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Abstract—InterCriteria Analysis approach is here applied for
the assessment of promising genetic algorithms optimization
techniques. Altogether six multi-population genetic algorithms
are here considered, differing in the execution order of main
genetic operators selection, crossover and mutation. InterCriteria
Analysis approach, based on the apparatuses of index matrices
and intuitionistic fuzzy sets, is implemented to assess the perfor-
mance of multi-population genetic algorithms for the parameter
identification of Saccharomyces cerevisiae fed-batch fermentation
process. Degrees of “agreement” and “disagreement” between
the algorithms outcomes convergence time and model accuracy,
from one hand, and model parameters estimations, from the
other hand, have been established. Outlined relations are going
to lead to an additional exploring of the model, expected to be
extraordinary valuable especially in the case of modelling of living
systems, such as fermentation processes.

I. INTRODUCTION

YEAST is widely used model organisms in contemporary

biotechnology and genetic engineering due to its

well known metabolic pathways [1], [15]. Specifically, S.

cerevisiae has found significant application in the production

of medicines, food and beverages. Meanwhile, the complex

structure of fermentation processes, usually described by

systems of non-linear differential equations with several

specific growth rates, turns their modelling in a challenging

and rather difficult task.

Genetic algorithms (GA) is a stochastic global optimiza-

tion technique, proven in successful solving of a variety

of challenging problems in the field of complex dynamic

systems optimization [9], [10], [16], among them for parameter

identification of various fermentation process models [1],

[3], [14], [15], [16]. GA are one of the methods based on

biological evolution, inspired by Darwins theory of survival of

the fittest. Simple genetic algorithms, originally presented in

[10], search a global optimal solution using three main genetic

operators in a sequence selection, crossover and mutation

over the individuals in one population. Meanwhile, multi-

population genetic algorithms (MpGA) is more similar to the

nature since in it many populations, called subpopulations,

evolve independently from each other. After a certain number

of generations, a part of individuals migrates between the

subpopulations.

The main purpose of this investigation is to be assessed the

algorithms performance of MpGA modifications with different

sequence of implementation of the main genetic operators,

namely selection, crossover and mutation. InterCriteria Analy-

sis (ICrA), developed as an alternative to the traditional meth-

ods for the assessment of algorithms performance, is here im-

plemented. So far, there are some successful ICrA application

for parameter identification of fermentation process models

[2], [12], [13], [17], where the approach applicability has

been demonstrated for establishing correlations between model

parameters and GA objective function value and convergence

time, from one side, and model parameters themselves, from

the other side. This investigation is focussed on the assessment

of six MpGA modifications, consequently applied to parameter

identification of a S. cerevisiae fed batch fermentation process.

II. PROBLEM FORMULATION

Parameter identification of a considered here S. cerevisiae

fed-batch fermentation process model is performed using real

data from on-line and off-line measurements, carried out in

the Institute of Technical Chemistry, Hanover, Germany. The

details about the process conditions and experimental data set

could be found in [15].

According to the mass balance and considering mixed

oxidative functional state [15], non-linear mathematical model

of S. cerevisiae fed-batch fermentation process is commonly

described as follows:
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where X is the biomass concentration, [g/l]; S – substrate

concentration, [g/l]; E – ethanol concentration, [g/l]; Fin

– feeding rate, [l/h]; V – bioreactor volume, [l]; Sin –

substrate concentration in the feeding solution, [g/l]; µ2S , µ2E

– maximum values of the specific growth rates, [1/h]; kS , kE –

saturation constants, [g/l]; YSX , YEX – yield coefficients, [-].

All functions are continuous and differentiable and all model

parameters fulfil the requirement for non-zero division.
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For the considered here model (1)-(4), the vector p =
[µ2S , µ2E , kS , kE , YSX , YEX ], including six model parameters

should be identified.

