
Visual simulator for MavLink-protocol-based UAV,

applied for search and analyze task

Piotr Śmigielski, Mateusz Raczyński, Łukasz Gosek

Student Scientific Association AI LAB,

Faculty of Automation, Electrical Engineering, Computer Science and Biomedical Engineering,

AGH University of Science and Technology,

Al. Mickiewicza 30, 30-059 Kraków, Poland

Email: smigielski.piotr@gmail.com

Abstract—In this paper the authors present the results of
research to develop the visual system for autonomous flying agent.
The core elements of the vision system which were designed
and implemented in the earlier stage of the project are brought
together. The second aim is to show capabilities of a simulation
environment designed and developed by the authors in order to
enable testing of the vision systems (dedicated for Unmanned
Aerial Vehicles) in the artificial environment. The first section
of the paper introduces the testing (simulation) environment
for MavLink-protocol-based autonomous flying robots. Next, the
core elements of a vision system, designed for Unmanned Aerial
Vehicle (UAV), are discussed. This includes pre-processing and
vectorization algorithms, object recognition methods and fast
three-dimensional model construction. The third part introduces
a set of algorithms for robot navigation, solely based on vision
and altitude sensor and compass. The paper concludes with the
description of the tests and presentation of results where designed
simulator was applied to show mentioned vision system elements
operating together to execute complex task.

I. INTRODUCTION

T
HE SIMULATION has always been important in the

development of advanced robotic systems. Such a need

is driven by a number of factors. The key one is the cost of

the robotic solutions. Utilizing such environments for testing

of the early versions of elements of the system, such as

vision system and navigation algorithms, may help avoiding

costly accidents [1]. Additional benefit of using artificial

testing environments lays in short time between bug discovery,

patch implementation and re-testing. This can lead to greatly

minimized overall development and testing time.

The key questions that arise during the development of

advanced UAV systems may be:

1) Are we sure how the robot will response to the input

from navigation procedures and sensors?

2) Will it be able to accomplish the task within given time

regime?

3) What are the limitations of communication protocol?

4) How will robot react if emergency situation, such as loss

of communication with navigation module, occurs and

how procedures for such event will work?

Artificial testing environment can help minimize the risk

associated with these questions. Nevertheless, some uncer-

tainty is related specifically with communication protocol

which is utilized between navigational module (which includes

AI functions) and autopilot module which is responsible

for execution of low-level tasks, such as robot’s movement,

power management, basic sensors reading (such as barometer,

GPS, gyroscope). There is a number of existing simulators

for particular UAV controllers and, on the other side, more

general approaches, where testing environment is designed for

abstract robot, not associated with particular communication

protocol or controller model [2], [1]. The challenge is to

create the testing environment which directly incorporates

the communication protocol (such as MavLink) that will be

used in real UAV. In such scenario the AI module sends the

instruction directly to the navigation module utilizing the given

communication protocol, but the system can be connected

either to the emulated or real UAV.

The solution presented in this paper introduces an ap-

proach, which enables testing solutions that are ready to be

applied on real UAV. It faces that challenge by combining

emulation of robot which communicates via MavLink pro-

tocol with visualization of the simulated environment. The

MavLink protocol (Micro Air Vehicle Communication Proto-

col) is one of the most popular protocols for communicating

with robots’ control stations (also called autopilots), sending

commands and exchanging telemetry information. It is a

lightweight, header-only protocol utilized by controllers such

as Pixhawk PX4 (see https://pixhawk.org/), APM 2.6 (see

http://ardupilot.org/copter/) or SLUGS Autopilot [3], [4]. Such

approach in the design of UAV simulator allows not only to

test a considerably wide range of solutions but also to directly

use existing code to connect to real UAV, utilizing MavLink

protocol, immediately after finishing simulated tests. This can

be accomplished by simply changing the connection from the

server representing emulated UAV to a real robot connected

to PC via telemetry transmitter/receiver.

Such simulator can be applied in various scenarios. The

most basic one would be testing of robot’s reactions to move-

ment requests, sent from the controlling application, where

a graphical interface would allow observation of potential

responses of the real robot and tracking unexpected behaviors.

This simulator can be applied for testing of more sophisticated

solutions. One of the typical classes of algorithms that can be

tested in such simulator are object recognition [5], [6] and

scene analysis [7], [8]. These problems are widely studied in

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1177–1185

DOI: 10.15439/2017F184

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1177

robotics and can contribute to the solution of more complex

tasks, such as scene understanding and robot localization [9],

[10].

