


Abstract—The  component-based  software  development
enables  to  construct  applications  from  reusable  components
providing particular functionalities  and simplifies application
evolution.  To  ensure  the  correct  functioning  of  a  given
component-based  application  and  its  preservation  across
evolution steps,  it  is necessary to test not only the functional
properties  of  the  individual  components  but  also  the
correctness of their mutual interactions and cooperation. This
is complicated by the fact that third-party components often
come without source code and/or documentation of functional
and  interaction  properties.  In  this  paper,  we  describe  an
approach for  performing rigorous  semi-automated testing  of
software components with unavailable source code. Utilizing an
automated  analysis  of  the  component  interfaces,  scenarios
invoking  methods  with  generated  parameter  values  are
created.  When  they  are  performed  on  a  stable  application
version and their runtime effects (component interactions) are
recorded, the resulting scenarios with recorded effects can be
used for accurate regression testing of newly installed versions
of  selected  components.  Our  experiences  with  a  prototype
implementation  show  that  the  approach  has  acceptable
demands on manual work and computational resources.

I. INTRODUCTION

HE component-based software development is an im-

portant part of contemporary software engineering. It is

based on the utilization of isolated reusable parts of the soft-

ware (called software components), which mutually provide

and require services (i.e., functionalities) using public inter-

faces. A component can be utilized in multiple applications

and,  at  the  same time,  an  application  can  be  constructed

from components created by different developers [1].  This

reinforces the necessity for testing.

T

The functionality of an individual component should be

tested primarily by its developer. However, it is also neces-

sary to test the functionality of the entire component-based

application where the correct cooperation of the components

is no less important. The situation is complicated by the fact

that many components exist in several versions. 
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The versions of a single component can differ by the in-

ternal behavior (different computations), by external behav-

ior (different interactions with other components), or by the

interface (different provided and required services). Theoret-

ically,  the  change  of  internal  behavior  of  a  component

should not affect the behavior of the entire application. Nev-

ertheless, in reality, the change can introduce an unwanted

error  into the new version,  add or  remove side  effects  of

some method invocations, prolong computation, which can

cause a time-out to expire, and so on. When installing a new

version of a component to a functional component-based ap-

plication, adequate regression testing is, therefore, desirable

even  when  there  are  no  apparent  external  changes  of  the

component.

The usually  performed manual  testing  is  a  lengthy  and

costly process and its automation is desirable wherever pos-

sible. In this paper, we describe an approach for semi-auto-

mated  regression  testing  of  software  components  whose

source code is not available (e.g., third party components).

The approach  is  suited  for  checking  whether  a  newly  in-

stalled version of a component exhibits the same behavior

within a component-based application as its old version. The

approach uses static analysis of the component implementa-

tions and employs methods of aspect-oriented programming

and stochastic testing to record runtime behavior of the ap-

plication with the old and new version of a component. The

comparison of both recordings can then reveal possible dif-

ferent behaviors and thus support debugging on the architec-

tural level. 

The description of the approach along with its validation

on two case studies is the main contribution of this paper. Its

structure is  as  follows.  The following section provides  an

overview of the basic notions and Section III discusses re-

lated  work  in  component  analysis  and  testing.  Section IV

covers  the  details  of  the  proposed  approach.  Section V

presents its validation including an analysis of performance

implications,  and  Section VI  summarizes  the  contribution

and future work.
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II. SOFTWARE COMPONENTS 

In component-based software development, the 

applications are sets of individual software components. 

A. Basic Notions 

A software component is a black-box entity, which 

provides services to other components via its well-defined 

interfaces and may require services of other components in 

order to function. The inner state of a component is not 

observable from the outside. So, the components are 

expected to mutually interact solely using their interfaces. A 

component should be reusable (i.e., it can be used in multiple 

applications) and, at the same time, a component-based 

application can be constructed from components created by 

different providers. These features are common to the 

majority of software components regardless of the 

component model [1]. 

A component model prescribes the behavior, interactions, 

and features of its software components and is implemented 

by (usually several) component frameworks. The 

experimental implementation of the interface-based 

component testing approach described in this paper has been 

created for the OSGi component model. OSGi [2] is a 

dynamic component model for the Java programming 

language. It is currently widespread in both industrial and 

academic spheres making it a good choice for 

experimentation. There are several commonly used 

implementations of the OSGi component model (i.e., OSGi 

frameworks), for example Equinox [3] or Felix. 