Mean square deviation between the model output and the

experimental data for the process variables biomass, substrate

and ethanol, has been used as an optimization criterion:

J =
m∑

i=1

(Xexp(i)−Xmod(i))
2
+

n∑

i=1

(Sexp(i)− Smod(i))
2
+

l∑

i=1

(Eexp(i)− Emod(i))
2
→ min

(5)

where m, n and l are the dimensions of the experimental

data; Xexp, Sexp, Eexp, Xmod, Smod and Emod are, respectively,

experimental and model predicted data for biomass, substrate

and ethanol.

III. MULTI-POPULATION GENETIC ALGORITHMS FOR

PARAMETER IDENTIFICATION OF S. cerevisiae FED-BATCH

FERMENTATION PROCESS

Genetic algorithms, firstly proposed by Holland [11] and

later upgraded by Goldberg [10], are a stochastic searching

tool inspired by processes of natural evolution. Frequently

used as an alternative to the conventional optimization tech-

niques, both simple and multi-population GA have been suc-

cessfully applied for different problems solving [9], [10], [15],

[16], but multi-population GA is more similar to nature than

simple GA. Standard multi-population GA works with many

populations of coded parameter sets, called subpopulations

and searches a global optimal solution using the main genetic

operators in a sequence selection, crossover and mutation. For

brevity, this algorithm is here denoted as MpGA-SCM, com-

ing from the operators execution order selection, crossover,

mutation. MpGA-SCM starts with a creation of k randomly

generated subpopulations, each of them with n chromosomes.

After that each chromosome in the subpopulation is evaluated

and assigned a fitness value. According to the fitness function,

the most suitable solutions are selected. Then, crossover and

mutation proceed to form a new offspring. After certain

number of generations, called isolation time, individuals mi-

grate between the subpopulations. For the purposes of this

investigation, MpGA-SCM terminates when a certain number

of generations is reached.

While the main idea of GA is to imitate the processes occur-

ring in nature, one can assume that the probability crossover

to come first and then mutation is comparable to that both pro-

cesses to occur in a reverse order; or selection to be performed

before or after crossover and mutation, no matter of their

order. Following this idea, five modifications of MpGA-SCM,

with different sequence of execution of main genetic operators,

have been developed aiming to improve model accuracy and

algorithms convergence time [1], [3], [14]. The modifications,

namely MpGA-SMC (selection, mutation, crossover), MpGA-

CMS (crossover, mutation, selection), MpGA-MCS (muta-

tion, crossover, selection), MpGA-CSM (crossover, selection,

mutation) and MpGA-MSC (mutation, selection, crossover)

have been proposed and basically investigated for parameter

identification of a fed-batch cultivation of S. cerevisiae in

[1], [3], [14]. The performance of mentioned above altogether

six MpGA, applied to the parameter identification of a S.

cerevisiae fed-batch cultivation process, is going to be assessed

by promising ICrA approach.

IV. INTERCRITERIA ANALYSIS

The theoretical framework of the InterCriteria Analysis

approach, based on the apparatuses of index matrices (IM) [5],

[6], [7] and intuitionistic fuzzy sets (IFS) [4], is given in details

in [8]. Here, ICrA is briefly presented for a completeness.

The initial IM A in a form presented in (6) consists of the

criteria Cp (for rows), objects Oq (for columns) and real num-

ber elements aCp,Oq
for every p, q, (1 ≤ p ≤ m, 1 ≤ q ≤ n).

Further, an IM with index sets consisting of the criteria (for

rows and for columns) with IF pair elements determining the

degrees of “correspondence” between the respective criteria

is constructed. A real number aCp,Oq
is comparable about

relation R with the other a-object, so that R(aCk,Oi
, aCk,Oj

)
is defined for each i, j, k. Let R be the dual relation

of R in the sense that if R is satisfied, then R is not

satisfied, and vice versa. For example, if “R” is the relation

“<”, then R is the relation “>”, and vice versa. If Sµ
k,l

is the number of cases in which R(aCk,Oi
, aCk,Oj

) and

R(aCl,Oi
, aCl,Oj

) are simultaneously satisfied, while Sν
k,l

is the number of cases is which R(aCk,Oi
, aCk,Oj

) and

R(aCl,Oi
, aCl,Oj

) are simultaneously satisfied, it is obvious,

that

Sµ
k,l + Sν

k,l ≤
n(n− 1)

2
.

