


Abstract—This article  proposes an ontology design pattern
leading knowledge providers to represent knowledge in more
normalized, precise and inter-related ways, hence in ways that
help automatic  matching and exploitation of knowledge from
different  sources.  This  pattern  is  also  a  knowledge  sharing
best practice that is domain and language independent. It can
be used as a criteria for measuring the quality of an ontology.
This pattern is:  “using binary relation types directly derived
from concept types, especially role types or process types”. The
article  explains  this  pattern  and  relates  it  to  other  ones,
thereby  illustrating  ways  to  organize  such  patterns.  It  also
provides  a  top-level  ontology  for  generating  relation  types
from concept types, e.g.,  those from lexical ontologies such as
those  derived  from  the  WordNet  lexical  database.  This
generation  and  categorization  helps  normalizing  knowledge,
reduces  having  to  introduce  new  relation  types  and  helps
keeping all the types organized.

I. INTRODUCTION

NTOLOGY  Design  Patterns  (ODPs)  are  “modeling

solutions  to  solve  a  recurrent  ontology  design

problem” [1]. A “Conceptual ODP” describes a best practice

(BP)  for  content  modelling  [1].  Since  we  only  consider

ODPs  that  represent  BPs,  we  use  these  two  terms

interchangeably  in  this  article  to  ease  its  reading.  Many

ODPs have been described. E.g., about 160 are registered in

the ODP catalog at http://ontologydesignpatterns.org which,

in  this  article,  will  now be referred  to as  ODPC. Despite

these ODPs, most of thousands of existing ontologies that

exist are still  poorly inter-connected and heterogeneous in

their  design.  It  is  then  difficult  for people and  automated

agents  to  compare  or  match such  independently  created

knowledge representations (KRs, e.g.,  types or statements)

to  know  if  some  KRs  are  equivalent  to  others  or

specializations of others. Thus, it is difficult for people and

automated agents to align and aggregate – and thus, relate,

infer from, search or exploit – KRs or ontologies.

O

In other  words, there  is  a  need  for  ODPs  specifically

aimed for knowledge modeling and sharing – as opposed to

knowledge exploitation  with  computational  tractability

constraints – and, more  precisely,  specifically  aimed  for

solving  the  problem  of  leading  knowledge  providers  to

create more matchable and re-usable KRs. As later detailed,

This work was not supported by any organization.

this  implies  leading  them  to  create  more  precise,

normalized, well related and easy-to-understand KRs. To be

adopted, these ODPs should also be easy to follow and easy

to use as criteria for automatically measuring the quality of

an  ontology,  to  help  developing  an  ontology or  selecting

ontologies  to  re-use.  Finally,  the  ODPs  – or,  at  least  the

knowledge sharing ODPs – should be well inter-related by

semantic relations to help people i) know about them and

their  advantages,  and ii) select those they want to commit

to. Then, tools can check or enforce these commitments.

This  article proposes such a knowledge sharing  focused

ODP and relates it to other ones, via specialization relations

and gradual pattern relations. This BP, which in this article

will now be referred to as  ABP, is:  “using binary relation

types  directly  derived  from concept  types,  especially  role

types or process types”. No ODP catalog appears to include

ODPs similar  to this one or to any of its parts.  Like most

BPs, it is domain and language independent. The sections 2,

3 and 4 explain, formalize and illustrate the different parts

of ABP. Section 5 relates them to other ODPs and thereby

also gives more rationale.

II. USING BINARY RELATIONS

ABP starts by advocating the use of binary relations, i.e.,

logical  statements based on binary predicates.  In the RDF

model,  these  statements  are  called  triples and  binary

relation types are called properties. In this article, types that

are not relation types (RTs) are refered to as  concept types

(CTs),  i.e.,  classes in  the  RDF  model.  The  expression

concept individual will be used for anything that is neither

a type nor a relation.

Since  ABP is  language independent,  this  article  uses a

general  terminology,  one  compatible  with  those  for

Conceptual Graphs and RIF-FLD [2], the W3C Framework

for Logic Dialects of the Rule Interchange Format.  For its

formal textual examples, this article uses RIF-FLD PS, the

Presentation  Syntax  of RIF-FLD.  Indeed,  this  notation  is

both expressive and rather intuitive. For clarity purpose too,

in  the  examples,  RT names  begin  by “r__”  and  function

names begin by “f__”.   Logical  rules are used since RIF-

FLD  is  used  and  since  this  shows  the direction  the

implications are expected to be used. However, in each case,

a logical equivalence could also be used instead.
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Following ABP does not prevent using non-binary RTs as

long as definitions or rules are also provided to enable the

automatic translation of “KRs using non-binary RTs” into

“KRs using binary RTs”.  Table I illustrates such rules for

various kinds  of use cases but only the  third  row is  also

about the focus of Section 3, i.e., deriving a RT from a CT.

