
Mobile devices’ GPUs in cloth dynamics simulation

Marcin Wawrzonowski

Institute of Information Technology,

Lodz University of Technology

ul. Wolczanska 215, 90-924 Lodz, Poland

Email: 180729@edu.p.lodz.pl

Dominik Szajerman

Institute of Information Technology,

Lodz University of Technology

ul. Wolczanska 215, 90-924 Lodz, Poland

Email: dominik.szajerman@p.lodz.pl

Marcin Daszuta

Institute of Information Technology,

Lodz University of Technology

ul. Wolczanska 215, 90-924 Lodz, Poland

Email: 173059@edu.p.lodz.pl

Piotr Napieralski

Institute of Information Technology,

Lodz University of Technology

ul. Wolczanska 215, 90-924 Lodz, Poland

Email: piotr.napieralski@p.lodz.pl

Abstract—The realistic simulation of cloths is nowadays a
key to produce good-quality, authentic graphical visualizations
of various cloth, such as characters garment elements, flags or
curtains. This can be computationally expensive, more and more
as number of particles, which cloth is divided into, increases.
The solution to this matter was to use GPU (Graphic Processing
Unit) and perform all calculations on this device. On PC platform,
this technique proved to be much faster than the standard CPU
approach. The main purpose of this work is to check whether
this solution could also be introduced on the mobile devices. In
this paper, we developed fast vertex optimization methods for
dynamic cloth in mobile GPU units. Additionally we develop a
user interface which providing new ways of user interaction with
a cloth dynamics simulation on mobile devices.

I. INTRODUCTION

N
AVIGATION, 3D models and interactive performance

has significant role in computer games and other inter-

active graphics applications [1]. Cloth dynamics simulations

are an important visual cue for creating believably objects

in virtual environments. The beginnings of cloth simulation

in computer graphics appeared the end of the 80’s [2]. First

methods employs finite differential equations for the behavior

of non-rigid curves, surfaces, and solids as a function of

time for elastically deformable models (Lagrange equations of

motion). The next significant step was the work of Baraff and

Witkin [3]. They presents fast system for enforcing constraints

on individual cloth particles with an implicit integration

method. Since this time many methods extends the implicit

time integration of Baraff and Witkin. Eberhardt et al. [4]

propose the solution of the differential equation for particle

systems to be computed both correctly and very quickly. They

use an IMEX method (Implicit-Explicit) to simulate draping

textiles.

Parks and Forsyth [5] propose the improved Runge-Kutta

method. Improvement bring some advantages for cloth sim-

ulation. Different class of methods use precomputed data.

Feng et al. [6] propose hybrid method for real-time cloth

animation. They use relationship between cloth deformations

at two resolutions. Data transformation is trained using rotation

invariant quantities extracted from the cloth models, and is

independent of the simulation technique chosen for the lower

resolution model with fast collision detection. Algorithm was

implemented on programmable graphics hardware to achieve

an overall real-time. Hahn et al. [7] propose low-dimensional

linear subspace clothing simulation using adaptive bases. This

was a combination of machine learning with a dynamically

updated subspace basis. This approach is not fast enough for

real-time applications because requires close-fitting clothing

rigged to a skeleton and a set of training simulations for

learning step. Gillette et al. [8] propose framework that does

not require training data or a reference shape. They use a

two-pass method. First pass is segmentation technique to ex-

tract spatially and temporally reliable surface motion patterns.

Second pass is the detection of motion patterns to compute

adaptive reference shape and a stretch tensor to dynamically

generate new wrinkle geometry on the coarse cloth mesh by

taking advantage of the GPU tessellation unit. There are many

methods that aim for faster cloth simulation. Most of presented

algorithms is suitable for the current generation of consoles

and PC graphics cards [9]. Popular multi-model framework

SOFA for interactive physical simulation for researchers and

developers is dedicated to PC platform [10].

The main purpose of this work is to check whether this

solution could also be introduced on the mobile devices. Most

of them nowadays also have their own specialized GPU chips.