In OSGi, the components are referred to as bundles. Each 

bundle has the form of a single Java .jar file with 

additional information related to the OSGi component model 

(e.g., name of the bundle, version of the bundle, lists of 

provided/required packages, etc.) [2]. Each bundle can 

provide one or more services represented by standard Java 

interfaces. Together, the classes in exported packages and 

the provided services form the accessible interface of the 

OSGi components. 

The dynamic nature of the OSGi means that the bundles 

can be installed, started, stopped, and uninstalled without the 

necessity to restart the OSGi framework [4]. For this 

purpose, the OSGi framework runtime provides standard 

methods [2] for the exploration of the bundle’s context (i.e., 

environment) and the control of its life cycle. 

B. Testing of Software Components 

Testing of individual software components is similar to 

testing of ordinary monolithic software applications. 

However, the extra problems, which can be caused by the 

third party composition, need to be considered. 

Generally, the testing methods can be divided according to 

the available knowledge of the tested software [5]. If its 

source code is known, it can be (and usually is) used for the 

preparation of the testing, leading to the white-box testing. If 

their source code is unknown or not considered in test 

preparation (the black-box testing), other resources can be 

used for test preparation such as descriptions of the expected 

software behavior, the definition of its user and application 

interfaces, and so on [6]. The source code is often 

unavailable when we want to utilize a third party component 

in our component-based application and we want to test it 

first (both individually and as a part of our application). 

Regardless the type of the testing, its principle lies in 

subjecting the tested component(s) to a set of stimuli and 

observing the congruence of their reactions with the 

expected ones [7]. In most real situations, it is not feasible to 

test the responses to all possible stimuli. Instead, a subset of 

all possible stimuli is used. In that case, it is important to 

ensure that the stimuli of the subset represent well the 

complete set of stimuli and various methods for the subset 

creation are used in practice [5].  

An important criterion of the testing is its coverage, i.e. 

the amount of implementation code exercised by the tests. In 

the case of black-box component testing, coverage can be 

measured by the different invocations of individual 

operations on both provided and required sides of the 

component interface, considering also the actual parameter 

values. An important constraint is that it must be possible to 

achieve good coverage using the chosen subset of stimuli in 

a reasonable time [6]. 

The test design is usually described in so-called scenarios 

containing the stimuli and (optionally) the expected effects. 

Considering the testing of software components with 

unknown source code (i.e., black-box testing), each stimulus 

corresponds to an invocation of a service method provided 

by the tested component. The effects can be for example the 

return of a value or an invocation of an (outgoing) operation 

through the required side of component’s interface.  

When the scenario is executed, manually or in an 

automated way, the actual effects are compared to the 

expected ones to establish whether the component complies 

with the behavior specified by the scenario. Automated 

testing allows the scenarios to be executed repeatedly, which 

is important for the regression testing verifying whether new 

versions of components exhibit the same – or equivalent – 

behavior as the previous version(s). This aspect is important 

with respect to the highly flexible composition of 

components by third parties where the component provider 

cannot foresee the ultimate configuration of the component-

based applications. 

III. RELATED WORK 

The approach for the semi-automated testing of software 

components with unknown source code is related to several 

existing approaches, which are described below. 

A. Behavioral-Diagram-based Scenarios Generation 

Many approaches to testing scenarios generation are based 

on behavioral diagrams of UML (e.g., activity diagrams, 

sequence diagrams, state machine diagrams, etc.) [8]. The 

1336 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



 

 

 

 

approaches described below are not intended for utilization 

with software components, because such examples are rare. 

The activity diagrams are used for example in [6] for 

object-oriented applications. There, these diagrams 

representing concurrent activities (corresponding to method 

invocations) in an application are exhaustively explored. The 

scenarios are generated during the exploration. Because the 

exploration of all possible flows in the diagrams is infeasible 

for large applications, there are some constraints based on 

the application domain. These constraints are used to discard 

illegal or irrelevant scenarios [6]. 

The activity diagrams are also used in [8] where they are 

generated from multiple UML use case diagrams. Their 

purpose is to express the concurrency of the use cases. The 

exploration of the created activity diagrams is again used for 

the generation of the testing scenarios. The approach is 

intended for object-oriented applications [8]. 

