

Abstract—The component-based software development
enables to construct applications from reusable components
providing particular functionalities and simplifies application
evolution. To ensure the correct functioning of a given
component-based application and its preservation across
evolution steps, it is necessary to test not only the functional
properties of the individual components but also the
correctness of their mutual interactions and cooperation. This
is complicated by the fact that third-party components often
come without source code and/or documentation of functional
and interaction properties. In this paper, we describe an
approach for performing rigorous semi-automated testing of
software components with unavailable source code. Utilizing an
automated analysis of the component interfaces, scenarios
invoking methods with generated parameter values are
created. When they are performed on a stable application
version and their runtime effects (component interactions) are
recorded, the resulting scenarios with recorded effects can be
used for accurate regression testing of newly installed versions
of selected components. Our experiences with a prototype
implementation show that the approach has acceptable
demands on manual work and computational resources.

I. INTRODUCTION

HE component-based software development is an im-

portant part of contemporary software engineering. It is

based on the utilization of isolated reusable parts of the soft-

ware (called software components), which mutually provide

and require services (i.e., functionalities) using public inter-

faces. A component can be utilized in multiple applications

and, at the same time, an application can be constructed

from components created by different developers [1]. This

reinforces the necessity for testing.

T

The functionality of an individual component should be

tested primarily by its developer. However, it is also neces-

sary to test the functionality of the entire component-based

application where the correct cooperation of the components

is no less important. The situation is complicated by the fact

that many components exist in several versions.

This work was supported by Ministry of Education, Youth and Sports of
the Czech Republic, project PUNTIS (LO1506) under the program NPU I.

The versions of a single component can differ by the in-

ternal behavior (different computations), by external behav-

ior (different interactions with other components), or by the

interface (different provided and required services). Theoret-

ically, the change of internal behavior of a component

should not affect the behavior of the entire application. Nev-

ertheless, in reality, the change can introduce an unwanted

error into the new version, add or remove side effects of

some method invocations, prolong computation, which can

cause a time-out to expire, and so on. When installing a new

version of a component to a functional component-based ap-

plication, adequate regression testing is, therefore, desirable

even when there are no apparent external changes of the

component.

The usually performed manual testing is a lengthy and

costly process and its automation is desirable wherever pos-

sible. In this paper, we describe an approach for semi-auto-

mated regression testing of software components whose

source code is not available (e.g., third party components).

The approach is suited for checking whether a newly in-

stalled version of a component exhibits the same behavior

within a component-based application as its old version. The

approach uses static analysis of the component implementa-

tions and employs methods of aspect-oriented programming

and stochastic testing to record runtime behavior of the ap-

plication with the old and new version of a component. The

comparison of both recordings can then reveal possible dif-

ferent behaviors and thus support debugging on the architec-

tural level.

The description of the approach along with its validation

on two case studies is the main contribution of this paper. Its

structure is as follows. The following section provides an

overview of the basic notions and Section III discusses re-

lated work in component analysis and testing. Section IV

covers the details of the proposed approach. Section V

presents its validation including an analysis of performance

implications, and Section VI summarizes the contribution

and future work.

Interface-based Semi-automated Testing of Software Components

Tomas Potuzak
Department of Computer Science, Faculty of Applied
Sciences, University of West Bohemia, Univerzitni 8,

306 14 Plzen, Czech Republic
Email: tpotuzak@kiv.zcu.cz

Richard Lipka, Premek Brada
NTIS – New Technologies for the Information

Society, European Center of Excellence, Faculty of
Applied Sciences, University of West Bohemia,

Univerzitni 8, 306 14 Plzen, Czech Republic
Email: {lipka,brada}@kiv.zcu.cz

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1335–1344

DOI: 10.15439/2017F139

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1335

II. SOFTWARE COMPONENTS

In component-based software development, the

applications are sets of individual software components.

A. Basic Notions

A software component is a black-box entity, which

provides services to other components via its well-defined

interfaces and may require services of other components in

order to function. The inner state of a component is not

observable from the outside. So, the components are

expected to mutually interact solely using their interfaces. A

component should be reusable (i.e., it can be used in multiple

applications) and, at the same time, a component-based

application can be constructed from components created by

different providers. These features are common to the

majority of software components regardless of the

component model [1].

A component model prescribes the behavior, interactions,

and features of its software components and is implemented

by (usually several) component frameworks. The

experimental implementation of the interface-based

component testing approach described in this paper has been

created for the OSGi component model. OSGi [2] is a

dynamic component model for the Java programming

language. It is currently widespread in both industrial and

academic spheres making it a good choice for

experimentation. There are several commonly used

implementations of the OSGi component model (i.e., OSGi

frameworks), for example Equinox [3] or Felix.

