top-level domain zones are also

geographically distributed. Thus, in order to redirect a domain

name resolution request to the nearest nameserver, usually the

technique of anycast is applied. Hence, the work [12] analyses

the effectiveness of anycast for DNS server selection, whereas

it reveals the general usefulness of anycast.

However, in content distribution networks (CDNs) anycast

alone usually does not suffices for efficiently redirecting user

requests to appropriate CDN servers. Since in anycast the

routing decision is done by the network, which is based on

the static hop count between different autonomous systems,

dynamic parameters such as the current load at individual

servers are not covered by anycasting. Therefore, in CDNs

the request routing is based on special DNS servers which

are basically tasked with the collection of routing relevant pa-

rameters. The collected parameters are then used to determine

the most appropriate CDN server. Thus the work [13] analyzes

different server selection algorithms in CDNs which are based

on DNS. A similar work is provided by [14]. It analyses

the functioning the Akamai infrastructure, which is one the

largest CDNs. In addition, by conducting a comprehensive

measurement study it reveals the complexity in CDNs.

However, currently the fundamental problem of persistent

identifier resolution is caused by the very few distribution of

resolution systems. For DNS, in contrast, there are countless

resolvers globally distributed. Hence, the fundamental idea of

this paper is to make use of these DNS resolvers for persistent

identifier resolution.

III. THE CONCEPT OF PERSISTENT IDENTIFICATION

Since in the current Internet all resources are retrieved by

their locators instead of their names, for a sustainable access

temporary locators are highly inappropriate. This is especially

true for research datasets. In order to prevent research datasets

from being lost in the huge data deluge, research datasets are

more and more interlinked with each other. In addition, data is

increasingly consumed by machine actors instead of humans.

For machine consumption it is necessary to employ a common

data structure together with a common understanding for the

elements in that data structure. Persistent identifiers initially

have been conceived for providing an abstraction for locators

of resources in the current Internet. The working principle of

persistent identifiers is simply to map an opaque name, which

is assigned to an individual research dataset, to its current

locator. Another aspect of persistent identifiers is that they also

enable the imposition of semantic information about research

datasets. This aspect significantly increases the importance of

persistent identifiers for research data management. Therefore,

the registration procedure of research datasets at persistent

identifier systems can be considered as a mapping from a

community-specific into a standardized global representation.

Whereas the global representation is used by various different

machine consumers, which can access research datasets just by

their globally unique names without further knowledge about

their current Internet locations. In addition, these machine

consumers can autonomously operate with research datasets

based on the imposed semantic information.

In its fundamental working principle, the well-known DNS

system is very much comparable to a persistent identifier sys-

tem. In both systems, an information entity is first registered

and secondly resolved. In the DNS system, the information

entity is basically an IP-address of a computer host which then

is assigned a human-friendly representation for its IP-address,

namely a domain name. In the case of persistent identifiers,

the information entity first of all consists of a locator for a

research dataset. As mentioned earlier, the information entity

also increasingly includes much more complex information

about the identified research dataset. Therefore, the concept

of persistent identification can also be considered as a tech-

nology, which enables the realization of a virtual global

research data network, wherein the communication between

the actors is realized by persistent identifiers and whereby

the actions are derived from the corresponding information

entities.

However, the increased importance of persistent identifiers

has also led to a steadily increasing load at persistent identifier

systems. To provide a reliable communication between various

the actors, a performant resolution of persistent identifiers

is therefore highly important. Due to the global distribution

and the hierarchical architecture, the resolution of persistent

identifiers is usually a latency problem. As it is the case for

DNS, the resolution is accomplished by a node traversing,

starting from the root node and ending at the responsible

node for an individual persistent identifier. The mature DNS

system is a fundamental component of the current Internet,

therefore its performance is highly critical for the whole

Internet communication. In order to ensure a reliable and

performant functioning, for the DNS system several techniques

are in use. A rough categorization of these techniques is given

by the following:

a) Caching is primarily applied to hold the data in a faster

storage, but in the particular case of DNS, it is applied

to shorten the traversal path. Whereby the answer for

frequent resolution requests is tried to be cached in a

proximity node of a requestor.

b) In order to ensure high-availability and robustness an

individual DNS zone usually consists of multiple name-

servers, where upon the incoming resolution requests are

distributed on. This is actually better known as load-

balancing.

c) In addition to load-balancing, the technique of anycast is

often used to redirect the requests to the nearest possible

DNS server. Anycast is especially targeted for zones

which consists of multiple geographically distributed

nameservers. The top-level domain (TLD) zones are

a typical example for that. The ”.de” TLD zone for

instance, consists of many nameservers which have

been globally positioned. A request submitted by an

application, which is hosted in Europe will be redirected

to the European cluster of nameservers responsible for

the ”.de” zone. In contrast to that, a request originating

FATIH BERBER, RAMIN YAHYAPOUR: DNS AS RESOLUTION INFRASTRUCTURE FOR PERSISTENT IDENTIFIERS 1087



from the USA, will be answered by the nameservers

located in the USA.