B. Natural-Language-based Scenarios Generation 

The generation of the testing scenarios from a 

specification in natural language is an appealing approach. 

Nevertheless, this approach is still difficult to implement 

because of the poor understandability, ambiguity, 

incompleteness, and inconsistency of natural language [9]. 

To overcome these difficulties, a set of restrictions is 

commonly used. 

A restricted form of natural language is used for 

descriptions of the use cases in [10]. From them, a control-

flow-based state machine is created for each use case. These 

state machines are then combined into a single global system 

level state machine. The testing scenarios are then created by 

this state machine exploration [10]. 

A similar approach was considered in our previous 

research focused on the simulation-based testing of software 

components based on the descriptions of use cases written in 

natural language (see Section III.E). These descriptions are 

transformed into an overall behavioral automaton (OBA) 

using the FOAM tool [11]. Using the OBA, the testing 

scenarios can be generated. The restrictions of the approach 

lie in the descriptions of uses cases, which must conform to 

the rules described in [12], and in the necessity to manually 

enrich the descriptions of use cases with the annotations 

describing the flow of the program and its temporal 

dependencies, as well as connections between the actions in 

use cases and the corresponding method invocations [13]. 

C. Interface-Probing-based Scenarios Generation 

Interface probing is an approach, which utilizes the public 

interface of a software component (or another piece of 

software with a defined interface) for the examination of its 

behavior. This approach does not require the source code or 

any knowledge of the internal working of the software 

component. So, it is convenient for the black-box testing. Its 

basic idea is used in our approach as well (see Section IV). 

Using the interface probing, the interface of the 

component – the services of the component and their 

methods – is identified first. Then, the input values for the 

methods are generated and the methods are invoked using 

them. The outputs of the methods are then observed [14], 

[15]. For this purpose, the tested component can be wrapped 

in an encasing object controlling the input and output data 

flows [16]. 

A disadvantage of this approach is the necessity to 

generate the input values. This can be done randomly, 

systematically, or manually. In any case, it is possible that 

input values will be omitted, which are in fact important for 

examination of the behavior of the tested component [14]. 

The programmer therefore needs to instruct the generator on 

suitable value ranges, using a set of the test design methods 

[5] and based on other descriptions (e.g., Javadoc) of the 

component if available. 

D. Static Byte Code Analysis 

The static byte code analysis is an example of checking of 

the applications constructed from software components of 

various developers for type inconsistencies. These 

inconsistencies can arise even in statically-typed languages 

(e.g., Java), considering the component-based application. 

Because each component is compiled separately, the mutual 

dependencies of the components are not considered by the 

compiler [17]. 

A solution of this issue proposed in [17] is the byte code 

analysis. It consists of three steps – the discovery of 

component dependencies, the matching of component 

dependencies, and the consistency verification. All the 

information necessary for all steps is extracted from the byte 

code. During the analysis, a graph representing the 

dependencies of the components is created. The graph is 

then traversed and the particular dependencies are checked 

for the type compatibility. 

Although this approach represents a reliable method for 

the static determination of the compatibility of software 

components of a single component-based application, it 

cannot detect problems, which are not type-related. For 

example, if a method returns null instead of an expected 

instance, the problem will not be detected [17]. 

E. Simulation Testing 

The basic idea of the approach described further in this 

paper (see Section IV) was already utilized for the 

simulation testing of software components during our 

previous research [18]. This approach was based on the 

testing of real software components in a simulated 

environment. The testing was based on a discrete-event 

simulation when the individual events corresponded to the 

invocations of the particular methods of the tested 

component. Simulated and intermediate components were 

used to observe and record the behavior of the tested 

component [18]. 

The issues of this approach were the discrepancies of the 

tested software components running in a real time and the 

simulation running in a discrete time and the necessity to 
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create the simulation and intermediate components [18]. 

Hence, the discrete simulation was abandoned and the entire 

process was significantly simplified. The result is the 

approach described further in this paper (see Section IV). 

IV. INTERFACE-BASED COMPONENT TESTING 

As was mentioned above, the main theme of this paper is 

an approach for the black-box regression testing of software 

components in a component-based application – the inter-

face-based component testing. During the regression testing, 

we are determining whether the application with the old and 

the new version of a component exhibits the same behavior.  

In this section, we describe its idea, the model of 

application it uses, and the particularities of a prototype 

implementation. The overall process works as follows. It 

starts with the analysis of the interfaces, services, and 

methods of software components of a component-based 

application. Based on this analysis, the sets of invocations of 

the particular methods are generated and then performed. 