The paper is structured as follows. Section II discusses

the design and functionalities of the proposed simulator. Next

section (see III) describes the core elements of scene analysis

system. It briefly introduces algorithms for vectorization of

the images, recognition of the objects in the scene and three-

dimensional model building. In section IV the authors propose

the set of methods for navigation of a UAV to allow operating

in an urban environment, utilized in tests for the solution.

Section V is dedicated for presentation of test showing capa-

bilities of scene analysis system as well as the simulator. The

scenario of the tests is based on the idea of UAV, equipped with

visual sensor, operating in an urban environment. The main

task of this robot is to locate predefined object in the scene

and build a three-dimensional model of the located building

(later in this paper the terms object and building will be used

interchangeably due to assumption that the robot operates

in an urban environment). The last section is dedicated for

concluding remarks.

II. ARTIFICIAL TESTING ENVIRONMENT

In this part the environment for simulating execution of

a real UAV’s tasks is introduced. The designed system is

dedicated for testing UAV which utilizes MavLink protocol.

The solution is based on combination of lightweight SITL

(Software In The Loop) simulator and scene model which is

generated in OpenGL environment. The whole system was

implemented in Python language. The SITL simulator is pro-

vided alongside with libraries for communicating in MavLink

protocol. It is aimed to allow simple tests of sending command

to the robot and receiving telemetry information from it. When

the simulator is started as a server in local machine it responds

to the input as if it was a physical UAV using MavLink

protocol. This is enough for testing simple commands of

movement and receiving information from the robot. To allow

the simulator to execute more complex tasks it was combined

with OpenGL module which enables visualization of actions

executed by a simulated UAV. The important outcome of this

is the possibility to use OpenGL camera to work as a visual

sensor of the robot. The input from that virtual camera is a

source of information that can be provided to the complex

scene analysis algorithms. By combining these two elements

the researchers and developers are allowed to directly switch

from using simulator to executing actions on real MavLink-

enabled UAV, equipped with visual sensors.

The overall design of the simulated environment is shown in

Fig. 1. In this system, the UAV module and Image processing

module operate together as the central control unit. It processes

information from sensors (video feed from OpenGL in the

presented simulated environment), executes complex tasks

related to image processing and conducts interaction with a

physical flying robot or a simulated one (SITL simulator) like

it is presented in this paper. Practically, this control unit is

the main part of an unmanned flying agent responsible for

Fig. 1: Overview of the system modules and communication

in the simulated environment.

all higher level functionalities over those that are ensured by

autopilots such as PX4 or APM 2.6 and communicates with

the autopilot with a use of the MavLink protocol.

III. SCENE ANALYSIS ALGORITHMS

This section is aimed to briefly introduce a set of scene

analysis methods that were combined to form a complete task

for a UAV, tested in the simulator. These algorithms were

designed and implemented in another part of the project to

create the core elements of visual system for autonomous

flying agent. More details about these methods and their

possible applications can be found here [11], [12], [13]. These

algorithms can also be utilized for solving more complex

problems, such as cognitive approach to scene analysis and

recognition [14]. Let us briefly introduce these algorithms

below.

A. Vectorization method

This method is aimed to obtain memory-efficient, vector

representation of objects in the examined scene. The amount

of information describing the shape of an object is limited to

a list of points in Euclidean space which are located in the

corners of the object. The steps which lead to creation of that

representations are:

1) Pre-processing. As the pre-processing of the images is

outside of the scope of discussed project is is assumed

that objects that are subject for analysis have distinctive

colors. This allows extracting objects from the image by

filtering specific colors from predefined set.

2) Border extraction. The result of pre-processing which

consists of extracted color shapes on the black back-

ground are subject for edge detecting process. To extract

edges of the shapes, a recursive algorithm for two-

dimensional edge detection is used [15].