One reason why such definitions or rules are useful for

knowledge sharing is that binary relations can be compared

while two relations of different arities generally cannot. Two

types or KRs are comparable if and only if an equivalence

or specialization  relation between them has been  directly

stated  or can be automatically  inferred.  Thus,  KRs using

binary relations can be ordered by generalization relations,

typically,  implications.  This  is  more  difficult  with  KRs

using  relations  of  different  arities,  thus  reducing

possibilities for knowledge matching or inferences. E.g., as

illustrated by Table I, some relations of different arities can

be translated into binary relations using a list as destination.

Then, they can be compared.

A related reason why such definitions or rules are useful

for knowledge sharing is that  they make more information

explicit.  As detailed it  Section 5,  normalizing  knowledge,

enhancing  its  comparability  or  adding  more  information

have strong relationships. 

In practice, with a KR language (KRL) allowing contexts

and sets or lists, it is easy to avoid the use of relations with

TABLE I.

EXAMPLES OF HOW TO DEFINE A GIVEN RT WITH RESPECT TO OTHER TYPES 

(THE RIF-FLD PS NOTATION IS USED IN THE NON-HIGHLIGHTED PARTS;  VARIABLES BEGIN BY “?”;  “ :-” MEANS “<=”)

If  you wish to (re-)use non-binary RTs, as in
      r__spatial_entity_between_3_other_ones ( Jack   Joe  John  Mary )

       Exists ?X ( r__spatial_entity_between_2_other_ones (?X  Joe  John) )

   instead of using binary RTs as in

       r__list_of_surrounding_entities ( Jack   List( Joe  John  Mary )  )

       Exists ?X ( r__list_of_surrounding_entities ( ?X   List( Joe  John ) ) )

   then provide ways to translate the 1st ones into the 2nd ones, e.g.,

       Forall  ?A  ?B  ?C  ?D  (  r__list_of_surrounding_entities ( ?A  List( ?B  ?C  ?D ) )

                                              :- r__spatial_entity_between_3_other_ones ( ?A  ?B  ?C  ?D )  )

   since it is then much easier to make inferences, e.g.,  ?X = Jack
   and the above 3rd statement specializes (hence implies) the 4th

The above approach also works for contextualizations, e.g.,
      r__list-of-surrounding-entities_at-time ( Jack   Joe  John    D-Day )

   can automatically be translated into the binary relation

       r__list_of_surrounding-entities ( Jack_at_D-Day    List (Joe_at_D-Day   John_at_D-Day)  )

This cannot be specified in RIF PS but  something similar can be:

       Forall  ?A   ?B  ?C   ?time_T (

            Exists  ?A_at_time_T    ?B_at_time_T    ?C_at_time_T  (

                 And ( r__list_of_surrounding_entities (?A_at_time_T  List (?B_at_time_T   ?C_at_time_T) )

                           r__extended_specialization (?A  ?A_at_time_T)    r__time ( ?A_at_time_T   ?time_T ) 

                           r__extended_specialization (?B  ?B_at_time_T)    r__time ( ?B_at_time_T   ?time_T )  )

                 :- r__list-of-surrounding-entities_at-time (?A   ?B  ?C  ?time_T)  )  )

Similarly, if you wish to use RTs representing types of processes, as in

      r__landing ( Joe   Omaha_Beach   D-Day )        r__defining (Joe  Square)

   instead of using classic primitive binary RTs as in

      Exists  ?landing (   And (  ?landing  #  landing      // "?i  # ?t" <=> instanceOf (?i ?t)

                                               r__agent(?landing Joe)      r__place(?landing Omaha_Beach)

                                               r__time(?landing  D-Day)   )  )

      Exists  ?defining (  And (  ?defining  #  defining       r__agent (? defining  Joe) 
                                               r__object (?defining  "square")   )  )
   then provide ways to translate the 1st  ones into the 2nd ones, e.g.,

      r__directly_derived_relation ( Landing  r__landing )

      r__directly_derived_relation ( Defining  r__defining )

      Forall  ?rel   ?process   ?agent  ?time  ?place (

           And (  r__agent (?process  ?agent)   r__place (?process  ?place)    r__time (? process  ?time)  )

           :- And (   ?rel ( ?agent   ?place   ?time )      r__process ( ?rel   ?process )   )

      Forall   ?rel   ?process   ?agent  ?object  (

           And (  r__agent (?process  ?agent)   r__object (?process  ?object)  )

           :- And (   ?rel ( ?agent  ?object )     r__directly_derived_ relation ( ?process  ?rel )   )  )

   since it is then much easier to make inferences, 
   e.g.,  for the statement in the next line, a match for  ?X  is Joe 