The consequences of each invocation are observed and 

recorded. The result is a testing scenario with actions and 

their consequences. The scenario can be then used to check 

whether a newly installed version of a component in a 

component-based application exhibits the same behavior as 

its old version. 

The details of the key parts of this process are discussed 

below, including experimental implementation aspects. 

A. The Invocations-Consequences Data Structure 

Usually, our method assumes that the entire component-

based application is subject to the testing, because the 

components inside a single application interact with each 

other and these interactions are important to uncover the 

behavior of the components. This is the main difference from 

the interface probing method (see Section III.C) where each 

component is tested alone. 

The service methods need to be determined for all the 

components of the tested application. This can be in general 

done by any method, which is able to recover complete 

method signature information. The components, their 

services, and their methods are explored and their identifiers 

are inserted into a tree data structure (see Fig. 1a). 

An initial set of invocations for each of the methods thus 

determined is generated and added to the tree data structure. 

A set of test data values for each parameter of the method 

has to be provided in conjunction; each invocation is created 

as a unique permutation of the values of all parameters of the 

method.  

In the current implementation of the approach (see 

Section IV.C), we use fully automatic generation of 

parameter values with a rather straightforward approach to 

cover the main test cases. The generated values depend on 

the parameter types. For primitive types, several 

representative and border values are generated. For general 

objects, only null value is used. 

 

Fig. 1 The tree data structure 

 

Additionally, when the user knows, which parameter 

values are critical for the tested component application, he or 

she can select any method, set the required parameter values 

and thus create and add a new invocation. The user can also 

restrict the set of generated values, where appropriate. 

In principle, it would not be necessary to use all methods 

for the initial invocation set to achieve good coverage. Since 

the source code is unknown however, the (side) effects of the 

methods execution are unknown as well. Hence, with the 

utilization of all methods, the probability of better 

exploration of the behavior of the components is higher than 

if some methods were excluded. 

Once the initial invocations are added to the tree data 

structure, they are performed (i.e., the application is 

executed in a testing mode) and their consequences (effects) 

are observed and recorded. The consequences of a method 

invocation are: the return of a value, a raised exception, a 

value change in the “out” parameters of the method, a sub-

sequent invocation of a service method of another (depended 

on) component, and a change of the inner state of the 

component. The change of the inner state of the component 

is different from the others consequences, because it is not 

easily observable. Hence, it is not considered by our method. 

There can be more than one consequence per an 

invocation of a method. All consequences are recorded and 

inserted into the tree data structure (under the invocation, 

which caused them), but only if they are not already present. 

Each invocation consequence record incorporates its type 

and further data depending on this type (e.g., the return 

value, the instance of an exception, etc.).  

The subsequent (outgoing) invocations are the most 

important consequences. Each subsequent invocation is 

described by the method it is invoking and the unique 

permutation of its parameter values. When a subsequent 

invocation of a method is performed such that has not yet 

been observed, it is recorded along with its parameter values. 
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This invocation is then added to the generated and already 

recorded invocations in the tree data structure. These 

invocations are valuable, because their parameter values are 

genuine, created by the internal logic of the component, 

which invoked the method. They can for example contain 

instances of objects, which would be difficult to generate 

automatically. Again, this is a substantial difference from the 

interface probing method (see Section III.C).  

The disadvantage of recording the subsequent invocations 

in this way is that we cannot be entirely sure what their 

actual cause was. As the components under tests are black 

box, we cannot create their full behavioral model and 

determine the causal relation between the method invoca-

tions. For example, if a component uses active threads, it can 

perform invocations on other components independently on 

the incoming invocations performed on its service methods. 

The invocations performed by such (internal) threads can 

still be intercepted and added to the tree data structure. Even 

though there is no causal relation between them and the 

incoming invocation, which preceded them chronologically, 

a false cause-effect relation is still recorded in the tree data 

structure. This may cause false alarms during the comparison 

of the tree data structures (see Section IV.B), because the 

corresponding invocation-consequence pairs may not occur 

in further application executions. The mitigation of this 

problem can be repeating the invocation and further analysis; 

it is a part of our future work. 