3) Point sequence generation. A dense sequence of points,

located along the edge of each object, is generated. The

1178 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

[[270, 12] [270, 12] [270, 3] [90, 8] [90, 4] [270, 8] [270, 3] [270, 12] [270, 12] [270, 12] . . . [270, 3] [270, 12]]

 [[270, 17] [90, 40] [90, 21] [270, 40] [270, 18] [270, 61] [270, 57] [270, 61]]

[[45, 12], [315, 12], [225, 3], [135, 8], [225, 4], [315, 8], [225, 3], [135, 12]]

[[45, 17], [315, 40], [45, 21], [135, 40], [45, 18], [315, 61], [225, 57], [135, 61]]

angle of third wall (expressed in degrees)

number of nominal features which expresses the length of the wall

Intermediate representations of two compared objects

with walls represented by their angles

and lengths expressed in nominal features

Final representations where angles of walls are substituted

by angles between subsequent walls.

(example of match found between two patterns)

Doubled representation

Fig. 2: Representation obtained from vectorized object, used

for recognition process.

points are evenly distributed and the distance (calcu-

lated in number of pixels from original image) between

them depends on predefined parameter. The distance has

impact on shape description accuracy and the greater

distance is, the less accurate description can be obtained

with the increase of efficiency of the algorithm at the

same time.

4) Removing redundant points. Some points are redun-

dant in the sequence if they lay on the same line or

change the path insignificantly. To remove them the

Ramer-Douglas-Peucker curve simplification algorithm

[16], [17] is utilized.

The final step is the enrichment of the object representation

with information about its color. To do this a pixel located

inside the outline of examined object is selected and its RGB

color description saved along with the vector representation.

Further it will be used to prepare images for 3D object

model construction. The particular images, showing examined

building from various sides (see section III-C) will be filtered

to select only this color which is associated with the color

of the object which was first vectorized and recognized based

on the image taken from above. This is done to ensure that

the contours that are discovered in the images taken during

examination of the building belong to the desired (examined)

object.

B. Object recognition

For object recognition a syntactic algorithm was proposed. It

allows a rotation and scale invariant matching which is crucial

for UAV application as altitude and direction of flight may

differ from one scenario to another.

In Fig. 2 the representation used in matching algorithm is

presented. To allow rotation invariant matching, the represen-

tation of first object is doubled as it is highly probable that

starting corner (first in vector representation) of one object is

different from the one that belongs to the representation of

compared object. More comprehensive information about this

algorithm can be found in [11].

C. Three-dimensional model building

Another application where the vector representation de-

scribed above is utilized is three-dimensional object model

construction. Such a representation can be used in various

applications. As an example we can consider ground incli-

nation and obstacle shape approximation [18] and objects

shape modeling for collision-free navigation and inspection

tasks in an urban environment [13]. Such model is built using

projections which are obtained from images taken from three

sides of the examined object - top, front, right. This allows to

create a simplified model carrying information about overall

shape of the object as well as configuration of separate walls

and features such as holes in object’s structure. The process

of model construction is divided into steps in which particular

walls of the resulting 3D structure are derived separately, based

on reference projection and two other projections which are

cut into fragments and adjusted to form the third dimension.

In Fig. 3 a process of single wall creation is presented, where

a reference projection is the right one and top and front ones

are being cut.

IV. NAVIGATION METHODS

Some of the most important tasks for a UAV are target

position calculation and path planning. They are exceptionally

critical when operating in urban environment and during

inspection tasks. In such applications robot is required not only

to avoid obstacles (even when flying on high altitude) but also

to position itself precisely to execute given tasks [10], [19],

[20]

The scenario presented in section V require utilization of

precise navigation as well. To support UAV with necessary

capabilities the following methods were provided:

1) Calculating position of Points Of Interest (later referred

to as POI) in the area photographed from high altitude.

The POIs are related with objects (buildings) that, in

subsequent steps, are subjects for recognition in order

to find the specific one which shape is similar to one’s

that was initially stored in the robot’s memory. Each POI

has to be visited in order to collect an image revealing

the exact shape of the object observed from position

straight over it.

This calculation is done by a function calcMoveTo-

TargetHorizont() executed for each POI. The function

returns distance to North and East to a point in the photo,

given as an argument. First the distances along X and Y

axis (in pixels) are calculated with reference to the center

of the photo which represents the point over which the

UAV is currently located. Next, using information about

drone’s altitude (read from barometer sensor) given as an

argument, those X and Y values are converted to real

distances in meters. Finally the function uses drone’s

heading direction (read from compass) to count the real

shift to North and East (as the image of the scene is not

necessarily taken while the drone is facing North).

2) Calculating target position to collect images necessary

for building three-dimensional representation of an ob-

ject. This is executed once the UAV is positioned straight

over the building which is recognized as the one to be

examined.