In anycast, multiple nodes are reachable by exactly the same

IP-address. As an example, the public Google DNS resolver is

reachable by the IP-address 8.8.8.8. However, since the public

Google DNS resolver is globally distributed among the Google

data centers, a request of an individual client will be redirected

to the nearest Google DNS resolver. For anycast the request

routing decision is made at the network switch level, which

choose the path corresponding to the shortest hop count among

a set of possible other paths.

However, for content distribution networks (CDNs), request

routing based on anycast is not efficient enough. This is due

to the fact that static routing decisions based on the hop count

do not cover the dynamic load behavior in CDNs. Therefore,

in CDNs special DNS servers have proven to provide a

reliable request routing for redirecting an individual requestor

to the current most efficient content server. These special DNS

servers are equipped with probing information collected from

previous requests which are used for the request routing.

To resolve a specific domain name into its IP-address, an

application usually queries its operating system’s stub resolver.

The stub resolver in turn, redirects the resolution request to a

pre-configured DNS proxy resolver. Such a proxy resolver then

traverses the hierarchical global DNS system until it reaches

a DNS server, which has the corresponding answer for the

resolution request. This is depicted in Figure 1.

For the Handle System, which can be considered as the

most important and elaborated persistent identifier system, the

resolution of individual persistent identifiers, called Handles, is

in principle very similar to the resolution procedure of domain

names. In contrast to domain names, an individual Handle is

composed of two parts: a prefix and a suffix part. Both parts

are separated by the ASCII character ’/’. The prefix part is

comparable with a domain name as it consists of hierarchical

labels separated by dots. The suffix part in turn, is a locally

unique name assigned to an individual research dataset.

To resolve a Handle, an application has to submit the res-

olution request to the Global Proxy Resolver (hdl.handle.net).

The Global Proxy Resolver in turn, starts at the Global Handle

Registry (GHR) to find the responsible Local Handle Service

(LHS). This information is stored in the so called Prefix

Handle at the GHR. In the next step, the resolution request is

sent to that LHS. Finally, the Global Proxy Resolver responds

with the corresponding Handle Record received from the LHS.

The Handle resolution procedure is depicted in Figure 2.

In summary, for DNS and Handle resolution, an application

has to involve a particular proxy system. The fundamental

difference between DNS and Handle resolution is the fact

that for DNS resolution there a myriad of public DNS proxy

resolvers available. In contrast to that, for Handle resolution,

the Global Proxy Resolver currently consists of only five

globally distributed servers.

Hence, due to caching at the Global Proxy Resolver, as it

is applied at any DNS proxy resolver, the resolution time of

Handles often consists to a great extend of the latency between

the requesting application and the Global Proxy Resolver.

Therefore, to speedup the resolution time for Handles, it is

essential to reduce the latency to the Global Proxy Resolver.

The focus of this work will therefore be on the improvement

of the resolution time for Handles. Since the Handle System is

also a fundamental part of other important persistent identifier

systems, such as the DOI System [15], an improvement of the

Handle System will also affect these other persistent identifier

systems. Before we will discuss the possibilities of reducing

the latency between requestor and proxy system, we will first

proceed with a brief comparison between DNS and Handle

System.

„.“ 

root zone

„de.“ 

zone

„gwdg.de.“ 

zone

Stub DNS 
Proxy

App

0

2

1

3

4
5

6

7

8

9

resolve handle.gwdg.de

Fig. 1: DNS Resolution Procedure

App

Global Handle 

Record

„21.T11996“

Local Handle 

Service

hdl.handle.net

Global Proxy Resolver
(Round Robin)

0

1 2

3

4

5

resolve hdl=21.T11996/8246adba-163e5aee7b5d

Fig. 2: Handle Resolution Procedure

A. DNS and Handle System Comparison

The DNS, as well as the Handle System, can be considered

as a hierarchical, distributed database. Both systems define a

specific protocol to ensure the global functioning. However,

in contrast to DNS, the Handle protocol offers a much

richer set of operations for the management of individual

Handles. In addition, the Handle protocol is equipped with

its own authentication and authorization mechanism, which

enables the management (provided that an individual user is

authorized) of any Handle Record stored at any Local Handle

Service in the world. Whereas management of DNS records

is still a manual process involving an administrator’s action.

Another strength of the Handle System is its data structure.

In DNS, the data is structured as Resource Records (see

1088 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



Figure 4), whereas the type field and the rdata field are the

most important fields. Obviously the type field denotes the

type of the data in the rdata field. In the Handle System, an

individual Handle consists of multiple Handle Values which

form a Handle Record (see Figure 3). Similar to a Resource

Record, a Handle Value is most importantly composed of a

type and a data field. However, the essential aspect of Handle

Values is that there is no restriction on a set of permissible

data types as it is the case for Resource Records [16]. Thus, a

Handle Value can hold any type of data, which makes the

Handle System also attractive for the area of the Internet-

Of-Things. The Handle System can act as a global registry

for any device for storing device specific information. This

in turn could enable various different devices to interact with

each other by means of exchanging their corresponding Handle

Records.