      Exists ?A  ( And(  r__agent (Landing  ?A)   r__agent (Defining  ?A)  ) )
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arity  greater  than  two.  A  context,  i.e.,  a  contextualizing

statement,  is  a  meta-statement  specifying  restrictive

conditions for the contextualized statement to be true, e.g.,

via temporal relations or modalities. Although RIF-FLD is

not  restricted  to  first-order  logic,  it  lacks  a  construct  for

expressing contextualizations in simple ways, as in KIF [3]

for example. However, the second row of Table I shows how

simple contextualizations can still be represented – albeit in

a rather  cumbersome way – using binary relations. To that

end,  this  example  uses  an  adaptation  of the  ODP named

Context  Slices in  ODPC  [4].  It  relies  on  introducing

concept  individuals  within  contexts and  relating  them  to

their  context  as  well  as  to  their  context-independent

counterpart. This  is  an  alternative  to  the  more  common

approach  of reifying  a  statement  and  asserting  a  relation

between the reification and the context. With the reification

based approach,  handling  contexts  is  a  bit  more  difficult

when  simple  KR  management  tools  are  re-used  and

extended. Both approaches lead to rather lengthy statements

and  are  ad-hoc since they require  extensions to inference

engines  to fully handle  them correctly.  Therefore,  for the

purpose of knowledge modeling and sharing – as opposed to

knowledge exploitation which comes after and may require

converting  the  knowledge  into  KRLs  of  reduced

expressiveness but which can be handled efficiently – a BP

is to i) use a KRL that handles contexts or use more ad-hoc

concise  constructs,  and  then  ii) provide  or  use  rules  for

translating  into the  various ways to represent  contexts  in

other KRLs. The same idea applies for the many ODPs that

deal  with  the  problems  of  translating  “KRs  using  high

expressive  constructs”  into  “KRs  using  lower  expressive

constructs”.  E.g.,  in  ODPC,  there  are  many  ODP  for

translations into OWL or from OWL. 

To conclude, although formally specifying the semantics

of  relations of arity greater than two requires at  least one

primitive  ternary  relation  [5],  in  practice  there  is  no

necessity to use such relations for knowledge modelling.

There is no claim here that the idea of “translating non-

binary  RTs  into  binary  ones  or  directly  using  them”  is

original. Yet, it should be an ODP for various reasons: i) it

is useful, ii) some claims seemingly about the necessity of

using  non-binary  relations  are  actually  claims  about  the

necessity of using constructs  supporting  different  kinds of

contexts  [6],  and  iii)  this  best  practice  is  sometimes

unknown to users of KRLs allowing non-binary relations.

III. DERIVING RELATION TYPES FROM CONCEPT TYPES

ABP  advocates  the  use  of  – or  specifications  of

translations into – binary RTs directly derived from CT”. A

CT may have multiple directly derived RTs if they have un-

comparable signatures, i.e., if none specializes another one.

The third row of Table I illustrated a way to directly derive

an  RT from  a  CT  using  a  rule  and  a  relation  of  type

r__directly_derived_relation.  The  first  two rows  illustrate

the  definitions  of non-binary  RTs mainly  with  respect  to

binary RTs. This is useful as an intermediary step: the final

step  – deriving these last binary RTs from a CT, e.g.,  one

named List_of_surrounding_entities – was not illustrated in

Table I.

Manually or automatically defining each RT with respect

to a CT makes additional information explicit and ensures

that  every distinction  in  the (subtype) hierarchy of RTs is

also  included  in  the  CT  hierarchy.  This  last  point  is

important  for  two  reasons.  First,  it  prevents  some

knowledge providers to develop distinctions only in the RT

hierarchy while others develop distinctions only in the CT

hierarchy, thus leading to undetected redundancies within a

shared knowledge base or in different ontologies. Second, it

ensures  that  any distinction  can  be used  – without  losing

possibilities  of  knowledge  representation  and  matching –

with both its CT form and its RT form. More possibilities

come from the  CT form since  i) unlike  RTs,  CTs  can  be

quantified in  many different  ways (e.g.,  “3 landings”,  “all

landings” or “8% of landings” can only be described via the

CT “Landing”, not the RT r__landing),  ii) CTs are easier to

organize by subtype relations than RTs, and iii) the number

of used or re-usable existing CTs is much greater than the

number of used or re-usable RTs. Thus, both cases lead to

better categorizations in the concept and relation hiearchies.

These  advantages  of  using  defined  RTs come  for  free

when  RTs are  automatically derived from CTs and  hence

defined with respect to them. Furthermore, such derivations

permits a system to display fewer types in the RT hierarchy

which is then easier to read and grasp. Indeed, the derived

RTs may be left hidden or may not have to be created at all.

This last option was used in the knowledge server Ontoseek

[7]  and  is  used  in  the  knowledge  base  server  WebKB

(www.webkb.org; [8]). In Ontoseek, any type derived from

the noun-related part  of the lexical  ontology Sensus could

be re-used as a CT or a RT. WebKB also re-uses a lexical

ontology derived from WordNet. However, unlike Ontoseek,

WebKB only allows the subtypes of certain  types to be re-

used as RTs. This is defined by specifications that users can

adapt. More precisely, this is defined by relation signatures

which  are  directly  associated  to  certain  top-level  CTs.