PIOTR ŚMIGIELSKI ET AL.: VISUAL SIMULATOR FOR MAVLINK-PROTOCOL-BASED UAV, APPLIED FOR SEARCH AND ANALYZE TASK 1179

(a)

(b)

(c)

Fig. 3: Steps of creating walls in 3D model building, (a) -

cutting from projections, (b) - projecting onto a plane, (c) -

intersection of intermediate walls

To accomplish this, the function calcHeadingChange-

ForImage() was introduced. It chooses the place and di-

rection for the front and right-side photo of the building.

The idea is to calculate the smallest rectangle that can

be circumscribed on a figure of a building. For the front

image we choose the side of the building associated with

one of the longer edges of obtained rectangle. It is done

so, because the front image is supposed to give the best

overview of the examined building. After the front side

is identified, the distance from the building is calculated

Fig. 4: Bitmap image of searched object provided to UAV.

using the camera’s vertical and horizontal angles of view.

The position for the second photo is set in front of the

side of the building associated with shorter edge of the

circumscribed rectangle. It means that direction in which

camera has to be pointed is perpendicular to the direction

in which the front side is photographed.

Finally, it is checked if any of two chosen points collides

with any other object on the scene. If so, another

possible point is searched. It means that the opposite

side of the building is selected or distance from the

building is changed if opposite side also gives colliding

position. If there is no collision, the function returns

heading changes and coordinates for both of the chosen

spots.

V. TESTS

This section presents the results of the tests to show capa-

bilities of the simulator introduced in this paper. These test

also bring in action the scene analysis algorithms discussed

in previous sections - vectorization, image recognition and

3D model building. Test scenario is revealed step by step in

this section and supported by figures showing most essential

output. Let us briefly outline the scenario:

1) First, the UAV is provided with an image of the object

(taken from above) which is going to be searched in the

simulated environment.

2) The robot, using the image of the scene taken from high

altitude, locates objects in the scene and calculates route

to take more detailed pictures of each of them.

3) It flies over each object and takes detailed images from

lower altitude. Each photographed object is compared

with the searched one.

4) Once the searched object is located the UAV performs

closer investigation of the building to collect images

necessary for 3D model building.

In Fig. 4 and 5 a searched object and its vector represen-

tation is presented. This object is provided to the UAV to be

located in the simulated environment. The vectorized object

will be an input for image recognition algorithm discussed

earlier in this paper.

1180 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

Fig. 5: Vector representation of searched object.

Fig. 6: Scene generated in simulated environment, pho-

tographed by the UAV from high altitude.

The next figure (see Fig. 6) shows the first image taken by

the UAV and represents whole scene with four buildings. To

take this picture the UAV climbed up to predefined altitude of

h = 45 meters. In the following figure (see Fig. 7) the same

scene is shown vectorized. This vectorization is done to allow

UAV to find all structures in the scene and calculate target

positions from where it will be possible to take more precise

images. These images will further be compared with searched

object to find the one for which the 3D representation will be

built.

In the next step the destination points were added to the

list. It was then provided to UAV module to initiate a task of

visiting each point. After reaching each of the points from the

list (at predefined altitude of h2 = 20 meters) a detailed image

was taken (see Fig. 8, 10, 12, 14), vectorized (see Fig. 9, 11,

13, 15) and provided to image recognition algorithm.

The following figures (see Fig. 14 and 15) show the image

and vector representation of the building that was recognized

in the scene as the one that was searched. During this step,

when the object was recognized, its RGB color code is stored

along with vector representation. It will be used in next steps

for proper extraction of objects photographed horizontally

against other objects in the scene.

In this particular test it turned out that the red building was

the last on the list and all buildings were visited before this

Fig. 7: Vectorized image of the scene. Calculated destination

points to take precise images are marked.

Fig. 8: Detailed image of yellow building.

one. In more general scenario it is not necessarily the case as

the searched object can be found earlier and the task of flying

over all targets can be terminated.

After the searched object was recognized the UAV initiates

next task to scan the object and build 3D representation. To

accomplish this, the following target locations are calculated

and provided to simulated UAV:

1) position over the building with UAV heading set to take

a proper image which will be used as one of three

projections (the top one).

Fig. 9: Vector representation of yellow building.