In summary, these characteristics underline the potential of

the Handle System.

HandleRecord

HandleValue_0

typeindex data ttl timestamp permission references

HandleValue_N

typeindex data ttl timestamp permission references

Fig. 3: Handle Record made of a set of Handle Values

ResourceRecord

name type ttl rdataclass

Fig. 4: Resource Record

B. Proxy System Latency Reduction

To reduce the latency between an application and the Global

Proxy Resolver for resolving Handles, first of all it is necessary

to increase the count of globally distributed proxy servers.

This could be done by a manual setup, which is theoretically

possible but associated with high costs and administration

efforts. Another option would be to make use of a content

distribution provider such as Akamai, where the Handle proxy

system could be spread on the provider’s global infrastructure.

However, since in CDNs special DNS servers are tasked with

the request routing, for the relative simple Handle resolution

operation the request routing based on DNS would again cause

a considerable overhead into the overall Handle resolution

time. In addition, the usage of CDNs is also associated with

additional costs. The next option is to make use of an already

publicly available and globally widespread infrastructure for

Handle resolution, whereby the DNS infrastructure constitutes

a perfect candidate for such an endeavor. The great benefit

of this option is that one can make use of the myriad of

globally available public DNS resolvers without additional

costs and administrative overheads. However, the downside of

this option is that it requires a translation process between the

Handle and DNS protocol. For the translation process, there

are in principle the two following options:

(A) Translation at the DNS system: In this case, the public

DNS resolvers have to be extended by the Handle protocol in

order to be able to communicate with the Handle System.

(B) Translation at the Handle System: Whereas in this

case, both the Global Handle Registry as well as the Local

Handle Service have to be extended by the DNS protocol in

order to be able to communicate with the requesting DNS

resolver.

The main obstacle for option (A) is based on the fact that

there are various different implementations of DNS resolvers.

For the realization of our proposed idea, it is necessary that

all publicly available DNS resolvers have to be upgraded by

a Handle protocol module, which can hardly be realized.

In contrast to that, all components of the Handle System

are based on a common library set, called the Handle libraries

[17], which are publicly available. The Handle libraries are in

principle a reference implementation of the Handle protocol.

Since our fundamental idea is to make use of publicly available

DNS resolvers for Handle resolution, with option (B) there are

no modifications in these DNS resolvers required, which is a

major benefit of option (B). Therefore, in the remaining we

will focus on the realization of option (B).

C. Summary

Since the resolution procedure of Handles is very much

comparable to the one of domain names, the resolution time

mainly consists of the network latency between the different

nodes which have to be traversed until the responsible node is

found. For both domain names and Handles it is necessary

to instruct a specific proxy resolver, which is tasked with

the traversal of all the necessary nodes. However, for Han-

dle resolution, currently there are only five proxy resolvers

globally distributed. In contrast to that, for the domain names

there are a myriad of publicly available DNS resolvers. This

means that the resolution time of Handles suffers from the

relative low density of the global distribution of the Handle

proxy resolvers. Therefore, the network latency between the

requesting client and the Handle proxy resolver has generally

a high contribution to the overall Handle resolution time. To

reduce this latency between client and Handle proxy resolver,

the fundamental idea of this work is to make use of publicly

available DNS resolvers for resolving Handles. This is based

on the fact that the global distribution of DNS resolvers has

a much higher density than the global distribution of Handle

resolvers.

IV. IMPLEMENTATION

In this section, we will consider the implementation of

option (B) for enabling Handle resolution over DNS traffic.

FATIH BERBER, RAMIN YAHYAPOUR: DNS AS RESOLUTION INFRASTRUCTURE FOR PERSISTENT IDENTIFIERS 1089



The realization of this approach covers the following four

parts:

(1) Handle server with DNS interface

(2) Mapping of Handle Values into DNS Resource Records

(3) Representation of Handles as domain names

(4) Appropriate Resolution Procedure

Therefore, in this section we will provide insight into all these

parts.