General Purpose GPU Computing is mentioned, along with

GPU framework and a comparison between it and a CPU is

made, in the matter of architecture and performance. Presented

implementation on mobile devices has mid-range GPU can

perform very well, producing smooth animation of cloth’s

dense mesh, but not without a few important limitations. These

include less useful API functions and shorter work time on

battery as a result of intensive computations and tendency to

overheating.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1283–1290

DOI: 10.15439/2017F191

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1283

Fig. 1. Diagram of the mass model on the spring. The colors indicate all the
springs involved in the vertex position calculation

II. SIMULATION METHODS

The most popular approaches for the simulation of Real-

time Cloth Animation systems in computer graphics take

into account discretize the cloth by a polygonal mesh. This

approaches to simulating dynamic objects based on the use of

forces. We can distinguish two methods of simulating these

forces for the cloth simulation: “Spring Force Formulas” [11]

and “Position Based Dynamics” [12].

A. Spring Force Formula

Real-time cloth simulation for games typically uses a mass

and spring system on a coarse mesh [11]. These mass and

spring systems form a series of differential equations that are

typically integrated using a stable integration method [13].

Real-time cloth simulation is rendered by graphical API,

as a polygonal mesh with grid of vertices in 3D space.

For simulations, each of these vertices had a mass and was

subjected by force formulas for the displacement. In order

to preserve the shape and the mesh behavior, the vertices

are connected in rectangular grid, and then connected each

vertex to neighboring vertex with springs. Springs has specific

coefficients of elasticity and damping (Fig. 1).

There are three types of springs that appear in the presented

model (Fig 1.)

• Structural springs (red) - they are used to maintain the

general shape of the cloth.

• Springs for folds of the cloth (green) - they are located

along the diagonal edges of the grid.

• Springs responsible for flexibility of the cloth (blue) -

they protect against excessive stretching. They do not

connect neighboring vertices, but follow the neighbor in

the same direction.

Each type of spring can be described by other coefficients of

elasticity and vibration damping, which allows to simulation

of specific behavior. Figure 2 shows that the forces affect for

each point of mass.

Fig. 2. Forces for a single vertex

The forces can be classified as internal and external. Gravity

and collision forces are examples of external forces. Examples

of internal forces are elastic forces in deformable objects or

viscosity and pressure forces in fluids. To determine its value,

the Hooke’s Law is used to define the force of the spring

and its direction and return are proportional to the pitch of

the spring, ie the difference in distance between its present

length and its resting length. Each vertex (i) is connected to

its neighbor with 12 springs:

Fse = −

j<12∑

j=0

ks(|xi − xj| − l(i,j)) ·
xi − xj

|xi − xj|
, (1)

where ks - elasticity coefficient xi and xj- Position of

vertices connected by one spring l(i,j) - The distance between

these points at relaxation vector.

Also the force of elastic vibration damping has been intro-

duced to minimize unnecessary unrealistic vibration and risk

of out of control simulation:

Fs =

j<12∑

j=0

−ks(|xi−xj|−l(i,j))·
xi − xj

|xi − xj|
+kd(

|xi − xj| · |vi − vj|

l(i,j)
)

(2)

where kd - vibration damping factor

These mass and spring systems form a series of differential

equations that are typically integrated using a stable Verlet

integration method, this method stores the velocity implicitly

as the difference between the current and the last position:

x(t+ δt) = 2x(t)− x(t− δt) + a(t)δt2 , (3)

where x(t+δt),x(t),x(t−δt) - indicate the position of the

vertex in the next, current, and previous simulation step. a(t)
- acceleration. This solution imposes an implicit calculation of

the current vertex speed. This makes it necessary to provide

not only the current position of each mass point, but also the

location of the previous one. This increases the memory cost

of the simulation to other integration techniques, but provides

very fast calculations and stable results.

B. Position Based Dynamics

The model based on the position and the mass model on

the spring have a common part - it is the calculation of shifts

caused by gravitational forces and air resistance by the Verlet

integration. The shifts resulting from the external forces are

1284 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

Fig. 3. Diagram of operation of the limiters between two points of mass

called predicted shifts. Each vertex of the grid is described,

apart from mass, position and velocity, also by the so-called

limiters set. Each of them is defined by a certain function

Cj : R3nj → R Set of indices {i1, . . . , inj
}, ik ∈ [1, . . . , N]

i- stiffness parameter, k ∈ [0 . . . 1]. The limiter may be of the

type of equality, which means that its limitation is fulfilled

when Cj(xi1 , . . . , xinj
) = 0. It can also be the type of

unevenness, with the condition Cj(xi1 , . . . , xinj
) ≥ 0. In this

case only the first type stops will be considered. The key

element of course is the function Cj , which defines how the

predicted position will be improved, where this improvement

depends - that is, the behavior of the cloth.