PIOTR ŚMIGIELSKI ET AL.: VISUAL SIMULATOR FOR MAVLINK-PROTOCOL-BASED UAV, APPLIED FOR SEARCH AND ANALYZE TASK 1181

Fig. 10: Detailed image of purple building.

Fig. 11: Vector representation of purple building.

2) turn the camera from pointing downwards to front in

order to take horizontal images. In real UAV it can be

done with the use of gimbal stabilizer.

3) position on the front side of the building to take front

projection.

4) position on the right side of the building to take right

projection.

Figures 16, 17 and 18 present images of the examined

object taken by the robot from the above mentioned positions

respectively.

In the next set of figures (see Fig. 19, 20 and 21) there

Fig. 12: Detailed image of blue building.

Fig. 13: Vector representation of blue building.

Fig. 14: Detailed image of red building.

are vector projections of the examined object, obtained from

above mentioned images. The RGB color code (red tint in

this case), stored with vector representation of top projection,

is utilized in this step in order to properly extract shapes of the

objects in the images taken horizontally. This is done in image

pre-processing by filtering out all colors that are different from

the stored one.

The final step is the creation of three-dimensional represen-

tation of the object that has been found and closely examined.

Figures 22 and 23 show the final result of three-dimensional

model building algorithm.

Fig. 15: Vector representation of red building.

1182 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

Fig. 16: Image of examined object taken from above. Direction

is the same as for front image which makes it directly suitable

for 3D model building.

Fig. 17: Image of examined object taken from frontal position

of UAV.

Fig. 18: Image of examined object taken from the right side

of the examined object.

Fig. 19: Vector representation of the object photographed from

above.

Fig. 20: Vector representation of the object photographed from

frontal position of the UAV.

Fig. 21: Vector representation of the object photographed form

the right side.

PIOTR ŚMIGIELSKI ET AL.: VISUAL SIMULATOR FOR MAVLINK-PROTOCOL-BASED UAV, APPLIED FOR SEARCH AND ANALYZE TASK 1183

Fig. 22: The result of three-dimensional model building algo-

rithm.

Fig. 23: The result of three-dimensional model building algo-

rithm presented from a different angle.

Position for

front image

Position for

side image

Fig. 24: The route of the UAV executing tasks in simulated

environment. The locations from which the robot took images

of examined object are marked.

Fig. 25: The route of the UAV shown from different angle.

Additional functionality of the presented simulator is the

tracking of movement of the UAV. Figures 24 and 25 show

the path that was followed by the UAV during the tests. It can

be noticed that the robot started from the middle of the scene

and immediately climbed to high altitude to take overview

image of the scene (shown in Fig. 6). Then, on a lower

altitude, all objects on the scene were visited in the sequence:

yellow, purple, blue, red. Additionally, in Fig. 24 the points

from which the UAV took images for 3D model building are

marked.

VI. CONCLUSION

In this paper the authors discussed the simulator for Un-

manned Aerial Vehicle. Its characteristics, including MavLink

protocol utilization, were introduced. The design of the sim-

ulator allows to connect AI both with navigation module

directly to a real UAV which can shorten the time between

development of the robotic solution and its implementation

on a real UAV. The authors also introduced the vision system

which was tested on the proposed simulator. The aim of

the tests was to show that the vision system modules, such

as object recognition and three-dimensional model building,

can be combined to allow execution of complex tasks. The

test results show the capabilities of the vision system which

was applied for searching and analysis of the objects in the

modeled scene.

The further work will be focused on extension of func-

tionalities of the simulator. It will include monitoring of the

UAV state, based on telemetry information send via MavLink

protocol. Also, the visual module of the simulator will be

developed to simplify switching from OpenGL view of the

simulator to a vision sensor of a real UAV. In terms of

vision system the cognitive module for close inspections will

be developed. It will allow a robot to identify features and

shape details of the examined objects and utilize the obtained

information for navigation close to the structures.