A. Handle server with DNS interface

Since our fundamental idea is basically to embed the Handle

System into the DNS system, for the proposed solution it

is necessary to extend the individual Handle servers with a

DNS interface. A DNS interface enables the communication

with Handle servers by means of the DNS protocol. It should

be noted that the Handle libraries already include a DNS

interface, which can be enabled in Handle servers for listening

on DNS traffic. However, this DNS interface is intended for

Handle servers to act as ordinary DNS servers. It does not

enable the resolution of ordinary Handle Records over DNS

traffic, which is our objective. This stems from the fact that

DNS Resource Records are limited on a permitted set of data

types, whereas Handle Records can contain Handle Values

with any type of data. In this built-in DNS interface, the

mapping direction is from DNS Resource Records into Handle

Values. In addition, only Handle Values containing real DNS

Resource Records can be resolved. In contrast to that, our

approach is to enable the resolution of any type of Handle

Values over DNS traffic. The key challenge for this endeavor

is to transform Handle Values containing any type of data into

Resource Records, which are actually limited on a specific set

of data types. Hence, in contrast to the built-in mechanism,

for our approach the mapping direction is from Handle Values

into Resource Records. However, we make use of the already

built-in DNS interface for the request and response encoding

and decoding. The algorithm in the Handle server, however,

for requests received at the DNS interface has been modified

in order to realize the resolution of Handle Records over DNS

traffic, which will be discussed in the following subsections.

B. DNS Resource Records Types

The mapping of Handle Values into DNS Resource Records

constitutes the core part of our approach. Initially, DNS has

been conceived for providing human-friendly addressing for

computer hosts, which are actually addressed by their IP-

addresses. Therefore, most DNS Resource Records contain

data which is specifically related to computer hosts. Among

them, the Resource Record with the type ”A” can be con-

sidered as the most used type since the corresponding data

field contains an IP-address of an individual computer host.

As already mentioned, Resource Records are limited on a

particular set of permitted data types [16], however, none

of them is targeted for holding descriptive information about

digital datasets (such as research datasets) or IoT devices. The

ability of providing meta information would transform DNS

from a simple resolution system into a data dissemination

system. To realize this approach, either the permitted set of

Resource Records has to be extended by additional types for

the dissemination of datasets or one has to exploit specific

types of the permitted set. The core problem of extending

the set of permitted Resource Record types is based on the

requirement that public DNS resolvers also have to support

these new types. This is quite challenging since many public

DNS resolvers even do not support all of the currently per-

mitted types. Therefore, we concentrate on the exploitation

of already permitted data types. For that, we have identified

specific types of Resource Records, which we will analyze in

the following:

NAPTR Resource Records: NAPTR typed Resource

Records have been introduced to enable DNS to act as a

rule database for the Dynamic Delegation Discovery System

(DDDS) [18]. DDDS is basically an abstract concept for

applications to enable resource access through applying rules

on input strings. The rules are provided by the NAPTR

Resource Records, which are then applied by the requesting

DDDS applications to compose the locators of resources.

Hence, DDDS applications are compelled to implement a

specific algorithm in order to apply the rules contained in

NAPTR Resource Records. In contrast to that, in ordinary

persistent identifier systems the locator of a resource is

retrieved directly through a resolution process.

SRV Resource Records: SRV Resource Records are used to

describe available services on hosts. It allows to specify the

service, its protocols and the corresponding ports on which

the service is listening on the host.

URI Resource Records: The URI Resource Record is an

alternative to the SRV Resource Record. It does only hold

the URI for a resource. However, in order to access a digital

datasets, it is often also necessary to specify the port number

of the repository system.

TXT Resource Records: The TXT Resource Record is in-

tended to transfer arbitrary textual information with DNS

traffic. However, in principle it is possible to transfer any kind

of data encoded as a character string. As such, it is pretty well

suitable for transferring Handle Values.

Among the listed Resource Records, the TXT Resource

Record is the most flexible one. Another aspect which is

quite beneficial for our approach is given by the fact that

this Resource Record is also widely supported by public

DNS resolvers. The problem with the remaining Resource

Records is that for them there are already defined standard

procedures for their consumption, which is not the case for

TXT. The general idea of using the TXT Resource Record

to store key-value pairs is not new, as can be seen in [19],

however, it was never considered in conjunction with persistent

identifiers. Ultimately, for the realization of our approach, the

TXT Resource Record is the most reasonable choice. Thus, in

the next subsection we will provide the actual mapping from

a Handle Value into a TXT typed Resource Record.

1090 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



C. Mapping of Handle Values into DNS Resource Records

Each Handle Value is mapped into a Resource Record with

a TXT typed field. The data field of the Resource Record

is composed of the Handle Value type field together with its

corresponding data field, whereas the equal character (’=’) is

used as delimiter. In addition, the Handle Value ttl field, which

is used for caching, is mapped into the ttl field of the Resource

Record. An important aspect at this mapping procedure is that

Handle Records may also contain Handle Values, which are

not allowed to be consumed by the public. Hence, all Handle

Values with restricted reading rights, which is recognized by

the permission field, are discarded at the mapping procedure.

Since a Handle Record can contain multiple Handle Values,

the index field is used as an unique internal identifier within

the Handle Record. This is not necessary for Resource Records

and therefore the index is not considered at the mapping. The

name field of the Resource Record is replaced by the domain

name representation of the corresponding Handle identifier

string. Finally, the overall mapping procedure is depicted in

Figure 5.