Table II illustrates  the approach  and  then  gives rules  that

would actually generate the derived RTs. The next section

complements this framework by giving an ontology of the

CTs these rules can be applied to. These RT generation rules

permit  to  formalize  the  framework.  They  rely  on  the

functions  f__type_name and  f__denotation_of_type_name

which  are  identical  to  the  KIF  functions  name and

denotation formalized in the documentation of KIF [3]. In

WebKB, such  rules  are  not  actually executed  but  a  more

efficient process relying on the same idea is used. Indeed,

during  the  parsing  of statements,  whenever  a  CT is used

where a RT is expected, WebKB simply checks that one of

the signatures associated to the CT is respected and acts as

if  the  relevant  derived  RT  was  actually  used.  Thus,  in

WebKB, there  is  no need to use the  actual  names  of the

virtually derived RTs: the CT names can be used directly. As

in  the  framework  described  by  Table II,  signatures  are

inherited along subtype relations between CTs and an error

is generated if a CT is associated to two signatures that are

comparable.  This approach and ODP seem original.
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IV. DERIVING FROM ROLE TYPES OR PROCESS TYPES

ABP  advocates  the  derivation  of  RTs  from  CTs,

“especially  role types or process types”. The third row of

Table I  illustrated  this  for  processes.  In  this  article,  a

process refers to a  situation that  is not a  state,  and hence

that makes a change. A situation is something  that  occurs

in  a  real/imaginary  region  of  time  and  space.  These

conceptual distinctions come from the  Situation Semantics

[9] and are the basis of John Sowa's first top-level ontology

[10].  There  are  re-used  in  this  article  for  at  least  the

following reasons:

• They are  rather  intuitive and  generalize  other  well
known  types.  E.g.,  Perdurant from  Dolce  [11]  is
subtype of Process.

TABLE II.

RULES FOR AUTOMATICALLY DERIVING A BINARY RT FROM A CT (AND, IF NEEDED,DOING SO FOR ALL ITS SUBTYPES) 

BASED ON A KIND OF SIGNATURE ASSOCIATED TO THIS CT  
(NOTE: IN THESE EXAMPLES, THE TYPES CREATED BY THE AUTHORS OF THIS ARTICLE HAVE NO PREFIX TO INDICATE THEIR NAMESPACE).

Table I gave examples of how a rule can define a RT with respect to a CT. This had to be done for each RT. Here, the 
approach is simpler. The derived RT does not have to be explicitly defined. Its signature is directly associated to the CT
via a relation of type  r__signature_for_derived_binary_relation or a function of type  f__derived_binary_relation.

Thanks to the definitions given in the next row of this table, the derived RT is automatically created.
A  CT may have different RT signatures associated to it, as long as the signatures are un-comparable, i.e., as long as 
none specializes another.

 r__signature_for_derived_binary_relation ( Father    List ( Animal  Male )  ) 

        //-> associates a signature to the CT Father and derives the RT   r__father  with domain an Animal and range a Male 

 Forall  ?t  (  r__signature_for_derived_binary_relation ( ?t   List ( Thing  ?t ) )

                     :-   ?t  ##  Thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination

                           // "##" means "is subtype of"; "#" means "is instance of"; this rule derives the expected RT for each 
                           //     subtype of Thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination

 Forall  ?processType   Exists ?r 
    And (  ?r  =  f__ derived_binary_relation ( ?processType   List ( Agent  Object ) )

               Forall  ?process ?agent  ?object    And ( r__agent (?process  ?agent)    r__ object (?process  ?object) )
                                                                      :-  And (  ?process # ?processType    ?r (?agent  ?object) )  )

     :-   ?processType  ##  Process    //this rule derives the expected RT for each subtype of Process

Furthermore, the derived RTs have the same subtype relations as the CTs they derive from. However, to keep things

simple, it is here assumed that no RT with the same name as the derived RT has previously been manually created.  
The RT name is created by taking the CT name, lowering its initial and prefixing it with “r__”.   The functions  
f__denotation_of_type_name,  f__type_name,  f__cons, f__cdr,  f__lowercase used below are identical to their 
counterparts (without the prefix “f__”) in KIF. 

 Forall  ?t   ?r__t    ?t_domain   ?t_range   ?t_supertype    ?r__t_supertype    ?t_sup_domain   ?t_sup_range  (

      And (  rdfs:domain (?r__t   ?t_domain )       rdfs:range (?r__t   ?t_range )

                 ?r__t  =  f__denotation_of_type_name ( f__cons ( f__lowercase ( f__car ( f__type_name ( ?t ) ) ) 

                                                                                  f__cdr ( f__name ( ?t ) )    ) 

                 ?r__t    ##   ?r__t_supertype      //"##" means "is subtype of"

                      :-   And (  ?t   ##  ?t_supertype 

                                      ?r__t_supertype  =  f__ derived_binary_relation ( ?t_supertype
                                                                                                                     List ( ?t_sup_domain  ?t_sup_range )  )    )

              ) 