The basic type of limiter is the stretch limiter. It is defines

the overall shape and proper behavior of the cloth. Its function

is:

C(p1,p2) = |p1 − p2| − d . (4)

where p1 and p2 are the positions of the considered

vertices, and d - the initial distance between them.

Li et al [14] propose function solution Cj(xi1 , . . . , xinj
):

s =
Cj(pi1 , . . . ,pinj

)
∑

j wj |∇pj
Cj(pi1 , . . . ,pinj

)|2
, (5)

where:

δpi = −swi∇pi
Cj(pi1 , . . . ,pinj

) . (6)

where wi - inverse mass of vertex. This two simulation

methods, it should be noted that each of them has its pros

and cons. The greatest advantage of the spring mass model

is its ease of simplicity and ease of implementation. It is

easy to imagine a cloth as a collection of vertices connected

by elastic springs, whose elastic forces are calculated using

the simple laws of physics. Certainly the biggest advantage

of a position-based model is the performance advantage. It

results from the lack of need to use numerical integration.

The cloth behavior is not determined by the set of resilient

forces, and the limiters immediately modify the position. This

allows for significant computational savings. In case of a

spring mass model, these calculations can not be avoided for

each of the springs. For more accurate results, more complex

integration methods should be used. This leads to a decrease

in productivity.

C. Improved Position-Based Method

Considering that the displacement is directly proportional to

weight, it is easy to consider that - if the mass of the particle

is infinite, the offset will be equal to zero. When function

Cj(xi1 , . . . , xinj
) will be replaced by C(p1, p2 = |p1−p2|−d,

we can get the following stretch limiter:

δp1 = −
w1

w1 + w2
(|p1 − p2| − d)

p1 − p2

|p1 − p2|
, (7)

δp2 =
w2

w1 + w2
(|p1 − p2| − d)

p1 − p2

|p1 − p2|
. (8)

As with the spring mass model, the ’force’ of the limiter de-

pends on the difference between the current distance between

the mass points and the resting distance. The coefficient of

elasticity is like the stiffness parameter multiplied by offset

(result from the projection). For k equal 0, the delimiter will

not be taken into account at all. For k equal 1 the point never

changes its initial position.

In the presented method there were delimiter of bending.

This method uses other collision detections. Most of the

methods are based on a baseline approach where stretchers

are used, taking into account only vertices located in the

neighborhood of a given point. Experiments have shown that

the effect similar to the use of bending delimiters can be

achieved by increasing the set of considered vertices by one

more position from the mesh. This is not the exact like method

of bending deflection, where we adjust the angle between the

triangles, but still gives the correct visual effect with better

performance. The presented solution include bounding spheres

and AABB in the case of external collision and the bounding

spheres in the internal collision.

III. A CPU-GPU FOR REAL-TIME CLOTHING ANIMATION

Optimizing graphics performance for GPU vs. CPU are

quite different. The CPU has too many vertices to process.

Rendering is not a problem on the GPU or the CPU, there

may be an issue for physics of cloth (dynamic forces). It is

quite important to get a good performance on mobile GPUs.

Mobile GPUs are less powerful like low-end PC GPUs. CPU

commonly has 4 to 8 fast, flexible cores, GPU’s has massive

parallelism (Fig. 4). This highly parallel architecture is the

reason that a GPU can quickly process large number of data

(dynamic cloth simulation).

Development of such experiments requires "Application of

Experimental Test". Setting goals and objectives for experi-

ment accomplishes key objectives. First task, is presentation

of two models of textile simulation. It is important to compare

them in terms of performance, stability and visual effect.

Performance is understood as the time for calculate one

step of simulation. The application informs the user about it

by displaying the relevant information in a textual form. As

for the next two factors, it is best to evaluate the cloth visually

simulation - visualization. For this purpose, the program draws

it in 3D space. The key issue here is the interaction with

other 3D objects. The purpose of this paper is also to compare

MARCIN WAWRZONOWSKI ET AL.: MOBILE DEVICES’ GPUS IN CLOTH DYNAMICS SIMULATION 1285

Fig. 4. Typical CPU’s architecture vs. a typical GPU’s architecture (source
http://blog.goldenhelix.com/)

the speed of simulation calculations of real-time cloth models

simulation on CPUs and GPUs, and to examine the difference

in GPU performance of the mobile device and the GPU of

the PC. For the first case, at each step, the appropriate GPU

assignments should be assigned to the vertices of the vertices

that contain the pre-generated data needed for the simulation.