HandleValue

typeindex data ttl timestamp permission references

ResourceRecord

dnsHandle TXT ttl “type=data“IN

Fig. 5: Mapping of Handle Value into TXT typed Resource Record

D. Representation of Handles as Domain Names

Another fundamental aspect for the resolution of Handles

through DNS traffic is their representation as domain names.

This is discussed in the following three points:

(1) Character Set:

In principal, a Handle may consist of any character from

the Unicode character set. In contrast to that, a domain

name can only contain letters from A to Z, the digits

from 0 to 9, a hyphen (-) and a dot (.) as separator.

Hence, in order to represent each possible Handle as a

domain name there is an additional encoding algorithm

necessary. However, for internationalized domain names

(IDNs), which also consist of Unicode characters, there

is already an algorithm available for converting them

into regular domain names. This conversion algorithm

could be extended to encode a general Handle as a

regular domain name. Since, Handle strings are usually

composed of known identifiers, such as UUIDs, which are

representable as regular domain names without additional

encoding efforts, in this work we will only focus on such

Handles identifiers. For general Handles there is future

research necessary in order to deduce an appropriate

conversion algorithm.

(2) Namespace Hierarchy:

Domain names are composed as hierarchically dot sepa-

rated labels. From an individual label point of view the

label next to the right denotes its parent label. Handles in

turn are composed of a prefix and a suffix. As for domain

names, the prefix consists of hierarchically dot separated

labels. However, in contrast to domain names, in a Handle

prefix the rightmost label denotes the lowest level of

the hierarchy. The prefix is followed by the slash (’/’)

character, which separates the suffix from the prefix. The

suffix in turn is basically a locally unique identifier. In

summary, this means that a Handle identifier incorporates

two different separators: dots for the prefix and a slash to

distinguish the suffix. In order to represent the a Handle

as a domain name, it is first of all necessary to replace

the slash by a character which is allowed for domain

names. Hence, a slash is replaced by a dot. In addition,

the resulting Handle identifier has to reversed to ensure

the right traversing order at the resolution process by a

DNS resolver.

(3) Handle DNS Zone:

For the resolution of both, domain names and Handles,

it is necessary to traverse to the responsible node. For

domain names, the traversal path is given by its compos-

ing labels, whereas for Handles it is given by the prefix.

The Handle prefix is controlled by the Global Handle

Registry, which holds the addresses of the responsible

Handle servers for each individual prefix. Hence, the

resolution procedure of Handles over DNS traffic has to

involve the Global Handle Registry in order to find the

addresses for the responsible Handle servers. For the rep-

resentation of Handles as domain names, this means that

they have to include a common DNS zone name, which

is composed of the servers forming the Global Handle

Registry: The Handle Zone. However, currently there is

only the ”hdl.handle.net.” zone, which is composed of

the Global Proxy Resolvers. For the realization of our

approach it is instead necessary to register an additional

zone for the Global Handle Registry, e.g. ”handle.pid.”.

To summarize this discussion, Figure 6 provides an example

for the transformation of an individual Handle into the corre-

sponding domain name. The corresponding name field of the

Resource Record is denoted as dnsHandle (see Figure 5).

Handle:

dnsHandle:

21.T11996/8246adba-163e5aee7b5d

8246adba-163e5aee7b5d.T11996.21.handle.pid.

Fig. 6: Domain Name Representation of a Handle

FATIH BERBER, RAMIN YAHYAPOUR: DNS AS RESOLUTION INFRASTRUCTURE FOR PERSISTENT IDENTIFIERS 1091



E. Resolution Procedure

The appropriate resolution procedure is depicted in Figure

7. To resolve a Handle over DNS, the Handle has to be

transformed into its domain name representation, which is

done at step 0. For a Java-based application we have im-

plemented a transformation module (HandleDNSResolver) on

top of an already existing DNS module for Java (dnsjava)

[20]. The method getTypesByName(handle) returns all

type-data pairs as a JSON string. In addition, the method

getTypeValueByName(handle, type) returns only

the type-value pairs for a specified type.

The steps 1 to 5 are required to be traversed until the actual

Handle DNS zone is reached. In these steps, the DNS resolver

communicates with ordinary DNS servers in order to reach the

Handle DNS zone. At step 6, the DNS resolver communicates

with the DNS interface of the Global Handle Registry to

find the authoritative Handle server for a specific prefix. The

Global Handle Registry in turn, responses with a referral to

the responsible Handle server. At step 8, the DNS resolver

queries the responsible Handle server through DNS traffic

about a specific domain name. At the responsible Handle

server the queried domain name is transformed into a Handle

identifier for which the Handle Record is retrieved from the

database. After applying the mapping procedure (Figure 5) on

the retrieved Handle Record, the Handle server responses with

multiple TXT Resource Records (step 9). Finally, the response

is forwarded to the requesting application.