In order to maximally exploit the subsequent invocations 

during the testing, the invocation-driven exploration of the 

tree data structure repeats several times. The subsequent 

invocations generated in nth exploration can be performed in 

the (n + 1)th run and its consequences observed. When no 

new consequences are generated, the exploration ends. 

In the final tree structure, all invocations and 

consequences contain the number representing the iteration, 

in which they were inserted (starting with 1). The initial 

generated invocations or provided by the user prior to the 

exploration of the structure are numbered 0. The filled tree 

data structure is therefore enriched by the invocation 

consequences (see Fig. 1b) and by the invocations extracted 

from the subsequent invocations. This structure can be then 

saved to a file as a testing scenario. 

B. Testing Application Evolution: Comparison of Tree 

Data Structures 

The stored tree data structure is useful when a new version 

of a component is installed to the component-based applica-

tion. In this case, it can be tested whether the application 

with the new version of the component exhibits the same 

behavior as the old version (regression testing). For this 

purpose, the entire process described in Section IV.A is 

performed for the application with the new version of the 

component. The result is again the filled tree data structure. 

The original tree data structure (corresponding to the 

behavior of the application with the old version of the 

component) is then loaded from the file and the structures 

are compared. The comparison is performed on each level of 

the two tree data structures, which use the same set of initial 

invocations, starting from the component level. 

If a component is only in one tree data structure, this 

difference is reported and the services of this component are 

not considered further. For each pair of corresponding 

components, their services are compared by their names. If a 

service is only in one tree data structure, this difference is 

reported and the methods of this service are not considered 

further. For each pair of corresponding services, their 

methods are compared by their signatures. If a method is 

only in one data structure, this difference is reported and the 

invocations of this method are not considered further. 

Analogically, this continues down to the invocation 

consequences level (see Fig. 2 for examples). 

 

 

Fig. 2 Comparison of two tree data structures 
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The differences are expected to occur mainly in the 

invocations and invocation consequences levels of the tree 

data structure. Such a difference means that the tested 

component-based application with the new version of the 

component exhibits a different behavior. A difference on the 

methods level or on the services level implies the change in 

the public interface of the component. Our method is of 

course capable to detect these changes, but they can be 

detected also by the other means such as advanced methods 

of static analysis (e.g., see [17]). However, discovering 

differences in the invocations and consequences level by the 

static verification is difficult. Since these differences can 

mean significant problems in the tested application, the 

described interface-based component testing add significant 

value to the functional verification process. 

C. Experimental Implementation and Its Discussion 

The approach has been implemented for the Java 

programming language and the OSGi component model; 

however, the main ideas behind it can be used for other 

component models and programming languages as well. The 

implementation is a part of our Interface Analysis Tool 

(InAnT), which has the form of a single component (OSGi 

bundle) and is expected to be installed in the same OSGi 

framework as the tested component-based application. 

The interface-based testing begins when the InAnT 

component and the components of the tested application are 

started. The tool searches for all available components and 

their registered services using standard methods of the OSGi 

framework for this purpose. A proxy is then automatically 

created and assigned to each registered service of the 

components. This is achieved using standard OSGi hooks 

[2]. Each future invocation of a method of a service is 

subsequently mediated by the corresponding proxy, which 

records the invocation and executes it on the corresponding 

component using Java reflection. This way, all method 

invocations performed within the tested component-based 

application can be detected and traced.  

The proxies are similar to but much simpler than the 

intermediate components used in simulation testing (see 

Section III.E and [18]). There is a single generic proxy 

implementation whose sole purpose is to record method 

invocations and, for each registered service, there is one 

proxy instance. The intermediate components, on the other 

hand, incorporate functionalities related to the running of the 

components in a simulated environment [18]. Moreover, 

each service has an intermediate component designed 

specifically for it. 

There can be more than one independent component-

based application deployed in one OSGi framework. So, the 

user is encouraged to select the components of the 

application intended for the testing. It is possible to select 

only some components of the application, but the testing is 

then likely to be incomplete. Once the components for the 

testing are selected, the methods of their services are 

determined using Java reflection (since the services 

correspond to standard Java interfaces – see Section II.A) 

Since the framework services do not guarantee that the 

components are discovered in the same order across different 

framework runs, the components are sorted by bundle 

symbolic name in the tree data structure. Similarly, particular 

services of each component and particular methods of each 

service are sorted as well. This way, it is ensured that the 

initial set of invocations is always executed in exactly the 

same order. This is the necessary condition for the correct 

comparison of two tree data structures. 