1184 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

REFERENCES

[1] D. Cook, A. Vardy, and R. Lewis, “A survey of auv and robot simu-
lators for multi-vehicle operations.” in Proceedings of 2014 IEEE/OES

Autonomous Underwater Vehicles (AUV), vol. 2014, pp. 1-8, 2014.
[2] K. Takaya, T. Asai, V. Kroumov, and F. Smarandache, “Simulation envi-

ronment for mobile robots testing using ros and gazebo.” in Proceedings

of 2016 20th International Conference on System Theory, Control and

Computing (ICSTCC), vol. 2016, pp. 96-101, 2016.
[3] B. Fuller, J. Kok, N. Kelson, and F. Gonzalez, “Hardware design and

implementation of a mavlink interface for an fpga-based autonomous
uav flight control system.” in Proceedings of Australasian Conference

on Robotics and Automation, vol. 2014, pp. 62-67, 2014.
[4] T. Dietrich, O. Andryeyev, A. Zimmermann, and A. Mitschele-Thiel,

“Towards a unified decentralized swarm management and maintenance
coordination based on mavlink.” in Proceedings of International Con-

ference on Autonomous Robot Systems and Competitions (ICARSC), vol.
2016, pp. 124-12, 2016.

[5] M. Flasiński, “On the parsing of deterministic graph languages for
syntactic pattern recognition.” Pattern Recognition, vol. 26, pp. 1–16,
1993.

[6] R. Tadeusiewicz and M. Flasiński, Pattern Recognition. Warsaw: Polish
Scientific Publishers, PWN [in Polish], 1991.

[7] M. Bielecka, M. Skomorowski, and A. Bielecki, “Fuzzy syntactic
approach to pattern recognition and scene analysis.” in Proceedings of

the 4th International Conference on Informatics in Control, Automatics

and Robotics ICINCO07, ICSO Intelligent Control Systems and Opti-

mization, Robotics and Automation, vol. 1, pp. 29-35, 2007.
[8] M. Flasiński, “Parsing of ednlc-graph grammars for scene analysis.”

Pattern Recognition, vol. 21, pp. 623–629, 1998.
[9] D. Filliat and J. Mayer, “Map-based navigation in mobile robots. a re-

view of localization strategies.” Journal of Cognitive Systems Research,
vol. 4, pp. 243–283, 2003.

[10] L. Muratet, S. Doncieux, Y. Briere, and J. Meyer, “A contribution
to vision-based autonomous helicopter flight in urban environments.”
Robotics and Autonomous Systems, vol. 50, pp. 195–229, 2005.

[11] A. Bielecki, T. Buratowski, and P. Śmigielski, “Syntactic algorithm for
two-dimensional scene analysis for unmanned flying vehicles.” Lecture

Notes in Computer Science, vol. 7594, pp. 304–312, 2012.
[12] ——, “Recognition of two-dimensional representation of urban environ-

ment for autonomous flying agents.” Expert Systems with Applications,
vol. 40, pp. 3623–3633, 2013.

[13] ——, “Three-dimensional urban-type scene representation in vision sys-
tem of unmanned flying vehicles.” Lecture Notes in Computer Science,
vol. 8467, pp. 662–671, 2014.

[14] A. Bielecki and P. Śmigielski, “Graph representation for two-
dimensional scene understanding by the cognitive vision module.”
International Journal of Advanced Robotic Systems, vol. 14, pp. 1–14,
2017.

[15] J. Canny, “Finding edges and lines in images.” M.I.T. Artificial Intelli-
gence Lab., Cambridge, MA, Tech. Rep., 1983.

[16] U. Ramer, “An iterative procedure for the polygonal approximation of
plane curves.” Computer Graphics and Image Processing, vol. 1, no. 3,
pp. 244–256, 1972.

[17] D. Douglas and T. Peucker, “Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature.” The

Canadian Cartographer, vol. 10, no. 2, pp. 112–122, 1973.
[18] A. Bielecki, T. Buratowski, M. Ciszewski, and P. Śmigielski, “Vision

based techniques of 3d obstacle reconfiguration for the outdoor drilling
mobile robot.” Lecture Notes in Computer Science, vol. 9693, pp. 602–
612, 2016.

[19] F. Bonin-Font, A. Ortiz, and G. Oliver, “Visual navigation for mobile
robots: a survey.” Journal of Intelligent and Robotic Systems, vol. 53,
pp. 263–296, 2008.

[20] B. Sinopoli, M. Micheli, G. Donato, and T. Koo, “Vision based naviga-
tion for an unmanned aerial vehicle.” in Proceedings of the International

Conference on Robotics and Automation ICRA, vol. 2, pp. 1757-1764,
2001.

PIOTR ŚMIGIELSKI ET AL.: VISUAL SIMULATOR FOR MAVLINK-PROTOCOL-BASED UAV, APPLIED FOR SEARCH AND ANALYZE TASK 1185