„.“ 

root zone

„pid.“ 

zone

Stub DNS 
Proxy

App

0

2

1

3

4
5

6

7

8

9

resolve hdl=21.T11996/8246adba-163e5aee7b5d

Global Handle 

Registry

DNS interface

Handle interface

„21.T11996“ 

Local Handle 

Service

DNS interface

Handle interface

9

handle.pid.

T11996.21.handle.pid.

„handle.pid.“ 
zone

10

Fig. 7: Resolution Procedure for Handles for DNS

V. EVALUATION

In this section, we will evaluate our approach of resolving

Handles over DNS traffic. Important parts of our experimental

setup, which we will describe in the next subsection, are based

on the GWDG infrastructure. GWDG is the service provider

for Max-Planck Society of Germany and the University of

Göttingen. Moreover, the persistent identifier systems offered

by GWDG are based on the Handle System. In addition,

GWDG is also member of the DONA Foundation [21], which

is controlling the global Handle System infrastructure.

A. Experimental Setup

Our experimental setup consists of the following compo-

nents:

• Imitation of Global Handle Registry:

For the evaluation we have setup an imitation of the

GHR equipped with a DNS interface. This imitated GHR

consists of two servers, whereas the primary is hosted at

GWDG and the mirror on an Amazon EC2 instance. In

addition, these two servers are the nameservers for our

experimental Handle DNS zone ”hx.gwdg.de.”, which is

a sub zone under the GWDG zone ”gwdg.de.”.

• Local Handle Service:

Also the LHS consists of a primary and a mirror Handle

server, whereas both are hosted at GWDG and equipped

with our DNS extension. This LHS is responsible for

Handles under the prefix ”21.T11996”. In addition, the

Handle servers of this LHS are at the same time the

nameservers for the ”T11996.21.hx.gwdg.de.” zone.

• Load Generator Application:

The load generator is a Java-based application hosted

on an Amazon EC2 instance located in Frankfurt. This

application is equipped with three different modules: The

first module is used to resolve Handles directly by means

of the Handle libraries, without involving a specific proxy

system. The second module is used to resolve Han-

dles through the Global Proxy Resolver (hdl.handle.net),

which is the current standard way for resolving Handles.

The third module uses our HandleDNSResolver module

to resolve Handles over DNS traffic.

• Handle Proxy:

Although, the resolution procedure through the Global

Proxy Resolver will also involve proxy servers outside

of Europe (due to DNS round-robin), for our evaluation

we will only consider the two proxy servers in located

in Europe. One of the European proxy servers is hosted

at an Amazon EC2 instance located in Ireland, whereas

the other one is hosted at GWDG. Currently, within the

Handle System infrastructure efforts are being made to

replace the DNS round-robin based proxy server selection

by anycast server selection. The result of that endeavor

will be that in the near future requests made in Europe

will be answered by the European proxy servers. Hence,

in our evaluation we will already cover the Handle Sys-

tem infrastructure of the near future by only considering

the European proxy servers.

• DNS Proxy:

To resolve Handles over DNS traffic, we made use

of two different DNS resolvers. The first one is an

1092 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



internal Amazon DNS resolver preconfigured in the EC2

instances. This can be considered to reflect the situation

of institutions which make use of their internal DNS

resolvers.

In contrast to that, for the second one, we replaced the IP-

address of the preconfigured DNS resolver by the address

of the public Google DNS resolver, which is reachable

via the IP-address 8.8.8.8.

In summary, we have utilized five different resolvers:

• Built-in resolver based on Handle libraries.

• Handle proxy server located in Ireland.

• Handle proxy server located in Germany at GWDG.

• Amazon DNS resolver.

• Google DNS resolver.

B. Measurements

Figure 8 finally illustrates the measurements for each of

the five resolution approaches in the same order as listed

above. The measuring process consists of two runs of 25,000

subsequent resolution requests for each approach. The mean

resolution times of the first runs are depicted by the white

left-sided bars. The right-sided black bars in turn, depict the

mean resolution times of the second runs, which is intended to

reveal the effect of caching. For all approaches, the bars show

the resolution times from the perspective of the load generator

application. Moreover, for the resolution through the Handle

proxy servers, we were able to retrieve the response times from

the logging files. Hence, the contribution of the Handle proxy

server and the LHS to the overall resolution time is marked

by hatches on the respective bars.

Ultimately, the measurements allow the following interpre-

tations:

Proxy LHS

Cache

[ms]

Resolution Time Comparison

dns
Google

dns
EC2

proxy 
GWDG

proxy 
IRE

hdl 
lib

Fig. 8: Comparison of resolution times for different resolution
approaches

(1) In both runs, the resolution with the Handle libraries is

the fastest method. Since this approach directly commu-

nicates with the LHS, there is no overhead caused by the

involvement of any proxy system. The disadvantage of

this approach is the requirement for the implementation

of the Handle libraries into the application, which could

cause considerable amount of redesign of the application.