Further, for every k, l, satisfying 1 ≤ k < l ≤ m, and for

n ≥ 2,

µCk,Cl
= 2

Sµ
k,l

n(n− 1)
, νCk,Cl

= 2
Sν
k,l

n(n− 1)
(7)

are defined. Therefore, 〈µCk,Cl
, νCk,Cl

〉 is an intuitionistic

fuzzy pair. Next, the following IM is constructed:

C1 . . . Cm

C1 〈µC1,C1
, νC1,C1

〉 . . . 〈µC1,Cm
, νC1,Cm

〉
...

...
. . .

...

Cm 〈µCm,C1
, νCm,C1

〉 . . . 〈µCm,Cm
, νCm,Cm

〉

, (8)

that determines the degrees of “correspondence” between

criteria C1, ..., Cm.

The sum µCk,Cl
+ νCk,Cl

is not always equal to 1. The

difference

πCk,Cl
= 1− µCk,Cl

− νCk,Cl
(9)

is considered as a degree of “uncertainty”.

The final step of ICrA is to classify the degrees of “corre-

spondence” between criteria. Let α, β ∈ [0; 1] are the threshold

values for comparison of µCk,Cl
and νCk,Cl

. In general, the

criteria Ck and Cl are respectively:

• in a positive consonance, if µCk,Cl
> α and νCk,Cl

< β;
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. . .
...

. . .
...
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. . . aCm,Ol
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, (6)

• in a negative consonance, if µCk,Cl
< β and νCk,Cl

> α;

• in a dissonance, otherwise.

V. NUMERICAL RESULTS AND DISCUSSION

All identification procedures as well as InterCriteria Analy-

sis implementation are performed on PC Intel Pentium 4 (2.4

GHz) platform running Windows XP.

Six modifications of MpGA with different execution order

of main genetic operators selection, crossover and mutation

have been consequently applied to estimate the model pa-

rameters (vector p) of the considered model (1)-(4). Due to

the stochastic nature of GA, 30 independent runs for each

of the applied here six MpGA have been performed. MpGA

operators and parameters are tuned according to [1].

In terms of ICrA, altogether eight criteria are taken into

consideration: objective function value J is considered as C1;

convergence time T – as C2; specific growth rates µ2S and

µ2E – respectively as C3 and C4; saturation constants kS
and kE – respectively as C5 and C6; yield coefficients YSX

and YEX – respectively as C7 and C8. Six investigated here

objects, referred to MpGA modifications, respectively are: O1

corresponding to MpGA-CMS; O2 – to MpGA-CSM; O3

– to MpGA-MCS; O4 – to MpGA-MSC; O5 – to MpGA-

SCM; and O6 – to MpGA-SMC. For convenience, forenames

of objective function, convergence time, fermentation process

model parameters and MpGA modifications are further used

instead of a criterion Ci or an object Oj .

IMs (10)-(12) present, respectively, the average estimates

(10), the best ones (11), and the worst ones (12) of the values

of objective function J , the algorithm convergence time T , [s],

as well as of all model parameters towards vector p. Three

IMs list the objective function values rounded to the fifth

digit after the decimal point, while the rest criteria – to the

fourth digit after the decimal point. However, at the step of

ICrA implementation, all parameter estimates are used as they

have been obtained as a result from parameter identification

procedures, in order to be distinguishable and the degrees of

“uncertainty” to be decreased.

As seen from (10)-(12), obtained results show similar values

for objective function J after application of the considered

here six MpGA for fermentation process model parameter

identification. There is about 1% difference between the best

among the best results (J = 0.02193 for MpGA-SMC, (11))

and the worst among the worst results (J = 0.02218 for

MpGA-CSM, (12)). On the other hand, the convergence time

T increases more than 2.5 times (347.3300 for MpGA-CMS,

(12) towards 131.4000 for MpGA-SCM, (11)). Such a small

deviation of J proves all six considered here MpGA modifica-

tions as equally reliable and it is of user choice to make a com-

promise between the model accuracy and convergence time.