       :-   ?r__t   =   f__derived_binary_relation ( ?t   List ( ?t_domain  ?t_range ) )   )

 Forall  ?t   ?t_domain   ?t_range (
      Exists  ?r__t  ( ?r__t   =   f__ derived_binary_relation ( ?t    List ( ?t_domain  ?t_range ) ) )
       :-   r__signature_for_derived_binary_relation ( ?t   List ( ?t_domain  ?t_range ) )  )

Other rules can be built upon these last ones, e.g., this rule for deriving functional binary relations:

Forall  ?t   ?t_domain   ?t_range    Exists  ?r__t   (

     And ( ?r__t   =   f__ derived_binary_relation( ?t    List ( ?t_domain  ?t_range ) )

               ?r__t  #  owl:FunctionalProperty   )    //"#" means "is instance of";  owl:FunctionalProperty is a 2nd-order type

     :-   r__signature_for_derived_functional_binary_relation ( ?t   List ( ?t_domain  ?t_range ) )
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• They are very adequate for the signatures of thematic
relations [12], e.g., r__agent,  r__recipient, r__cause,
r__instrument.  Such  types  are  top-level  types  of
relations from a process.

• In this article, a  role type (e.g.,  Agent,  Experiencer,
Recipient,  Cause,  Instrument)  is  a  CT  which  is
defined – or could be defined – as being the range of
a thematic RT. This informal definition of a role is a
bit more general than what is usually thought to be a
role type [13] but here it is sufficient:  as defined in
this article,  processes and  role types can be used for
deriving CTs into binary RTs. 

• Thematic RTs or their  subtypes can also be used for
defining most RTs. Thus, doing so normalizes KRs.

• Most  statements  implicitly  or  explicitly  refer  to  a
process.  Representing  it,  either  directly  or  via  RTs
directly derived from a process, strongly normalizes
KRs. Not doing so, which unfortunately is the case in
many ontologies,  amounts  to losing  precisions  and
many KR comparison possibilities.

Fig. 1 compares CTs usable for directly deriving a binary

RT with other types. The common supertype of these CTs is

Thing_usable_for_directly_deriving_a_binary_relation. Only

its  subtypes  can  be  used  for  deriving  binary  RTs;  this

owl:Thing

                                         Thing_usable_for_directly_deriving_a_binary_relation     

                                                        Thing_usable_for_directly_deriving_a_unary_function 

                                                                             wn:employer    wn:seller    wn:price    wn:license

                                                             {complete, not disjoint}   

                            Thing_usable_for_deriving_a_binary_relation_without_that_thing_as_destination

                                          Thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination

                                     

Entity          Situation             sowa:Independent_thing      Thing_playing_some_role    

                        State     Process                        sowa:Relative_thing    sowa:Mediating_thing 

                           dolce:Perdurant                          wn:component_part           wn:relation

                 Situation_playing_some_role                  wn:marriage /* ”marriage” as a                                             

                                                                                                               ”social relation” CT,

                                wn:outcome                                                           not as a process,

                                                                                                               state nor instance of  

                 dolce:Endurant                                                                     a RT */

            Entity_playing_some_role                                          

                                                                     wn:recipient                  

Spatial_entity         Non-spatial_entity            

                                                                               Attribute_or_quality_or_measure   

                                                                                 wn:measure    wn:attribute    wn:property

              Description_content/medium/container         

     wn:subject_matter     wn:language_unit     wn:file

Legend:   i)  the arrow “   ” represents  a supertype (subClassOf) relation,   ii)  by default,   each
subclass  set   is  here  a  subclass  partition,  hence its  “{disjoint,  complete}”  UML annotation  is  left
implicit,   ii) for name-spaces, XML shortcuts are used but type names created by the authors of this  article
have no prefix,  iv) “wn” refers to WordNet,  v) “(*)” is the RT signature for any set of arguments,  vi)
comments  are  delimited  by “/*”  and  “*/”,   vii)  for  readability  purposes,  the  boxes  around classes
(concept types) are not drawn.

Fig. 1.  Slightly adapted UML representation of a subtype hierarchy to compare the type Thing_usable_for_directly_deriving_a_binary_relation with other types.
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includes  types  for  processes  and  roles.  Fig.  2  illustrates

subtype relations between such derived RTs. Fig. 3 displays

common top-level types for relations from a process, most

of which  are  thematic  RTs.  Fig.  3  re-uses top-level types

shown in Fig. 1. All the types in these figures are part of the

Multi-Source Ontology (MSO [14]) which is accessible and

cooperatively updatable via WebKB. Hence,  the  names in

these  figures  are  names  accessible  via  this  Web  server.

However, these figures have not previously been published.