The intention behind this approach in this evaluation is

to provide a measure for the fastest resolution technique.

(2) The bars corresponding to the resolution through the

Handle proxy servers show clearly the high contribution

of the latency between the requesting application and the

proxy server. This is especially visible by the second

runs, whereby the Handle Record is cached at the proxy

servers. Since in the second run, there is no communica-

tion between the proxy server and the LHS, the resolution

time consists of the latency between the application and

the proxy server only.

For the Handle proxy server located in Ireland the impact

of the latency between proxy server and LHS to the

overall resolution time is significant as well. However,

by means of caching at the proxy server the impact of

the latency between proxy and LHS can be minimized

for frequently resolved Handles, which can be seen from

the second run.

(3) The measurements for the Handle proxy hosted at GWDG

and the preconfigured internal Amazon DNS resolver are

in terms of network latency are quite comparable. The

resolution via the GWDG Handle proxy consists to a

great extend of the latency between the Amazon EC2

instance and the proxy server. Since the LHS is hosted

at GWDG as well, the latency between this LHS and the

GWDG Handle proxy is almost negligible. The database

lookup at the LHS has still a small impact onto the overall

resolution time, which can be seen from the LHS hatch

on the bar. In contrast to that, the resolution time with the

Amazon DNS resolver primarily consists of the latency

between the LHS and the DNS resolver. As can be seen

from the second run, the latency between the application

and the DNS resolver is vanishingly small.

Moreover, the second run also reveal the real benefit of

the approach of resolving Handles through DNS traffic:

Since the DNS resolver is in close proximity of the

application, the resolution time of cached Handles is

even shorter than the resolution time achieved by a direct

communication with the LHS (first run of resolution via

Handle libraries). This is quite beneficial for institutions

which are heavily working with Handles.

Another fundamental aspect which can be deduced from

these two measurements is that Handle resolution via

DNS does not cause a significant overhead due to the

transformation effort needed to map Handle Values into

the DNS resource records. Therefore, the resolution times

for both resolution techniques are almost identical for

similar network latencies between the involved compo-

nents.

FATIH BERBER, RAMIN YAHYAPOUR: DNS AS RESOLUTION INFRASTRUCTURE FOR PERSISTENT IDENTIFIERS 1093



(4) Although the resolution time with the public Google

DNS resolver in the first run is significantly higher

than with the GWDG Handle proxy, in the second run,

it is the opposite case. Furthermore, the measurements

corresponding to the public Google DNS resolver enable

to deduce a general strategy to reduce the resolution time

for Handles: Each application uses the DNS resolver in

its proximity to minimize the latency to the resolver. By

means of caching, the communication overhead between

proxy resolver and LHS could be eliminated, which

ultimately could result in a significant resolution time

reduction for frequently resolved Handles.

Although, caching is also applied at Handle proxy

servers, the fundamental difference is based on the fact

that for an individual application there is always a DNS

resolver in its close proximity, which is not the case for

Handle proxy servers.

VI. CONCLUSION

Persistent Identifiers are becoming more and more im-

portant which is correlating with the explosive growth of

research datasets. To ensure a sustainable access to research

datasets, they are increasingly registered at persistent identi-

fier systems to be assigned a globally unique and location-

independent identifier. However, as the count of persistent

identifiers increases, the performance of the corresponding

resolution systems is becoming increasingly critical for re-

search data management. In principle, persistent identifiers

are quite comparable to domain names, both are registered

once and resolved multiple times. For the resolution of domain

names there a myriad of globally distributed DNS resolvers. In

contrast to that, for persistent identifiers the count of resolvers

are only very few. For the Handle System, which can be

considered as the most important and established persistent

identifier system, there are currently only five geographically

distributed resolvers available. Hence, the resolution time for

persistent identifiers generally consists to a great extend of

the latency between requesting application and the particular

resolver. The fundamental idea in this work is therefore to use

DNS resolvers for resolving persistent identifiers.

For a realization of this idea, we have first extended the

Handle servers with a DNS interface and secondly conceived

an algorithm to map the Handle data model into DNS Resource

Records. The result of this endeavor is the resolvability of

Handle persistent identifiers over ordinary, unmodified DNS

resolvers.

Furthermore, by means of an evaluation, we have proofed

that the resolution time for Handles could be significantly

reduced with DNS resolvers. This is especially significant

for Handles which are cached at DNS resolvers. Although,

frequently resolved Handles are cached at the Handle resolvers

as well, the overall resolution time suffers from the small

number of globally distributed Handle resolvers, which is not

the case with the myriad of DNS resolvers. In addition, the

evaluation has also proofed that there is no performance loss
due to the mapping from the Handle data model into DNS

Resource Records.