The automatic generation of the invocations and their 

parameter values is deterministic and repeatable. Therefore, 

it does not negatively influence the comparison. However, 

when the user adds invocations manually or restricts the 

range of the parameter values of the automatically generated 

invocations, it is vital that he or she uses the same settings 

(including the order of manually added invocations). 

As it was described in Section IV.A, the parameter values 

generated by our implementation depend on the parameter 

types. For the number types, a set of representative values is 

generated. These values include the maximal and minimal 

possible values, 0, -1, 1, and several negative and positive 

values with a constant step. The size of the step can be 

selected by the user and can significantly influence the 

number of values and consequently the number of generated 

invocations. For the boolean type, both possible values are 

generated. For the char type, several single-byte values 

(corresponding to letters, digits, punctuation, and non-

printable characters) and several double-byte values are 

generated. For enum types, all possible values including the 

null value are generated. For the String class, the null 

value and the empty string are generated. For the wrapping 

classes of the primitive types (e.g., Integer for int or 

Character for char), the same values as for the primitive 

data types and null value are generated. For the remaining 

classes, only the null value is generated.   

The invocations of the tree data structure are then 

performed as described in Section IV.A. Their consequences 

are observed directly (the return of a value, a raised 

exception, a value change in parameters of the method) or 

indirectly by the proxies (a subsequent invocation). 

The filled tree data structure can be then stored to a 

specific XML file. The XML format was chosen because of 

its hierarchical nature and legibility for humans, which is 

useful during the development. The stored filled tree data 

structure can be compared to another stored filled tree data 

structure or to filled tree data structure created in the 

memory. The comparison is performed as described in 

Section IV.B. 

V. VALIDATION AND RESULTS 

The described interface-based component testing 

approach was validated by two sets of tests. The first one 
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was focused on the dependency of the number of generated 

invocations on the number of methods and the number of 

their parameters; this is described in Section V.B. The 

second set of tests was focused on the testing the ability of 

the approach to discover the different behavior of the tested 

application when a new version of a component was installed 

(see Section V.C). 

A. Environment and Application Used for Testing 

All tests were performed on a single desktop computer 

with quad-core Intel i7-4770 CPU at 3.40 GHz, 16 GB of 

RAM, and 1TB HDD. The software environment consisted 

of the operating system Windows 7 SP1 (64 bit), Java 1.6 

(32 bit), and the Equinox OSGi framework. 

A component-based application of our own design was 

used for the first set of tests. We chose not to use a 3rd party 

application to facilitate the analysis and manipulation of the 

test application source code (e.g., add and remove methods 

and their parameters, change the behavior of the methods, 

etc.) in order to test various features of the approach. The 

test application is a simple tool for mathematical calculations 

and processing of strings. It consists of five components (see 

Fig. 3). The Utilities component represents the 

interface of the entire application. The methods of its service 

perform high-level operations. The Text component 

provides a service for the processing of strings and utilizes 

the Calculator component for mathematical operations. 

The Calculator component provides a service for 

mathematical operations including geometrical 

transformations. For this purpose, it utilizes the Geometry 

component. The Logger component logs the running of the 

Utilities component. 

For the second set of tests, the test application was used as 

well, but, additionally, we used the well known CoCoME 

(Common Component Modeling Example – see [19]) 

application to demonstrate that our interface-based 

component testing approach is able to work with a real world 

application. The implementation, which was used for the 

testing, was developed internally in our group. 

B. Dependency on Number of Methods and Parameters 

From the description of the generation of the invocations 

for the methods in the tree data structure (see Section IV.C), 

it is obvious that the number of generated invocations grows 

very rapidly. We expected that it grows linearly with the 

total number of methods and exponentially with the number 

of parameters of each single method. In order to verify the 

assumption, a set of tests was performed. 

First, the dependency of the number of generated 

invocations on the number of parameters of a single method 

 

 

Fig. 3 The component-based application used for the testing 

was investigated. The Utilities component was used for 

this purpose. All its methods were removed and a testing 

method was added.  The method had between one and ten 

parameters, either all int parameters or all String 

parameters. When the number of parameters was changed, 

the component was recompiled and the invocations were 

generated for it. 