The  MSO  includes  more  than  75,000  categories  and

relates  them  by  more  than  100,000  relations,  mainly

subtype relations.  It  categorizes WordNet  types as  well  as

types from various top-level ontologies (DOLCE included)

with respect to the types shown in Fig. 1 or specializations

of  them.  More  precisely,  about  a  hundred  of  top-level

WordNet types and  some more specialized WordNet types

were  manually  set  as  subtypes  of  those  in  Fig.  1  or

specializations of them.  Thus,  in  the subtype hierarchy of

the  MSO for  things usable  for directly  deriving  a binary

relation, there are currently more than 4800 process types,

2900 role types (for things playing some role), 650 types of

attributes  or  qualities  or  measures and  240  types  of

description  content/medium/container.  This  makes  more

than 8600 types usable for creating relations without having

to declare new RTs. The 4800 process types can also be used

directly  with  relations  from  a  process.  Finally,  the  types

shown  in  Fig.  3  for  these  relations  can  implicitly  or

explicitly be specialized by types derived from the 2900 role

types.  To  sum  up,  the  proposed  approach  and  the  MSO

permit people and automated agents to create KRs that are

well normalized, inter-related and comparable. Furthermore

re-using  the  approach  and  content  of the MSO to extend

other ontologies is eased by the fact that i) the MSO relates,

generalizes  and  specializes  types  from  various  other

ontologies,  and  ii) the  MSO can  be complemented  online

via WebKB.

In  Fig.  1,  the  types  named  Relative_thing  and

Mediating_thing  come from John  Sowa's second top-level

ontology [15].

To show how rules can be used to associate a signature to

a CT and thereby to a derived RT, examples in Table II used

a process type and the type of things usable for deriving a

binary relation with it as destination. Similar  rules can be

used for other  types of things usable for deriving a binary

relation”.  Fig.  2  shows  how  the  various  relations  types

– derived  or  not  from  CTs  – can  be  related  by subtype

relations.  Organizing  relations  of  different  arities  is

permitted  by the  use of “*”  in  the  relation  signatures:  it

refers to any number of arguments.  In Fig. 2, a signature is

shown as  an  ordered  list  of comma-separated  arguments,

within parenthesis. Both KIF and RIF-FLD allow relations

with a variable number  of arguments.  However,  unlike in

KIF,  there  is  no  special  construct  in  RIF-FLD  for

definitions, hence for signatures.

ODPC includes the DOLCE+DnS-Ultralite ontology [16]

and  categorizes  it  as  Content  ODP.  ODPC also  includes

related  but  smaller  content  ODPs such  those  named

ActingFor and  Agent-Role.  Its  DnS  (Descriptions  and

Situations) part  includes some types which can be seen as

subtypes  of  those  in  Fig.  3.  ODPC  proposes  many  RTs

which  could  be  – but,  it  seems,  are  not  – derived  from

process  types,  e.g.,  RTs  with  names  such  as  actsFor,

conceptualizes or  defines.  Yet, some of its CTs have been

aligned  with  OntoWordNet  [17].  Thus,  the  ontology and

approach  proposed  in  this  section  and  the  previous  one

could  be  used  to  extend  and  normalize  DOLCE+DnS-

Ultralite.  This  would  support  more  KR  comparison

possibilities.

                                                 r__relation (*)

                                                    

r__relation_from_a_situation          r__relation_not_directly_derived_from_a_concept_type

(Situation, *)                                    (*)

        r__relation_from_an_entity           r__relation_directly_derived_from_a_concept_type

        (Entity, *)                                        (*)           

        r__spatial_entity_between_2_other_ones                                r__landing 

        (Spatial_entity, Spatial_entity, Spatial_entity)                        (Agent, Place, Time)

        r__binary_relation_directly_derived_from_a_thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination

        (*, Thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination)

r__outcome (Situation, Situation)

Legend: same as in Fig. 1; each RT signature is delimited by parenthesis; “*” refers to 0 or more arguments of any type.

Fig. 2.  Subtype hierarchy of some relation types derived from subtypes of the concept type Thing_usable_for_directly_deriving_a_binary_relation.
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V. RELATING TO OTHER ODPS

To be adopted, knowledge sharing ODPs should be well

inter-related  by  semantic  relations  to  help  people  know

about them and the criteria or advantages they fulfill. Thus,

people  can  search  and  select  ODPs  to  commit  to.  Then,

tools can check or enforce these commitments,  or retrieve

ontologies satisfying them.

Thus,  ideally,  ODPs  should  at  least  be  organized  into

categories related by specializations and exclusion relations,

as in the hierarchy presented in Fig. 1. However, this is not

easy.  The  most  organized  of  current  ODPC  or  BP

repositories [18] seems to be ODPC. It organizes its ODPs

into  a  specialization  hierarchy  with  a  first  level  of  six

categories.  Each  of them has 0 to 3 sub-levels.  These six

categories and their current content are:

• Content ODP: 101 ontologies, some having only a few
types.

• Reasoning ODP: no ODP has yet been submitted in this
category.

• Structural  ODP:  1  ODP in  the  Architectural  ODP
category – BPs about the structure of an ontology, e.g.,
the  use  of subtype partitions,  i.e.,  unions  of  disjoint
types as in Fig. 1 – and 13 in the Logical ODP category
–  translations  between  constructs  from  KRLs  of
different expressiveness.