ICrA approach has been consequently implemented for

each of the constructed IMs A1(average), A2(best) and

A3(worst). After ICrA application, six IMs that determine the

degrees of agreement and disagreement between investigated

criteria have been obtained. IMs themselves are not shown

here, but the results from the ICrA implementation for the

cases of average, best and worst evaluations have been summa-

rized in Table I. Obtained results are ranked by µCk;Cl
values

in the case of average evaluations. As could be seen from Table

I, there are no pairs with a degree of “uncertainty” for the cases

of average and worst evaluations, while such criteria pairs have

been observed in the case of the best evaluations. The logical

explanation of this fact is that even using a “row data” from

parameter identification procedures there are some equal eval-

uations for some of the model parameters in different MpGA.

Aiming at better interpretation of the obtained results listed

above, they are also graphically presented in Fig. 1.

Table II presents the scale of consonance and dissonance

[17], on which basis each pair of criteria is going to be

assessed.

Based on the presented scale, the following pair dependen-

cies might be outlined for the case of average results of the

examined criteria.

A positive and a weak positive consonance have been

observed respectively for the pairs µ2E−YEX and kS−YEX .

There are three criteria pairs in a negative consonance - J−kE ,

YSX − YEX and µ2E − YSX and another one - µ2S − kS in

a weak negative consonance. The rest of the criteria pairs hit

the intervals of a dissonance.

Some coincidences for the three investigated here case stud-

ies (of average, best and worst results) should be mentioned.

The criteria pair µ2E − YEX is in a positive consonance for

the cases of average and best results. The same criteria pair

hits the upper boundary of the µ− values in the case of worst

results, as such showing a strong positive consonance. The

criteria pair µ2E − YEX is the only one with the maximum

value (i.e. µ = 1) for the degree of “agreement”. A negative

consonance for the pair µ2E − YSX has been observed for
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A1(average) =

MpGA-CMS MpGA-CSM MpGA-MCS MpGA-MSC MpGA-SCM MpGA-SMC

J 0.02203 0.02210 0.02196 0.02203 0.02206 0.02195

T 370.9408 317.6379 265.4929 214.0625 113.9127 164.3988

µ2S 0.9002 0.9063 0.9076 0.9023 0.9018 0.9004

µ2E 0.1494 0.1242 0.1485 0.1216 0.1389 0.1484

kS 0.1500 0.1496 0.1487 0.1466 0.1500 0.1500

kE 0.8000 0.8000 0.8339 0.8366 0.8000 0.8420

YSX 0.3973 0.4090 0.3960 0.4126 0.4022 0.3993

YEX 2.0193 1.6524 1.9939 1.6035 1.8630 2.0019

(10)

A2(best) =

MpGA-CMS MpGA-CSM MpGA-MCS MpGA-MSC MpGA-SCM MpGA-SMC

J 0.02203 0.02204 0.02195 0.02199 0.02203 0.02193

T 377.9200 343.0900 288.7900 226.7900 131.4000 177.1900

µ2S 0.9000 0.9004 0.9009 0.9024 0.9000 0.9004

µ2E 0.1500 0.1444 0.1496 0.1244 0.1500 0.1484

kS 0.1500 0.1500 0.1500 0.1465 0.1500 0.1500

kE 0.8000 0.8000 0.8363 0.8491 0.8000 0.8509

YSX 0.3969 0.3998 0.3952 0.4120 0.3975 0.3993

YEX 2.0297 1.9453 2.0009 1.6398 2.0280 2.0020

(11)

A3(worst) =

MpGA-CMS MpGA-CSM MpGA-MCS MpGA-MSC MpGA-SCM MpGA-SMC

J 0.02204 0.02218 0.02198 0.02205 0.02211 0.02201

T 347.3300 295.4300 253.5500 195.9700 92.2960 142.9400

µ2S 0.9044 0.9176 0.9248 0.9024 0.9220 0.9014

µ2E 0.1460 0.1003 0.1472 0.1148 0.1211 0.1480

kS 0.1498 0.1488 0.1455 0.1466 0.1495 0.1500

kE 0.8000 0.8000 0.8359 0.8413 0.8000 0.8095

YSX 0.4006 0.4196 0.3959 0.4143 0.4103 0.3992

YEX 1.9660 1.3112 1.9771 1.5232 1.6125 2.0002

(12)

the three considered case studies. A negative consonance has

been outlined for YSX − YEX in the cases of average and

worst results, while in the case of the best results the pair is

in a weak negative consonance.