In OSGi, the components are referred to as bundles. Each

bundle has the form of a single Java .jar file with

additional information related to the OSGi component model

(e.g., name of the bundle, version of the bundle, lists of

provided/required packages, etc.) [2]. Each bundle can

provide one or more services represented by standard Java

interfaces. Together, the classes in exported packages and

the provided services form the accessible interface of the

OSGi components.

The dynamic nature of the OSGi means that the bundles

can be installed, started, stopped, and uninstalled without the

necessity to restart the OSGi framework [4]. For this

purpose, the OSGi framework runtime provides standard

methods [2] for the exploration of the bundle’s context (i.e.,

environment) and the control of its life cycle.

B. Testing of Software Components

Testing of individual software components is similar to

testing of ordinary monolithic software applications.

However, the extra problems, which can be caused by the

third party composition, need to be considered.

Generally, the testing methods can be divided according to

the available knowledge of the tested software [5]. If its

source code is known, it can be (and usually is) used for the

preparation of the testing, leading to the white-box testing. If

their source code is unknown or not considered in test

preparation (the black-box testing), other resources can be

used for test preparation such as descriptions of the expected

software behavior, the definition of its user and application

interfaces, and so on [6]. The source code is often

unavailable when we want to utilize a third party component

in our component-based application and we want to test it

first (both individually and as a part of our application).

Regardless the type of the testing, its principle lies in

subjecting the tested component(s) to a set of stimuli and

observing the congruence of their reactions with the

expected ones [7]. In most real situations, it is not feasible to

test the responses to all possible stimuli. Instead, a subset of

all possible stimuli is used. In that case, it is important to

ensure that the stimuli of the subset represent well the

complete set of stimuli and various methods for the subset

creation are used in practice [5].

An important criterion of the testing is its coverage, i.e.

the amount of implementation code exercised by the tests. In

the case of black-box component testing, coverage can be

measured by the different invocations of individual

operations on both provided and required sides of the

component interface, considering also the actual parameter

values. An important constraint is that it must be possible to

achieve good coverage using the chosen subset of stimuli in

a reasonable time [6].

The test design is usually described in so-called scenarios

containing the stimuli and (optionally) the expected effects.

Considering the testing of software components with

unknown source code (i.e., black-box testing), each stimulus

corresponds to an invocation of a service method provided

by the tested component. The effects can be for example the

return of a value or an invocation of an (outgoing) operation

through the required side of component’s interface.

When the scenario is executed, manually or in an

automated way, the actual effects are compared to the

expected ones to establish whether the component complies

with the behavior specified by the scenario. Automated

testing allows the scenarios to be executed repeatedly, which

is important for the regression testing verifying whether new

versions of components exhibit the same – or equivalent –

behavior as the previous version(s). This aspect is important

with respect to the highly flexible composition of

components by third parties where the component provider

cannot foresee the ultimate configuration of the component-

based applications.

III. RELATED WORK

The approach for the semi-automated testing of software

components with unknown source code is related to several

existing approaches, which are described below.

A. Behavioral-Diagram-based Scenarios Generation

Many approaches to testing scenarios generation are based

on behavioral diagrams of UML (e.g., activity diagrams,

sequence diagrams, state machine diagrams, etc.) [8]. The

1336 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

approaches described below are not intended for utilization

with software components, because such examples are rare.

The activity diagrams are used for example in [6] for

object-oriented applications. There, these diagrams

representing concurrent activities (corresponding to method

invocations) in an application are exhaustively explored. The

scenarios are generated during the exploration. Because the

exploration of all possible flows in the diagrams is infeasible

for large applications, there are some constraints based on

the application domain. These constraints are used to discard

illegal or irrelevant scenarios [6].

The activity diagrams are also used in [8] where they are

generated from multiple UML use case diagrams. Their

purpose is to express the concurrency of the use cases. The

exploration of the created activity diagrams is again used for

the generation of the testing scenarios. The approach is

intended for object-oriented applications [8].

B. Natural-Language-based Scenarios Generation

The generation of the testing scenarios from a

specification in natural language is an appealing approach.

Nevertheless, this approach is still difficult to implement

because of the poor understandability, ambiguity,

incompleteness, and inconsistency of natural language [9].

To overcome these difficulties, a set of restrictions is

commonly used.

A restricted form of natural language is used for

descriptions of the use cases in [10]. From them, a control-

flow-based state machine is created for each use case. These

state machines are then combined into a single global system

level state machine. The testing scenarios are then created by

this state machine exploration [10].

A similar approach was considered in our previous

research focused on the simulation-based testing of software

components based on the descriptions of use cases written in

natural language (see Section III.E). These descriptions are

transformed into an overall behavioral automaton (OBA)

using the FOAM tool [11]. Using the OBA, the testing

scenarios can be generated. The restrictions of the approach

lie in the descriptions of uses cases, which must conform to

the rules described in [12], and in the necessity to manually

enrich the descriptions of use cases with the annotations

describing the flow of the program and its temporal

dependencies, as well as connections between the actions in

use cases and the corresponding method invocations [13].