• Correspondence  ODP:  12 in  the  Reengineering  ODP
category  –  meta-model  transformation  rules  to  create
ontologies from structured but less formal and semantic
sources  – and  13  in  the  Alignment  ODP category
– these ODPs are  examples  of RTs between elements
from different ontologies.

r__relation_to_another_spatial_entity                                   r__relation_to_another_spatial_entity    

                                             Spatial_entity      Temporal_entity 

r__relation_from_process_to_spatial_entity             r__relation_from_process_to_temporal_entity
 /* e.g.,  r__beginning_place,  r__place,                 /* e.g.,  r__beginning_time, r__ duration,
               r__end_place,  r__places */                          r__time , r__end_time,  r__frequency  */

                                                                                                                                                          

            r__predecessor_state                                    r__successor_state 
            /* e.g.,  r__beginning_state,                          /* e.g.,  r__end_state,  
                         r__cause,                                               r__consequence, r__purpose, 
                         r__precondition */                                r__postcondition */
State                                                Process                                                        State

r__relation_from_process_to_event                       r__relation_from_process_to_process_attribute
/* e.g.,  r__triggering_event,                                     /*e.g., r__manner,  r__speed */ 
             r__ending_event */   
                                                                                   Process_attribute 
                                                                                                                   
Event  /* Process seen as                                        r__relation_to_another_process
instantaneous from the viewpoint                             /* e.g., r__sub-process,  r__method */
of the agent  asserting relations 
from this process */                                  r__relation_to_process_participant   /* e.g.,  
                                                                       r__relation_to_used_object  (e.g.,
                                                                                                         r__input-output_object, r__ parameter,  
           r__relation_to_description                         r__material,  r__instrument ),
           /* e.g.,  r__description */                     r__relation_to_created-or-modified_object  (e.g.,
                                                                            r__input-output_object,  r__generated_object),
                                                                       r__relation_to_participating_agent  (e.g.  
                                 Description                         r__agent,  r__initiator )
                                                                       r__relation_to_participating_agent (e.g., 
r__relation_to_another_description                      r__patient, r__experiencer, r__recipient)  */
    /* e.g., r__sub-description, 
                r__correction */                   Process_participant  /* e.g.,  Agent (Person  or
                                                                                                              Automated_agent) */ 

Legend: same as in Fig. 1 plus  i) arrows with dashed lines are relations like UML associations,
i.e.,  the  source is  universally  quantified  and  a  cardinality (or  multiplicity)  is  associated  to  the
destination; here, each cardinality is either “0 to many” or “1 to many”, and is left implicit; and
ii) comments are enclosed within “/*” and “*/”;  “e.g.,” is used for introducing subtypes.

Fig. 3. Examples of common types of relations from a process; most of them are thematic RTs. 
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• Lexico-Syntactic  ODP:  20  linguistic  structures  for
extracting KRs or displaying them, as with a controlled
language.

• Presentation ODP: no submission of ODP has yet been
submitted  in  this  category  about  the  usability  and
readability  of  ontologies.  It  has  two  subcategories:
Annotation ODP  and  Naming ODP.

All  these categories  are  not  exclusive.  An ODP can  be

placed  in  several  of them.  E.g.,   the  ODPs listed  in  the

sections 2, 3 and 4 seem to be architectural ODPs as well as

logical  ODPs and,  for  some of them,  also Content  ODP,

e.g.,  the  DOLCE+DnS-Ultralite.  The  ODPs  we  gave  in

Section 5  are  Naming  ODPs  but  are  also  related  to

Structural ODPs.

Since  there  are  multiple  categorization  possibilities,

different persons will search or add a same ODP in different

categories, thus leading to less relations between the ODPs

and more undetected redundancies, as noted in the previous

sections. This structure also does not lead ODP providers to

collaboratively build a finely organized hierarchy or graph

of ODPs.  Such a structure  could be obtained  by formally

representing  each  ODP as  a  process,  using  a  same  base

ontology,  e.g.,  the  MSO,  hence  with  the  types shown  in

Fig. 1  and  Fig. 3  as  top-level  types.  Most  of the  subtype

relations  between  ODPs  could  then  be  automatically

calculated. Although this approach would scale well, such a

formal  and  homogenous  representation  would  be  a  huge

work and would require quite motivated ODP providers. 

Furthermore,  relations to criteria  and advantages would

still  probably  not  be  sufficient  since  relating  ODPs  to

criteria  – or  processes  representing  these  criteria  – is

difficult. Therefore, for the ODPs advocated in this article,

another  approach  has  been  adopted:  i) manually  setting

subtype  relations  between  ODPs  or  BPs  represented  as

process  types,  and  ii) using  positive  gradual  pattern

relations. Fig. 4 is the result.