The results are depicted in Fig. 4a. As expected, the 

dependency on the number of parameters is exponential 

(note the logarithmic scale of the y-axis). It can be also 

observed that the increase in the number of generated 

invocations is far steeper for the int parameters than for the 

String parameters. In fact, an out of memory exception 

occurred for more than 6 int parameters. This difference is 

caused by the number of generated values used for each 

parameter (9 for int, and only 2 for String – see 

Section IV.C). So, the user should limit the range of the 

generated values wherever he or she is able (e.g., based on 

the documentation of the component). Although these results 

seem to negatively affect the usability of our approach, it 

should be noted that methods with more than 6 parameters 

are quite rare. Moreover, it is possible not to use all existing 

combinations of parameters, but use the common t-way 

approach (discussed for example in [20]) instead. 

Second, the dependency of the number of generated 

invocations on the number of methods with 5 parameters 

within one component was investigated. The parameters 

were String, Object, Object, int, and double. The 

number of parameters was chosen as a higher than average 

number in common applications. Similarly, the parameter 

types were chosen to represent common methods. Again, the 

Utilities component was used for testing and the tests 

were performed in the same way. The results are depicted in 

Fig. 4b. As expected, the dependency on the number of 

methods is linear (note the linear scale on the y-axis). This 

means that the number of methods per component does not 

significantly affect the usability of our approach. 

Third, the dependency of the number of generated 

invocations on the number of components each with 10 

methods (with total of 26 parameters of various types) was 

investigated. All the components of the test application (see 

Section V.A) were used for this purpose. The results are 

depicted in Fig. 4c. Again, the dependency on the number of 

components is linear and thus the number of components 

does not significantly affect the usability of our approach. 

The absolute number of generated invocations is highly 

dependent on the tested application. The purpose of the 

described set of tests was merely to investigate the 

dependency of the generated invocations count on the 

number of method parameters, the number of methods, and 

the number of components. It was shown that the major 

problem is the high number of method parameters. This can 

be mitigated by a more advanced generation of parameter 

values and the usage of the t-way approach, which is a part 

of our future work. 
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Fig. 4 Dependencies of the number of generated invocations 

C. Functioning of the Entire Approach 

In order to demonstrate the functioning of the entire 

interface-based component testing on an example, the second 

set of tests was performed using the same test application 

and the CoCoME application. The purpose of the tests was 

to demonstrate the ability of the approach to uncover 

changes in the component behavior. 

First, the testing method was performed on the test 

application. The numbers of methods and the total numbers 

of parameters per component are summarized in Table I. The 

user did not provide any initial invocations nor placed any 

restrictions on the invocation generation. The result of the 

method – the filled tree data structure – was stored to a file. 

Then, three changes were separately performed to the 

Calculator component. For each change, the testing was 

performed again. The resulting filled tree data structure was 

then compared to the tree data structure created earlier for 

the original component. The differences are summarized in 

Table II. The first change (#1) was one added method (with 

4 parameters) to the Calculator component. Second 

change (#2) was that one method of this component ceased 

to throw an exception when invoked with the null value. 

The third change (#3) was that one method of this 

component started to return null instead of an instance. 

The first change caused only one difference on the 

methods level. Of course, the filled tree data structure with 

the added method incorporates its invocations (and their 

consequences) as well (see column #1 in Table II). However, 

this is not counted as a difference, since the comparison does 

not explore lower levels of branches of the filled tree data 

structures when a difference is discovered on the higher 

levels. The second change caused numerous differences on 

the invocations and consequences levels (see column #2 in 

Table II), because the changed behavior of the method (i.e., 

not throwing an exception when invoked with the null 

value) influenced other methods as well. The third change 

caused numerous differences on the consequences level only 

(see column #3 in Table II). 

Second, the testing method was performed on the 

CoCoME application. The numbers of methods and 

parameters of the utilized components of the CoCoME 

application are summarized in Table III. Again, the user did 

not provide any initial invocations nor placed any restrictions 

on the invocation generation. The testing was performed the 

same way as with the test application (see above). Three 

changes were separately performed to the Data component. 

The differences are summarized in Table IV. The first 

change (#1) was one added method (with 1 parameter) to the 

Data component. Second change (#2) was that one method 

of this component ceased to throw an exception when 

invoked with the null value. The third change (#3) was that 

one method of this component started to return null instead 

of an instance. 