C. Interface-Probing-based Scenarios Generation

Interface probing is an approach, which utilizes the public

interface of a software component (or another piece of

software with a defined interface) for the examination of its

behavior. This approach does not require the source code or

any knowledge of the internal working of the software

component. So, it is convenient for the black-box testing. Its

basic idea is used in our approach as well (see Section IV).

Using the interface probing, the interface of the

component – the services of the component and their

methods – is identified first. Then, the input values for the

methods are generated and the methods are invoked using

them. The outputs of the methods are then observed [14],

[15]. For this purpose, the tested component can be wrapped

in an encasing object controlling the input and output data

flows [16].

A disadvantage of this approach is the necessity to

generate the input values. This can be done randomly,

systematically, or manually. In any case, it is possible that

input values will be omitted, which are in fact important for

examination of the behavior of the tested component [14].

The programmer therefore needs to instruct the generator on

suitable value ranges, using a set of the test design methods

[5] and based on other descriptions (e.g., Javadoc) of the

component if available.

D. Static Byte Code Analysis

The static byte code analysis is an example of checking of

the applications constructed from software components of

various developers for type inconsistencies. These

inconsistencies can arise even in statically-typed languages

(e.g., Java), considering the component-based application.

Because each component is compiled separately, the mutual

dependencies of the components are not considered by the

compiler [17].

A solution of this issue proposed in [17] is the byte code

analysis. It consists of three steps – the discovery of

component dependencies, the matching of component

dependencies, and the consistency verification. All the

information necessary for all steps is extracted from the byte

code. During the analysis, a graph representing the

dependencies of the components is created. The graph is

then traversed and the particular dependencies are checked

for the type compatibility.

Although this approach represents a reliable method for

the static determination of the compatibility of software

components of a single component-based application, it

cannot detect problems, which are not type-related. For

example, if a method returns null instead of an expected

instance, the problem will not be detected [17].

E. Simulation Testing

The basic idea of the approach described further in this

paper (see Section IV) was already utilized for the

simulation testing of software components during our

previous research [18]. This approach was based on the

testing of real software components in a simulated

environment. The testing was based on a discrete-event

simulation when the individual events corresponded to the

invocations of the particular methods of the tested

component. Simulated and intermediate components were

used to observe and record the behavior of the tested

component [18].

The issues of this approach were the discrepancies of the

tested software components running in a real time and the

simulation running in a discrete time and the necessity to

TOMAS POTUZAK ET AL.: INTERFACE-BASED SEMI-AUTOMATED TESTING OF SOFTWARE COMPONENTS 1337

create the simulation and intermediate components [18].

Hence, the discrete simulation was abandoned and the entire

process was significantly simplified. The result is the

approach described further in this paper (see Section IV).

IV. INTERFACE-BASED COMPONENT TESTING

As was mentioned above, the main theme of this paper is

an approach for the black-box regression testing of software

components in a component-based application – the inter-

face-based component testing. During the regression testing,

we are determining whether the application with the old and

the new version of a component exhibits the same behavior.

In this section, we describe its idea, the model of

application it uses, and the particularities of a prototype

implementation. The overall process works as follows. It

starts with the analysis of the interfaces, services, and

methods of software components of a component-based

application. Based on this analysis, the sets of invocations of

the particular methods are generated and then performed.

The consequences of each invocation are observed and

recorded. The result is a testing scenario with actions and

their consequences. The scenario can be then used to check

whether a newly installed version of a component in a

component-based application exhibits the same behavior as

its old version.

The details of the key parts of this process are discussed

below, including experimental implementation aspects.

A. The Invocations-Consequences Data Structure

Usually, our method assumes that the entire component-

based application is subject to the testing, because the

components inside a single application interact with each

other and these interactions are important to uncover the

behavior of the components. This is the main difference from

the interface probing method (see Section III.C) where each

component is tested alone.

The service methods need to be determined for all the

components of the tested application. This can be in general

done by any method, which is able to recover complete

method signature information. The components, their

services, and their methods are explored and their identifiers

are inserted into a tree data structure (see Fig. 1a).

An initial set of invocations for each of the methods thus

determined is generated and added to the tree data structure.

A set of test data values for each parameter of the method

has to be provided in conjunction; each invocation is created

as a unique permutation of the values of all parameters of the

method.

In the current implementation of the approach (see

Section IV.C), we use fully automatic generation of

parameter values with a rather straightforward approach to

cover the main test cases. The generated values depend on

the parameter types. For primitive types, several

representative and border values are generated. For general

objects, only null value is used.

Fig. 1 The tree data structure

Additionally, when the user knows, which parameter

values are critical for the tested component application, he or

she can select any method, set the required parameter values

and thus create and add a new invocation. The user can also

restrict the set of generated values, where appropriate.