Then set graphics library to the computation program mode,

set all homogeneous variables, bound buffers homogeneous,

and run the transform join. Case for the CPU is much simpler

as all data and arrays have already been initialized in the

process described in the previous section and simulation can

start immediately. The situation is complicated when using

multithreading. In this method, four working threads were

broken up, because the device has four physical processing

units. The division algorithm is simple - the number of

vertices is complemented by the number divisible by 4 and

divides it into four equal ranges, with the first three being

considered, and the last one being equal to the number of

other vertices. Mutexes and thread counters have been used for

synchronization. Work threads manage the main thread. Each

of the former is slumbered into the mutex until the simulator

function is called. Then they wake up and start calculating.

After they have finished raising the counter and waiting for the

next mutex. The main thread at this time waits until the counter

reaches the required value and unlocks the next calculation

step.

The process was divided into three separate stages. The first

step is to calculate the movement of the cloth according to

the accepted simulation model. The second step is solving

collisions and applying cloth movement resulting from user

interaction. The third stage is the conversion of normal vectors.

After the first two steps, the input and output data identifiers

are exchanged. For both implementations on the CPU, after

completing the processing step, you still need to submit new

position and vector data for normal vertices to the GPU, so

that they can be drawn.

All possible data that does not need to be recalculated at

each step is calculated during the initialization of the simula-

tor, and the results are simply passed to the corresponding

functions during the program run. This is perfect for the

GPU programming methodology. This solution minimizing the

number of conditional statements and avoiding unnecessary

calculations that are repeatedly performed. Each vertex will be

assigned a list of identifiers and multipliers that are 1 when the

neighbor exists or 0 if it is not, and in this case the calculated

force or displacement does not take part in further processing.

That also eliminates the need for conditional commands, which

further improves performance. Each vertex has the following

attributes:

• position (16 Bytes),

• texture coordinate (8 Bytes),

• normal vector (16 Bytes),

• color (16 Bytes),

• centrobaric coordinate (16 Bytes),

• index (4 Bytes).

Simulation of clothes requires the definition of a large

number of parameters. Initially they are initialized on the CPU

side. Some of them may be different for each vertex, so they

are passed to the GPU in the form of array attribute values.

IV. USER INTERFACE FOR INTERACTION WITH A CLOTH

DYNAMICS SIMULATION ON MOBILE DEVICES

Very important for real-time visualization is the ability to

interact by the user with cloth by Graphical User Interface

(GUI). User can easily to work with software and collect data

for the test results. The program can draw two-dimensional

GUI elements in the screen space, such as text dynamic fields,

real-time animation and buttons. User input requires different

handling in a mobile application like addition to the on-screen

input methods. The application design assumes that the user

must be able to reposition, rotate and zoom the camera, reset

the simulation and modify its parameters, change the object

display mode and interact with the cloth in two ways. The

first way is to move the object to collide with the clothes. The

second way is to move the clothes with finger movements. It

is also required to inform the user about the speed at which

the simulation is running and what parameters it currently has

and what type it is (Fig. 5).

There are two ways for interaction with a cloth by the user.

By moving an object (sphere or cuboid) with which it collides,

or by means of a touch screen. In the first case, the effects

are applied when solving external collisions. For the second

method, special calculations need to be made to know which

vertices need to be further shifted to which direction and to

what extent.

The only input data are two two-dimensional vectors, called

"touch vectors". One specifies the place on the screen where

user touched the screen, and the second is the direction in

which users finger moves. They were expressed in screen

space. In order to make a vertex translation, important is a

vector position in that space. It is obtained by multiplying it

successively by world matrices, view matrix and projection

matrix, and dividing the result by component w. In this way,

a vertex vector with components is obtained in the range

< −1, 1 >, same as the touch vector. Next, using the Gaussian

1286 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

Fig. 5. Interactive Graphical User Interface and results of the simulation in
real-time

formula, the c coefficient is calculated to determine how far

the translation will take place. It is directly proportional to the

distance of the vertex position from the touch point:

c = Ae
(ptx

−pix
)2+(pty

−piy
)2

2σ , (9)

where A and σ are top-defined constants and they are

respectively 200 and 300, while pt are the position of the

touch, pi of the vertex.

Once it have moved, it have to express them back in the

model coordinates. This is multiplied by the inverse of the

projection, view, and world matrix. At the end, it simply added

offset vector to current position.