The first change caused only one difference on the 

methods level. The second change caused several differences 

on the consequences levels (see column #2 in Table IV), but 

not on the invocations level like the similar change in the test 

application (see Table II). The reason is that in the CoCoME 

application, the second change did not affect other methods. 

The third change caused only one difference on the 

consequences level (see column #3 in Table IV). 

It should be also noted that there are no subsequent 

invocations in Table IV. This does not mean that the 

components do not utilize services of the other components. 

The reason is that, in the CoCoME application (unlike the 

test application), the majority of the inter-component 

interactions are performed using OSGi Events, which are 

currently not intercepted by the interface-based component 

testing implementation. Despite this setback, the approach 

did uncover all introduced differences. 
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TABLE I. NUMBER OF METHODS AND PARAMETERS OF THE 

COMPONENTS OF THE TEST APLICATION 

Component Number of methods Total number of parameters 

Geometry 3 4 

Calculator 16 21 

Logger 5 3 

Text 7 10 

Utilities 4 8 

 

TABLE II. DIFFERENCES OF THE FILLED TREE DATA STRUCTURES OF 

THE TEST APPLICATION 

Structure Original #1 #2 #3 

Explorations 3 3 3 3 

Generated invocations 895 917 895 895 

Subsequent invocations 747 769 569 725 

Exceptions 10 10 9 10 

Return values 910 933 890 910 

Parameters changes 0 0 0 0 

Differences (methods) N/A 1 0 0 

Differences (invocations) N/A 0 21 0 

Differences (consequences) N/A 0 202 22 

 

TABLE III. NUMBERS OF METHODS AND PARAMETERS OF THE 

COMPONENTS OF THE COCOME APPLICATION 

Component 
Number of 

methods 

Total number of 

parameters 
Coordinator 1 1 
Data 16 25 
Dispatcher 2 6 
Reporting 3 3 
Store 12 8 
Bank 2 3 
CardReaderController 3 3 
CashBoxController 7 7 
CashDeskApplication 10 10 
CashDeskGUIController 10 10 
LightDisplayController 2 2 
ScannerController 1 1 

 

TABLE IV. DIFFERENCES OF THE FILLED TREE DATA STRUCTURES OF 

THE COCOME APPLICATION 

Structure Original #1 #2 #3 

Explorations 2 2 2 2 

Generated invocations 297 299 297 297 

Subsequent invocations 0 0 0 0 

Exceptions 224 224 213 224 

Return values 1 3 12 1 

Parameters changes 0 0 0 0 

Differences (methods) N/A 1 0 0 

Differences (invocations) N/A 0 0 0 

Differences (consequences) N/A 0 11 1 

 

The second set of tests successfully demonstrated that the 

interface-based testing was able to uncover all three 

introduced differences in both component-based 

applications. The thorough testing of the method including a 

significantly higher number of components and third party 

applications is a part of our future work. 

VI. CONCLUSION 

In this paper, we described an approach to component 

testing automation, with scenario generation and 

augmentation based on a static interface analysis and runtime 

logging. The approach can be used for detecting the 

differences in the behavior of various versions of a software 

component inside a given component-based application. 

The feasibility and effectiveness of the approach, as well 

as its limitations, were demonstrated using two sets of tests, 

which were performed using a prototype test generation 

implementation. Although the extent of generated data 

(parameter value combinations) grows prohibitively fast in 

the fairly rare case of methods with many parameters, the 

number of tested components does not significantly affect 

the usability of our approach. 

For future work, enhancing the formal models, on which 

the approach is based, could improve coverage while 

reducing test set size. Further, considering the effects of 

threading together with exploring the possibility of recording 

all occurrences of the invocation consequences, not only the 

first one, should improve test quality through better 

information about the behavior of the components. We will 

also explore the behavior of our method when there are two 

or more new versions of components in the tested application 

and focus on the situations when a subset of highly 

dependent components is changed for new versions in the 

component application.  

The priority of our future research is however the 

improved generation of parameter values for method 

invocations. We are working on creating an automatic 

generator that will provide the complex testing data, such us 

objects or object collections with all attributes set to values 

fulfilling expected criteria. This requires a method for 

describing the limits for the object attributes and also a tool 

that will be able to analyze object structure, including 

references to other objects and create automatically the 

necessary testing data
1
. Furthermore, along with attribute 

description, analysis of program control flow can be used in 

order to create tests that will provide sufficient coverage of 

tested application. 
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