In principle, it would not be necessary to use all methods

for the initial invocation set to achieve good coverage. Since

the source code is unknown however, the (side) effects of the

methods execution are unknown as well. Hence, with the

utilization of all methods, the probability of better

exploration of the behavior of the components is higher than

if some methods were excluded.

Once the initial invocations are added to the tree data

structure, they are performed (i.e., the application is

executed in a testing mode) and their consequences (effects)

are observed and recorded. The consequences of a method

invocation are: the return of a value, a raised exception, a

value change in the “out” parameters of the method, a sub-

sequent invocation of a service method of another (depended

on) component, and a change of the inner state of the

component. The change of the inner state of the component

is different from the others consequences, because it is not

easily observable. Hence, it is not considered by our method.

There can be more than one consequence per an

invocation of a method. All consequences are recorded and

inserted into the tree data structure (under the invocation,

which caused them), but only if they are not already present.

Each invocation consequence record incorporates its type

and further data depending on this type (e.g., the return

value, the instance of an exception, etc.).

The subsequent (outgoing) invocations are the most

important consequences. Each subsequent invocation is

described by the method it is invoking and the unique

permutation of its parameter values. When a subsequent

invocation of a method is performed such that has not yet

been observed, it is recorded along with its parameter values.

1338 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

This invocation is then added to the generated and already

recorded invocations in the tree data structure. These

invocations are valuable, because their parameter values are

genuine, created by the internal logic of the component,

which invoked the method. They can for example contain

instances of objects, which would be difficult to generate

automatically. Again, this is a substantial difference from the

interface probing method (see Section III.C).

The disadvantage of recording the subsequent invocations

in this way is that we cannot be entirely sure what their

actual cause was. As the components under tests are black

box, we cannot create their full behavioral model and

determine the causal relation between the method invoca-

tions. For example, if a component uses active threads, it can

perform invocations on other components independently on

the incoming invocations performed on its service methods.

The invocations performed by such (internal) threads can

still be intercepted and added to the tree data structure. Even

though there is no causal relation between them and the

incoming invocation, which preceded them chronologically,

a false cause-effect relation is still recorded in the tree data

structure. This may cause false alarms during the comparison

of the tree data structures (see Section IV.B), because the

corresponding invocation-consequence pairs may not occur

in further application executions. The mitigation of this

problem can be repeating the invocation and further analysis;

it is a part of our future work.

In order to maximally exploit the subsequent invocations

during the testing, the invocation-driven exploration of the

tree data structure repeats several times. The subsequent

invocations generated in nth exploration can be performed in

the (n + 1)th run and its consequences observed. When no

new consequences are generated, the exploration ends.

In the final tree structure, all invocations and

consequences contain the number representing the iteration,

in which they were inserted (starting with 1). The initial

generated invocations or provided by the user prior to the

exploration of the structure are numbered 0. The filled tree

data structure is therefore enriched by the invocation

consequences (see Fig. 1b) and by the invocations extracted

from the subsequent invocations. This structure can be then

saved to a file as a testing scenario.

B. Testing Application Evolution: Comparison of Tree

Data Structures

The stored tree data structure is useful when a new version

of a component is installed to the component-based applica-

tion. In this case, it can be tested whether the application

with the new version of the component exhibits the same

behavior as the old version (regression testing). For this

purpose, the entire process described in Section IV.A is

performed for the application with the new version of the

component. The result is again the filled tree data structure.

The original tree data structure (corresponding to the

behavior of the application with the old version of the

component) is then loaded from the file and the structures

are compared. The comparison is performed on each level of

the two tree data structures, which use the same set of initial

invocations, starting from the component level.

If a component is only in one tree data structure, this

difference is reported and the services of this component are

not considered further. For each pair of corresponding

components, their services are compared by their names. If a

service is only in one tree data structure, this difference is

reported and the methods of this service are not considered

further. For each pair of corresponding services, their

methods are compared by their signatures. If a method is

only in one data structure, this difference is reported and the

invocations of this method are not considered further.

Analogically, this continues down to the invocation

consequences level (see Fig. 2 for examples).

Fig. 2 Comparison of two tree data structures

TOMAS POTUZAK ET AL.: INTERFACE-BASED SEMI-AUTOMATED TESTING OF SOFTWARE COMPONENTS 1339

The differences are expected to occur mainly in the

invocations and invocation consequences levels of the tree

data structure. Such a difference means that the tested

component-based application with the new version of the

component exhibits a different behavior. A difference on the

methods level or on the services level implies the change in

the public interface of the component. Our method is of

course capable to detect these changes, but they can be

detected also by the other means such as advanced methods

of static analysis (e.g., see [17]). However, discovering

differences in the invocations and consequences level by the

static verification is difficult. Since these differences can

mean significant problems in the tested application, the

described interface-based component testing add significant

value to the functional verification process.