Although mentioned above coincidences, there are several

discrepancies in criteria dependences, caused mainly by the

stochastic nature of the considered here six modifications of

MpGA. The attention is drawn only for the pairs, showing con-

sonance in some of the considered case studies. For example,

according to the scale presented in Table II, a weak positive

consonance has been observed for criteria pair kS−YEX in the

cases of average and best results, while in the case of the worst

results the pair is in a dissonance. A weak positive consonance

for µ2E −kS and a positive consonance for J−YSX could be

seen only in the cases of best and worst results, respectively.

Another discrepancy is found in the results for the criteria pairs

µ2S−kS and J−kE . Both pairs are in a negative consonance

for the case studies of average and best results, while in the

case of the worst results they fall in the interval of a weak

dissonance.

Distribution of dependencies between criteria pairs in the

cases of average, best and worst evaluations are listed in Table

III. The criteria pairs are equally distributed in the cases of

average and worst results. In the case of the best results, there

are more criteria pairs in a positive or in a negative consonance

and less in a dissonance, but this is the only one case with

observed degree of “uncertainty” for some of the criteria pairs.

Taking into account the obtained ICrA estimations in the

cases of average, best and worst results, and having in mind

the stochastic nature of GA, it is more reasonable to rely with

a higher credibility on the results in the case of average values

than to results obtained in another two cases.

VI. CONCLUSION

Promising ICrA approach has been here implemented to

examine the performance of six modifications of multi-

population genetic algorithms, applied for the purposes of

a fermentation process model parameter identification. All

considered MpGA modifications demonstrate almost equal

degree of accuracy with about 1% objective function value

divergence, but on the account of the convergence time. Thus,

it is of user choice to make a compromise between model

accuracy and convergence time. After applying MpGA to a

parameter identification of S. cerevisiae fed-batch cultivation

process, three case studies have been examined – of average,
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TABLE I
CRITERIA RELATIONS SORTED BY µCk,Cl

VALUES IN THE CASE OF AVERAGE RESULTS

Criteria relation
Average results Best results Worst results

µ / ν / π µ / ν / π µ / ν / π
µ2E − YEX 0.93 / 0.07 / 0.00 0.87 / 0.07 / 0.06 1.00 / 0.00 / 0.00