V. RESULTS

The execution time is understood as the time it takes to

process one full step of a clothes simulation. Expressed in

milliseconds. This is the most important benchmark because

it tells how much computing takes on the hardware, how large

a percentage of the total engine work is and, if the simulator

is fluid.

The effect for execution time has number of processed

data, like density of the cloth mesh, and the selected im-

plementation. These relationships are presented in tables and

graphs, separately for each method and implementation. It was

assumed that:

1) C - number of all vertices.

2) MS-GPU-A - Spring mass model, GPU implementation,

Android platform.

3) PB-GPU-A - Item based model, GPU implementation,

Android platform.

4) MS-GPU-W - Spring mass model, GPU implementation,

Windows platform.

5) PB-GPU-W - Item based model, GPU implementation,

Windows platform.

6) MS-CPU-A - Weight model on the spring, CPU imple-

mentation, Android platform.

Fig. 6. Graph of time dependence on the number of vertices.

7) PB-CPU-A - Position based model, CPU implementa-

tion, Android platform.

8) MS-CPUx4-A - Spring mass model, CPU implementa-

tion (4 working threads), Android platform.

9) PB-CPUx4-A - Position based model, CPU implemen-

tation (4 working threads), Android platform.

The graph shows a great performance advantage of meth-

ods implemented on the GPU. In the case of Android, the

calculation time is almost constant regardless of the number

of vertices of the cloth. Minor fluctuations are mainly due

to measurement error (in the order of several ms). A slight

increase in processing time at the final test phase may not

result from the same computational overhead as with the in-

creasing temperature of the device and the consequent gradual

decrease in performance by the operating system. The inability

to obtain a calculation time of less than 12-15ms is probably

due to the fact that vertical synchronization is enforced by the

implementation of transformational feedback in the Adreno

graphics card driver. As it might expect, the GPU version

on the PC platform is much more efficient. In this case, the

difference is almost 300 times. Interestingly, the vertical sync

problem does not occur here, although the processing time

also remains constant.

The implementation of the CPU is a separate issue. It can

be seen that the processing time increases linearly with the

number of vertices and very quickly reaches values for nice

image. Only for the low density of the grid has the advantage

over the GPU, due to the problem mentioned above. It can

also be seen that a decrease in performance for implementation

with 4 threads of work is about twice less than in the case of

a sequential approach.

For GPUs, no significant difference in performance was

made between simulation methods, although on a CPU, the

position model achieved for large numbers of vertices was

slightly better than its rivals. The second most important

problem of the simulation is its instability, understood as

MARCIN WAWRZONOWSKI ET AL.: MOBILE DEVICES’ GPUS IN CLOTH DYNAMICS SIMULATION 1287

Fig. 7. Diagram of vibration dependence from stiffness coefficient.

the tendency for the cloth to fall into uncontrolled vibration,

which in turn can lead to an "explosion". Even if this does

not happen, continuous movements of the system result in

unrealistic visual effects. This phenomenon is therefore very

undesirable and often forces you to restart the simulator. One

of the peaks in the middle of the cloth was selected for

testing, and its vibration at rest was examined, ie the mean

difference between the present and the previous position at

each simulation step. Measurements were made for different

stiffness coefficients, and then presented this relationship in

the form of tables and graphs. Two methods were used for

each method, including different masses, gravitational forces,

attenuation coefficients, and mesh density. The state of rest is

defined as the state in which the cloth has fallen freely from

horizontal to vertical, suspended at two points, and ceased to

move. It is worth recalling that for a position-based model the

stiffness parameter (s) was scaled accordingly to fit within

the required range [0, 1], and carried the same effect as its

equivalent in the spring mass model. The test platform is a

mobile version of the application, with an implementation on

the GPU.

The main difference between spring and position-based

mass models is that in the first case, for the first attempt,

the lowest oscillation was recorded from the beginning, but

it is growing rapidly with the increase of the stiffness pa-

rameter, at its highest value, leading to the "explosion" of

the simulation. As for the second approach, large oscillations

can be observed practically regardless of the flexibility of the

cloth, suggesting that mesh compaction also has a significant

impact on vibration. They were present for practically the

entire time of the simulation. Still moving small distortions

are very detrimental to visual reception and in any practical

application would be unacceptable. Tests have shown that

position-based models are exceptionally stable - oscillations

are sometimes slightly larger than rivals, but in both trials

they remained steady, regardless of the increase in the stiffness

parameter or the number of vertices. The second test showed,

however, that for a little elasticity and a dense mesh, the cloth

begins to fall into uncontrolled collisions with itself. It is so

rigid that, with the proper alignment of the masses, lead to the

"hovering on itself" and the immobilization in the air, in fact

ignoring the force of gravity. Strong waving occurred mainly

in the red rectangle, and the middle area of the sample was

left at rest. The last criterion is simply the degree to which

the behavior and appearance of the simulated cloth reflects

reality. This identifier is completely subjective, but one can

clearly see the direct proportional relationship between quality

and mesh density. A small number of vertices physically

does not allow for the generation of realistic wrinkles or

folds, so characteristic elements of cloth animation. For each

simulation model, screenshots showing the "visual effect"