C. Experimental Implementation and Its Discussion

The approach has been implemented for the Java

programming language and the OSGi component model;

however, the main ideas behind it can be used for other

component models and programming languages as well. The

implementation is a part of our Interface Analysis Tool

(InAnT), which has the form of a single component (OSGi

bundle) and is expected to be installed in the same OSGi

framework as the tested component-based application.

The interface-based testing begins when the InAnT

component and the components of the tested application are

started. The tool searches for all available components and

their registered services using standard methods of the OSGi

framework for this purpose. A proxy is then automatically

created and assigned to each registered service of the

components. This is achieved using standard OSGi hooks

[2]. Each future invocation of a method of a service is

subsequently mediated by the corresponding proxy, which

records the invocation and executes it on the corresponding

component using Java reflection. This way, all method

invocations performed within the tested component-based

application can be detected and traced.

The proxies are similar to but much simpler than the

intermediate components used in simulation testing (see

Section III.E and [18]). There is a single generic proxy

implementation whose sole purpose is to record method

invocations and, for each registered service, there is one

proxy instance. The intermediate components, on the other

hand, incorporate functionalities related to the running of the

components in a simulated environment [18]. Moreover,

each service has an intermediate component designed

specifically for it.

There can be more than one independent component-

based application deployed in one OSGi framework. So, the

user is encouraged to select the components of the

application intended for the testing. It is possible to select

only some components of the application, but the testing is

then likely to be incomplete. Once the components for the

testing are selected, the methods of their services are

determined using Java reflection (since the services

correspond to standard Java interfaces – see Section II.A)

Since the framework services do not guarantee that the

components are discovered in the same order across different

framework runs, the components are sorted by bundle

symbolic name in the tree data structure. Similarly, particular

services of each component and particular methods of each

service are sorted as well. This way, it is ensured that the

initial set of invocations is always executed in exactly the

same order. This is the necessary condition for the correct

comparison of two tree data structures.

The automatic generation of the invocations and their

parameter values is deterministic and repeatable. Therefore,

it does not negatively influence the comparison. However,

when the user adds invocations manually or restricts the

range of the parameter values of the automatically generated

invocations, it is vital that he or she uses the same settings

(including the order of manually added invocations).

As it was described in Section IV.A, the parameter values

generated by our implementation depend on the parameter

types. For the number types, a set of representative values is

generated. These values include the maximal and minimal

possible values, 0, -1, 1, and several negative and positive

values with a constant step. The size of the step can be

selected by the user and can significantly influence the

number of values and consequently the number of generated

invocations. For the boolean type, both possible values are

generated. For the char type, several single-byte values

(corresponding to letters, digits, punctuation, and non-

printable characters) and several double-byte values are

generated. For enum types, all possible values including the

null value are generated. For the String class, the null

value and the empty string are generated. For the wrapping

classes of the primitive types (e.g., Integer for int or

Character for char), the same values as for the primitive

data types and null value are generated. For the remaining

classes, only the null value is generated.

The invocations of the tree data structure are then

performed as described in Section IV.A. Their consequences

are observed directly (the return of a value, a raised

exception, a value change in parameters of the method) or

indirectly by the proxies (a subsequent invocation).

The filled tree data structure can be then stored to a

specific XML file. The XML format was chosen because of

its hierarchical nature and legibility for humans, which is

useful during the development. The stored filled tree data

structure can be compared to another stored filled tree data

structure or to filled tree data structure created in the

memory. The comparison is performed as described in

Section IV.B.

V. VALIDATION AND RESULTS

The described interface-based component testing

approach was validated by two sets of tests. The first one

1340 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

was focused on the dependency of the number of generated

invocations on the number of methods and the number of

their parameters; this is described in Section V.B. The

second set of tests was focused on the testing the ability of

the approach to discover the different behavior of the tested

application when a new version of a component was installed

(see Section V.C).

A. Environment and Application Used for Testing

All tests were performed on a single desktop computer

with quad-core Intel i7-4770 CPU at 3.40 GHz, 16 GB of

RAM, and 1TB HDD. The software environment consisted

of the operating system Windows 7 SP1 (64 bit), Java 1.6

(32 bit), and the Equinox OSGi framework.

A component-based application of our own design was

used for the first set of tests. We chose not to use a 3rd party

application to facilitate the analysis and manipulation of the

test application source code (e.g., add and remove methods

and their parameters, change the behavior of the methods,

etc.) in order to test various features of the approach. The

test application is a simple tool for mathematical calculations

and processing of strings. It consists of five components (see

Fig. 3). The Utilities component represents the

interface of the entire application. The methods of its service

perform high-level operations. The Text component

provides a service for the processing of strings and utilizes

the Calculator component for mathematical operations.

The Calculator component provides a service for

mathematical operations including geometrical

transformations. For this purpose, it utilizes the Geometry

component. The Logger component logs the running of the

Utilities component.