These last relations represent rules of the form “the more

X,  the  more  Y”.  [19]  gives  a  formalization  for  such

relations.  Arrows  with  dashed  lines  are  positive gradual

pattern relations. E.g., the dashed arrow from “keeping the

types organized” to “avoiding undetected redundancies” can

be read “the more `keeping the types organized´ is achieved,

the more `avoiding undetected redundancies' is achieved´ ”.

This  last  particular  rule  refers  to  the  idea  that  was

mentioned again  two paragraphs  ago and  which  could be

rephrased  as:  “the  more  a  KR (type or  statement)  has  a

`unique place´ [20] in a hierarchy of KRs, the less chances

there are that another person will add an equivalent KR in

another  place”.  E.g.,  as  opposed  to  subtype  hierarchies,

taxonomies  relate  objects  (terms,  documents,  ...)  with

relations which are neither typed nor formal. Thus,  people

use  these  relations  for  representing  subtypes,  parts,

instances,  agents,  etc.  This  leads  to  hierarchies  that  are

difficult to search and that  often have redundancies. When

subtype partitions are used, this is far less the case. This is

also far  less the case when the hierarchy is automatically

built  based  on  the  definition  of  each  type.  Like  subtype

relations, gradual pattern relations are typed and transitive.

Hence, if used correctly, each KR can have a  unique place

[20]  in  the  graph  formed  by  these  transitive  relations.

However, gradual  pattern  relations do not enable as many

automatic checking possibilities as subtype partitions.

Given the explanations provided in the previous sections,

the relations in Fig. 4 should now be understandable.  The

use of gradual  pattern  relations  between ODPs or  BPs is

original.  The  direct  setting  of  subtype  relations  between

them also seems original.

"using RTs directly derived from CTs"            "keeping the RT         "using precise statements"

                                                                             hierarchy small"                                   

                 "using  binary RTs"                                                                 "avoiding undetected  

                                                                                                                     redundancies"

                                                                              "keeping                     

"using binary                         "using                      types                    "using normalized

  RTs directly                          primitive                organized"             statements"

  derived             "using         (hence                                                         

  from CTs"          process      binary)           "using                            "using               

                              types"       RTs                  precise and                   easy-to-understand

"using binary                                                  normalized                   statements"

  RTs directly                 "following the           statements"                                                   

  derived from CTs,         graph-based                                        "using well related and       

  especially role types      reading                                                  easy-to-compare statements"            

  or types of process"      convention"                                                  

Legend: same as in Fig. 3 except that arrows with dashed lines now represent positive gradual pattern
relations; relations inherited via subtype relations are left implicit,  e.g.,  like those inherited by “using
precise and normalized statements”.

Fig. 4. Supertype relations and gradual pattern relations between ABP (the BP advocated in this article;
see the BP name in italic bold characters at the bottom left of the figure) and related BPs.
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VI. CONCLUSION

Knowledge sharing is difficult. It implies satisfying many

criteria – and following  various  BPs – which,  as  Fig.  4

showed, are inter-related. To provide such BPs and ways to

follow them, this article has focused on the idea of deriving

RTs from CTs and has shown the relationships between this

ODP to other  ones for  knowledge modeling  and  sharing.

Some  of  these  ODPs  were  already  known,  several  were

original. 

This  article  also  provided  various  kinds of  ODPs.

According  to  the  categories  of  ODPC,  these  are

architectural,  logical, content and naming ODPs. However,

given  their  inter-relations  and  the  focus  on  derivation

mechanisms, it is also true that this article focused on one

ODP – the one named ABP – composed of simpler ODPs.

The ODPs we proposed are applied to  – and  supported

by – the MSO which includes more than 75,000 categories

and  which  is  accessible  and  updatable  online  via  the

WebKB  shared  knowledge  base  server.  Together,  these

resources and tools help people and automated agents create

KRs that  are  more  normalized,  inter-related,  comparable

and  understandable.  Furthermore,  the  multi-source nature

of  the  MSO  would  help  applying  the  proposed  content

ODPs to other ones such as DOLCE+DnS-Ultralite.

Finally, the following of the proposed ODPs can easily be

tested,  e.g.,  via  SPARQL  queries  on  an  ontology  or,

interactively, within WebKB. For example, it is easy to test

if each RT is defined with respect to one CT. This makes

these BPs usable as criteria for selecting ontologies. 

This  work  will  be  extended  by  relating  knowledge

sharing  techniques,  BPs  and  criteria,  via  specialization

relations  and  gradual  pattern  relations.  Negative gradual

pattern relations  – “the more X, the  less Y” – will also be

used. The focus will be on representing various approaches

to  knowledge  sharing,  e.g.,  those  based  on  formal

documents,  those  based on  collaborative  editing  within  a

shared  ontology  server  and  those  based  on  knowledge

exchange  between  ontology  servers.  Thanks  to  their

organization by specialization relations and gradual pattern

relations, the various kinds of ways to share knowledge and

their  respective  advantages  and  drawbacks  should  be

clearer.
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