Further research is needed, to conceive a standardized

DNS Resource Record, which is specifically tailored to hold

meta information about digital datasets. This would ultimately

enable DNS to move from a simple resolution system, which

resolves human-friendly labels into IP-addresses towards a real

data dissemination system.

REFERENCES

[1] H. V. de Sompel, R. Sanderson, H. Shankar, and M. Klein, “Persistent
identifiers for scholarly assets and the web: The need for an unambigu-
ous mapping,” IJDC, vol. 9, no. 1, jul 2014. doi: 10.2218/ijdc.v9i1.320

[2] T. Kuhn and M. Dumontier, “Making digital artifacts on the
web verifiable and reliable,” IEEE Transactions on Knowledge and

Data Engineering, vol. 27, no. 9, pp. 2390–2400, Sept 2015. doi:
10.1109/TKDE.2015.2419657

[3] E. Bellini, C. Luddi, C. Cirinnà, M. Lunghi, A. Felicetti, B. Baz-
zanella, and P. Bouquet, “Interoperability knowledge base for persistent
identifiers interoperability framework,” in Signal Image Technology and

Internet Based Systems (SITIS), 2012 Eighth International Conference

on. IEEE, 2012. doi: 10.1109/SITIS.2012.130 pp. 868–875.
[4] T. Weigel, S. Kindermann, and M. Lautenschlager, “Actionable persis-

tent identifier collections,” Data Science Journal, vol. 12, no. 0, pp.
191–206, 2014. doi: 10.2481/dsj.12-058

[5] A. Karakannas and Z. Zhao, “Information centric networking for deliv-
ering big data with persistent identifiers,” 2014.

[6] A. E. Evrard, C. Erdmann, J. Holmquist, J. Damon, and D. Dietrich,
“Persistent, global identity for scientists via orcid,” arXiv preprint

arXiv:1502.06274, 2015.
[7] C. H. Liu, B. Yang, and T. Liu, “Efficient naming, address-

ing and profile services in internet-of-things sensory environ-
ments,” Ad Hoc Networks, vol. 18, pp. 85 – 101, 2014. doi:
http://doi.org/10.1016/j.adhoc.2013.02.008

[8] F. Berber, P. Wieder, and R. Yahyapour, “A high-performance persistent
identification concept,” 2016 IEEE International Conference on Net-

working, Architecture and Storage (NAS), vol. 00, pp. 1–10, 2016. doi:
10.1109/NAS.2016.7549387

[9] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “Dns performance and
the effectiveness of caching,” IEEE/ACM Trans. Netw., vol. 10, no. 5,
pp. 589–603, Oct. 2002. doi: 10.1109/TNET.2002.803905

[10] E. Cohen and H. Kaplan, “Proactive caching of dns records: Addressing
a performance bottleneck,” Comput. Netw., vol. 41, no. 6, pp. 707–726,
Apr. 2003. doi: 10.1016/S1389-1286(02)00424-3. [Online]. Available:
http://dx.doi.org/10.1016/S1389-1286(02)00424-3

[11] Y. Yu, D. Wessels, M. Larson, and L. Zhang, “Authority server
selection in dns caching resolvers,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 2, pp. 80–86, Mar. 2012. doi: 10.1145/2185376.2185387.
[Online]. Available: http://doi.acm.org/10.1145/2185376.2185387

[12] S. Sarat, V. Pappas, and A. Terzis, “On the use of anycast in dns,”
in Proceedings of 15th International Conference on Computer Commu-

nications and Networks, Oct 2006. doi: 10.1109/ICCCN.2006.286248.
ISSN 1095-2055 pp. 71–78.

[13] J. Pan, Y. T. Hou, and B. Li, “An overview of dns-based server selections
in content distribution networks,” Comput. Netw., vol. 43, no. 6, pp. 695–
711, Dec. 2003. doi: 10.1016/S1389-1286(03)00293-7

[14] A. J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante,
“Drafting behind akamai: Inferring network conditions based on cdn
redirections,” IEEE/ACM Transactions on Networking, vol. 17, no. 6,
pp. 1752–1765, Dec 2009. doi: 10.1109/TNET.2009.2022157

[15] “Doi handbook data model,” http://www.doi.org, accessed: 2017-03-23.
[16] “Dns resource record types,” http://www.iana.org/assignments/dns-

parameters/dns-parameters.xhtml, accessed: 2017-04-04.
[17] “Handle software package,” http://www.handle.net/download hnr.html,

accessed: 2017-03-31.
[18] “Dynamic delegation discovery system (ddds),”

https://tools.ietf.org/html/rfc3401, accessed: 2017-11-23.
[19] “Dns txt resource record,” https://tools.ietf.org/html/rfc1464, accessed:

2017-04-06.
[20] “Handlednsresolver source code,” http://hdl.handle.net/11022/0000-

0003-88B2-A, accessed: 2017-04-06.
[21] “Dona foundation,” http://www.dona.net, accessed: 2016-11-23.

1094 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