For the second set of tests, the test application was used as

well, but, additionally, we used the well known CoCoME

(Common Component Modeling Example – see [19])

application to demonstrate that our interface-based

component testing approach is able to work with a real world

application. The implementation, which was used for the

testing, was developed internally in our group.

B. Dependency on Number of Methods and Parameters

From the description of the generation of the invocations

for the methods in the tree data structure (see Section IV.C),

it is obvious that the number of generated invocations grows

very rapidly. We expected that it grows linearly with the

total number of methods and exponentially with the number

of parameters of each single method. In order to verify the

assumption, a set of tests was performed.

First, the dependency of the number of generated

invocations on the number of parameters of a single method

Fig. 3 The component-based application used for the testing

was investigated. The Utilities component was used for

this purpose. All its methods were removed and a testing

method was added. The method had between one and ten

parameters, either all int parameters or all String

parameters. When the number of parameters was changed,

the component was recompiled and the invocations were

generated for it.

The results are depicted in Fig. 4a. As expected, the

dependency on the number of parameters is exponential

(note the logarithmic scale of the y-axis). It can be also

observed that the increase in the number of generated

invocations is far steeper for the int parameters than for the

String parameters. In fact, an out of memory exception

occurred for more than 6 int parameters. This difference is

caused by the number of generated values used for each

parameter (9 for int, and only 2 for String – see

Section IV.C). So, the user should limit the range of the

generated values wherever he or she is able (e.g., based on

the documentation of the component). Although these results

seem to negatively affect the usability of our approach, it

should be noted that methods with more than 6 parameters

are quite rare. Moreover, it is possible not to use all existing

combinations of parameters, but use the common t-way

approach (discussed for example in [20]) instead.

Second, the dependency of the number of generated

invocations on the number of methods with 5 parameters

within one component was investigated. The parameters

were String, Object, Object, int, and double. The

number of parameters was chosen as a higher than average

number in common applications. Similarly, the parameter

types were chosen to represent common methods. Again, the

Utilities component was used for testing and the tests

were performed in the same way. The results are depicted in

Fig. 4b. As expected, the dependency on the number of

methods is linear (note the linear scale on the y-axis). This

means that the number of methods per component does not

significantly affect the usability of our approach.

Third, the dependency of the number of generated

invocations on the number of components each with 10

methods (with total of 26 parameters of various types) was

investigated. All the components of the test application (see

Section V.A) were used for this purpose. The results are

depicted in Fig. 4c. Again, the dependency on the number of

components is linear and thus the number of components

does not significantly affect the usability of our approach.

The absolute number of generated invocations is highly

dependent on the tested application. The purpose of the

described set of tests was merely to investigate the

dependency of the generated invocations count on the

number of method parameters, the number of methods, and

the number of components. It was shown that the major

problem is the high number of method parameters. This can

be mitigated by a more advanced generation of parameter

values and the usage of the t-way approach, which is a part

of our future work.

TOMAS POTUZAK ET AL.: INTERFACE-BASED SEMI-AUTOMATED TESTING OF SOFTWARE COMPONENTS 1341

Fig. 4 Dependencies of the number of generated invocations

C. Functioning of the Entire Approach

In order to demonstrate the functioning of the entire

interface-based component testing on an example, the second

set of tests was performed using the same test application

and the CoCoME application. The purpose of the tests was

to demonstrate the ability of the approach to uncover

changes in the component behavior.

First, the testing method was performed on the test

application. The numbers of methods and the total numbers

of parameters per component are summarized in Table I. The

user did not provide any initial invocations nor placed any

restrictions on the invocation generation. The result of the

method – the filled tree data structure – was stored to a file.

Then, three changes were separately performed to the

Calculator component. For each change, the testing was

performed again. The resulting filled tree data structure was

then compared to the tree data structure created earlier for

the original component. The differences are summarized in

Table II. The first change (#1) was one added method (with

4 parameters) to the Calculator component. Second

change (#2) was that one method of this component ceased

to throw an exception when invoked with the null value.

The third change (#3) was that one method of this

component started to return null instead of an instance.

The first change caused only one difference on the

methods level. Of course, the filled tree data structure with

the added method incorporates its invocations (and their

consequences) as well (see column #1 in Table II). However,

this is not counted as a difference, since the comparison does

not explore lower levels of branches of the filled tree data

structures when a difference is discovered on the higher

levels. The second change caused numerous differences on

the invocations and consequences levels (see column #2 in

Table II), because the changed behavior of the method (i.e.,

not throwing an exception when invoked with the null

value) influenced other methods as well. The third change

caused numerous differences on the consequences level only

(see column #3 in Table II).