kS − YEX 0.80 / 0.20 / 0.00 0.80 / 0.00 / 0.20 0.67 / 0.33 / 0.00

µ2E − kS 0.73 / 0.27 / 0.00 0.80 / 0.07 / 0.13 0.67 / 0.33 / 0.00

J − YSX 0.67 / 0.33 / 0.00 0.60 / 0.40 / 0.00 0.93 / 0.07 / 0.00

T − µ2E 0.67 / 0.33 / 0.00 0.47 / 0.47 / 0.06 0.40 / 0.60 / 0.00

J − T 0.60 / 0.40 / 0.00 0.60 / 0.40 / 0.00 0.47 / 0.53 / 0.00

T − YEX 0.60 / 0.40 / 0.00 0.47 / 0.53 / 0.00 0.40 / 0.60 / 0.00

µ2S − YSX 0.60 / 0.40 / 0.00 0.73 / 0.27 / 0.00 0.47 / 0.53 / 0.00

J − µ2S 0.53 / 0.47 / 0.00 0.47 / 0.53 / 0.00 0.53 / 0.47 / 0.00

T − µ2S 0.53 / 0.47 / 0.00 0.47 / 0.53 / 0.00 0.53 / 0.47 / 0.00

T − kS 0.53 / 0.47 / 0.00 0.33 / 0.47 / 0.20 0.47 / 0.53 / 0.00

kE − YEX 0.53 / 0.47 / 0.00 0.40 / 0.53 / 0.07 0.60 / 0.40 / 0.00

µ2S − kE 0.47 / 0.53 / 0.00 0.60 / 0.33 / 0.07 0.47 / 0.53 / 0.00

µ2E − kE 0.47 / 0.53 / 0.00 0.40 / 0.60 / 0.00 0.60 / 0.40 / 0.00

kS − kE 0.47 / 0.53 / 0.00 0.47 / 0.40 / 0.13 0.40 / 0.60 / 0.00

kE − YSX 0.47 / 0.53 / 0.00 0.47 / 0.47 / 0.06 0.33 / 0.67 / 0.00

J − µ2E 0.40 / 0.60 / 0.00 0.53 / 0.40 / 0.07 0.13 / 0.87 / 0.00

J − kS 0.40 / 0.60 / 0.00 0.33 / 0.47 / 0.20 0.47 / 0.53 / 0.00

T − YSX 0.40 / 0.60 / 0.00 0.47 / 0.53 / 0.00 0.53 / 0.47 / 0.00

J − YEX 0.33 / 0.67 / 0.00 0.47 / 0.53 / 0.00 0.13 / 0.87 / 0.00

µ2S − µ2E 0.33 / 0.67 / 0.00 0.13 / 0.80 / 0.07 0.47 / 0.53 / 0.00

kS − YSX 0.33 / 0.67 / 0.00 0.20 / 0.60 / 0.20 0.40 / 0.60 / 0.00

T − kE 0.27 / 0.73 / 0.00 0.27 / 0.67 / 0.06 0.40 / 0.60 / 0.00

µ2S − YEX 0.27 / 0.73 / 0.00 0.07 / 0.93 / 0.00 0.47 / 0.53 / 0.00

µ2S − kS 0.20 / 0.80 / 0.00 0.07 / 0.73 / 0.20 0.27 / 0.73 / 0.00

J − kE 0.13 / 0.87 / 0.00 0.07 / 0.87 / 0.06 0.27 / 0.73 / 0.00

YSX − YEX 0.13 / 0.87 / 0.00 0.20 / 0.80 / 0.00 0.07 / 0.93 / 0.00

µ2E − YSX 0.07 / 0.93 / 0.00 0.13 / 0.80 / 0.07 0.07 / 0.93 / 0.00

TABLE II
SCALE OF CONSONANCE AND DISSONANCE

Interval of µCk,Cl
Meaning

[0.00-0.05] strong negative consonance

(0.05-0.15] negative consonance

(0.15-0.25] weak negative consonance

(0.25-0.33] weak dissonance

(0.33-0.43] dissonance

(0.43-0.57] strong dissonance

(0.57-0.67] dissonance

(0.67-0.75] weak dissonance

(0.75-0.85] weak positive consonance

(0.85-0.95] positive consonance

(0.95-1.00] strong positive consonance

best and worst results in regard to chosen criteria. ICrA

approach has been implemented to assists in establishing of

TABLE III
DISTRIBUTION OF DEPENDENCES BETWEEN CRITERIA PAIRS

Meaning Average Best Worst

Positive consonance 2 3 2

Dissonance 22 18 22

Negative consonance 4 7 4

existing relations between fermentation process model parame-

ters and MpGA outcomes, such as objective function value and

convergence time. Obtained additional knowledge for relations

between model parameters and algorithms outcomes might be

useful for improving the model accuracy and the performance

of optimization algorithms in further parameter identification

procedures.

ACKNOWLEDGEMENT

The work is partially supported by the National Science

Fund of Bulgaria under the grant DFNI-I-02-5 “InterCriteria

MARIA ANGELOVA, TANIA PENCHEVA: INTERCRITERIA ANALYSIS OF MULTI-POPULATION GENETIC ALGORITHMS PERFORMANCE 81



Fig. 1. Degrees of “agreement” (µCk,Cl
values) for three considered cases
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