Second, the testing method was performed on the

CoCoME application. The numbers of methods and

parameters of the utilized components of the CoCoME

application are summarized in Table III. Again, the user did

not provide any initial invocations nor placed any restrictions

on the invocation generation. The testing was performed the

same way as with the test application (see above). Three

changes were separately performed to the Data component.

The differences are summarized in Table IV. The first

change (#1) was one added method (with 1 parameter) to the

Data component. Second change (#2) was that one method

of this component ceased to throw an exception when

invoked with the null value. The third change (#3) was that

one method of this component started to return null instead

of an instance.

The first change caused only one difference on the

methods level. The second change caused several differences

on the consequences levels (see column #2 in Table IV), but

not on the invocations level like the similar change in the test

application (see Table II). The reason is that in the CoCoME

application, the second change did not affect other methods.

The third change caused only one difference on the

consequences level (see column #3 in Table IV).

It should be also noted that there are no subsequent

invocations in Table IV. This does not mean that the

components do not utilize services of the other components.

The reason is that, in the CoCoME application (unlike the

test application), the majority of the inter-component

interactions are performed using OSGi Events, which are

currently not intercepted by the interface-based component

testing implementation. Despite this setback, the approach

did uncover all introduced differences.

1342 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

TABLE I. NUMBER OF METHODS AND PARAMETERS OF THE

COMPONENTS OF THE TEST APLICATION

Component Number of methods Total number of parameters

Geometry 3 4

Calculator 16 21

Logger 5 3

Text 7 10

Utilities 4 8

TABLE II. DIFFERENCES OF THE FILLED TREE DATA STRUCTURES OF

THE TEST APPLICATION

Structure Original #1 #2 #3

Explorations 3 3 3 3

Generated invocations 895 917 895 895

Subsequent invocations 747 769 569 725

Exceptions 10 10 9 10

Return values 910 933 890 910

Parameters changes 0 0 0 0

Differences (methods) N/A 1 0 0

Differences (invocations) N/A 0 21 0

Differences (consequences) N/A 0 202 22

TABLE III. NUMBERS OF METHODS AND PARAMETERS OF THE

COMPONENTS OF THE COCOME APPLICATION

Component
Number of

methods

Total number of

parameters
Coordinator 1 1
Data 16 25
Dispatcher 2 6
Reporting 3 3
Store 12 8
Bank 2 3
CardReaderController 3 3
CashBoxController 7 7
CashDeskApplication 10 10
CashDeskGUIController 10 10
LightDisplayController 2 2
ScannerController 1 1

TABLE IV. DIFFERENCES OF THE FILLED TREE DATA STRUCTURES OF

THE COCOME APPLICATION

Structure Original #1 #2 #3

Explorations 2 2 2 2

Generated invocations 297 299 297 297

Subsequent invocations 0 0 0 0

Exceptions 224 224 213 224

Return values 1 3 12 1

Parameters changes 0 0 0 0

Differences (methods) N/A 1 0 0

Differences (invocations) N/A 0 0 0

Differences (consequences) N/A 0 11 1

The second set of tests successfully demonstrated that the

interface-based testing was able to uncover all three

introduced differences in both component-based

applications. The thorough testing of the method including a

significantly higher number of components and third party

applications is a part of our future work.

VI. CONCLUSION

In this paper, we described an approach to component

testing automation, with scenario generation and

augmentation based on a static interface analysis and runtime

logging. The approach can be used for detecting the

differences in the behavior of various versions of a software

component inside a given component-based application.

The feasibility and effectiveness of the approach, as well

as its limitations, were demonstrated using two sets of tests,

which were performed using a prototype test generation

implementation. Although the extent of generated data

(parameter value combinations) grows prohibitively fast in

the fairly rare case of methods with many parameters, the

number of tested components does not significantly affect

the usability of our approach.

For future work, enhancing the formal models, on which

the approach is based, could improve coverage while

reducing test set size. Further, considering the effects of

threading together with exploring the possibility of recording

all occurrences of the invocation consequences, not only the

first one, should improve test quality through better

information about the behavior of the components. We will

also explore the behavior of our method when there are two

or more new versions of components in the tested application

and focus on the situations when a subset of highly

dependent components is changed for new versions in the

component application.

The priority of our future research is however the

improved generation of parameter values for method

invocations. We are working on creating an automatic

generator that will provide the complex testing data, such us

objects or object collections with all attributes set to values

fulfilling expected criteria. This requires a method for

describing the limits for the object attributes and also a tool

that will be able to analyze object structure, including

references to other objects and create automatically the

necessary testing data
1
. Furthermore, along with attribute

description, analysis of program control flow can be used in

order to create tests that will provide sufficient coverage of

tested application.

REFERENCES

[1] C. Szyperski, D. Gruntz, and S. Murer, Component Software –

Beyond Object-Oriented Programming, ACM Press, New York, 2000.

[2] The OSGi Alliance, OSGi Service Platform Core Specification,

release 4, version 4.2, 2009.

[3] J. McAffer, P. VanderLei, and S. Archer, OSGi and Equinox:

Creating Highly Modular JavaTM Systems, Pearson Education Inc.,

2010.

[4] D. Rubio, Pro Spring Dynamic Modules for OSGiTM Service

Platform, Apress, USA, 2009.

[5] G. J. Myers, T. Badgett, and C. Sandler, The Art o Software Testing,

Third Edition, John Wiley and Sons, Inc., Hoboken, 2012.

[6] P. G. Sapna and H. Mohanty, “Automated Scenario Generation based

on UML Activity Diagrams,” International Conference on

1 Current implementation is at https://github.com/mrfranta/jop

TOMAS POTUZAK ET AL.: INTERFACE-BASED SEMI-AUTOMATED TESTING OF SOFTWARE COMPONENTS 1343

Information Technology, 2008, December 2008, pp. 209–214,
http://dx.doi.org/10.1109/ICIT.2008.52

[7] S. J. Cunning and J. W. Rozenbiit, “Test Scenario Generation from a
Structured Requirements Specification,” IEEE Conference and
Workshop on Engineering of Computer-Based Systems, 1999,
Proceedings, March 1999, pp. 166–172,
http://dx.doi.org/10.1109/ECBS.1999.755876

[8] X. Hou, Y. Wang, H. Zheng, and G. Tang, “Integration Testing
System Scenarios Generation Based on UML,” 2010 International
Conference on Computer, Mechatronics, Control and Electronic
Engineering, August 2010, pp. 271–273,
http://dx.doi.org/10.1109/CMCE.2010.5610488

[9] V. A. De Santiago Jr. and N. L. Vijaykumar, “Generating model-based
test cases from natural language requirements for space application
software,” Software Quality Journal, vol. 20(1), 2012, pp. 77–143,
http://dx.doi.org/10.1007/s11219-011-9155-6

[10] S. S. Somé and X. Cheng, “An Approach for Supporting System-level
Test Scenarios Generation from Textual Use Cases,” Proceedings of
the 2008 ACM symposium on Applied computing, Fortaleza, 2008,
pp. 724–729, http://dx.doi.org/10.1145/1363686.1363857

[11] V. Simko, D. Hauzar, T. Bures, P. Hnetynka, and F. Plasil, “Verifying
Temporal Properties of Use-Cases in Natural Language,” LNCS, Vol.
7253, 2011, pp. 350–367, http://dx.doi.org/10.1007/978-3-642-35743-
5_21

[12] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2000.
[13] T. Potuzak and R. Lipka, “Possibilities of Semi-automated Generation

of Scenarios for Simulation Testing of Software Components,”
International Journal of Information and Computer Science, vol. 2(6),
September 2013, pp. 95–105.

[14] B. Korel, “Black-Box Understanding of COTS Components,” Seventh
International Workshop on Program Comprehension, Pittsburgh,
1999, pp. 92–99, http://dx.doi.org/10.1109/WPC.1999.777748

[15] S. Liu and W. Shen, “A Formal Approach to Testing Programs in
Practice,” 2012 International Conference on Systems and Informatics,
Yantai, 2012, pp. 2509–2515, http://dx.doi.org/10.1109/
ICSAI.2012.6223564

[16] J. M. Haddox, G. M. Kapfhammer, and C. C. Michael, “An Approach
for Understanding and Testing Third Party Software Components,”
Proceedings of Annual Reliability and Maintainability Symposium,
Seattle, 2002, pp. 293–299, http://dx.doi.org/10.1109/
RAMS.2002.981657

[17] K. Jezek, L. Holy, A. Slezacek, and P. Brada, “Software Components
Compatibility Verification Based on Static Byte-Code Analysis,” 39th
Euromicro Conference Series on Software Engineering and Advanced
Applications, Santander, September 2013, pp. 145-152, http://dx.doi.
org/10.1109/SEAA.2013.58

[18] T. Potuzak and R. Lipka, “Interface-based Semi-automated Generation
of Scenarios for Simulation Testing of Software Components,”
SIMUL 2014 - The Sixth International Conference on Advances in
System Simulation, Nice, October 2014, pp. 35-42.

[19] S. Herold, H. Klus, Y. Welsch, C. Deiters, R. Rausch, R. Reussner,
K. Krogmann, H. Koziolek, R. Mirandola, B. Hummel, M. Meisinger,
C. Pfaller, “CoCoME - The Common Component Modeling
Example,” The Common Component Modeling Example, LNCS, Vol.
5153, 2008, pp. 16–53.

[20] B. S. Ahmed, K. Z. Zamli, “A variable strength interaction test suites
generation strategy using Particle Swarm Optimization,” The Journal
of Systems and Software, Vol. 84, 2011, pp. 2171–2185,
http://dx.doi.org/10.1016/j.jss.2011.06.004

1344 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