dependence will be presented on the various parameters and in

particular on the grid density. The test platform is the mobile

version of the application. Similarities, however, end when

they compare the parameters used to achieve similar effects

- they are completely different. Undoubtedly, a positioning

model generates a stiffer cloth than its rival. Sometimes this

results in the above errors. The velocity of the cloth itself itself

is also important - it should fall off and react to interactions

with moving objects as quickly as in reality. In spite of their

anomalies and the difficulty of obtaining a suitably flexible

model, the denser spring mass method gives better visual

results. On the other hand, the position-based approach is

much easier to adjust flexibility and greater stability, but there

may be problems with setting the appropriate animation speed.

Fixed the δt parameter sent to the simulator. In both methods,

it is easier to select the parameters for the desired behavior,

with fewer nodes having a mesh.

In the case of a small number of edges, inaccurate collision

detection between cloth and cuboid can be observed. This is

not a rule, as the problem also occurs for denser nets. Here,

however, there is also a lack of friction force implementation,

which causes the tops to slide over the straight walls of the

object, stretching the cloth and creating larger holes in the

breakthrough. For the surrounding sphere, due to its uneven

shape, the problem of breakage is not present. Exceptions are

fast-moving objects that can simply jump through the cloth,

in one step of calculations, in front of her, and then in the

next. A continuous collision detection method, more complex

mathematically but eliminating such phenomena, should be

used.

VI. DISCUSSIONS

A test application was created, one of its main purposes

being the visualisation of two selected simulation methods –

mass-spring and position-based model. It was equally impor-

tant to show cloth’s collisions between other objects in scene

and itself. The user is allowed to set various parameters that

influence the simulation, such as the aforementioned method

type, mesh density and dimensions or elasticity coefficient. He

can also impact the movement of the cloth, swiping his finger

along the device’s touch screen, which is something unique to

the mobile platform. To fully measure every important factor

1288 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

of the simulation, its three implementations were created –

one using GPU for computing and the other two using GPU,

in sequential and multi-threaded approach. To have a com-

parison between mobile and PC platform, a PC version of

the application was created, both similar and sharing as much

code with each other as possible. Both methods bring similar

results, with a very small victory of the positioning model

in CPU implementations. It was not possible to accurately

examine differences in GPUs as the volume of homogeneous

buffers did not allow the cloth to produce so many vertexes that

performance time increased beyond 20 ms. Given the similar

level of complexity of the code itself, it should be assumed

that it would also be small. During testing, it was noted that a

significant portion of the computation time was occupied by a

fragment of the algorithm responsible for solving the collision.

This may be due to the fact of using conditional statements in

code executed on the GPU. More objects in the scene would

certainly be associated with a deeper optimization of the issue,

for example by limiting the number of potential entities that

may come into contact with the cloth at the CPU level.

Both simulation models are characterized by a certain

parameter-dependent instability, but it is much higher in the

case of the spring mass model. The fact is that the composition

of the formula on which the force acting on the vertex is

calculated is the component responsible for vibration damping,

and the user can adjust its coefficient. This method is char-

acterized by an increase in net oscillation with an increase in

the coefficient of elasticity. They have the form of small but

fast vibrations on the entire surface of the fabric. With the

turn for large numbers of edges, it takes a lot of rigidity to

maintain the right shape, which further increases the problem.

Large oscillations seem to keep them constant, but with any

sudden change of position of vertices, such as in collisions,

they can lead to a rapid ’burst’ of simulation, which in practice

is unacceptable. In the case of the position-based model, also

the relationship between the increase in mesh density and its

rigidity was observed, and loss of stability. The vibrations

here are much slower and have a delicate, uncontrolled ripple,

which is much less noticeable to the user. A big plus is the

absence of an "explosion" effect, regardless of the parameters

set. This effect was achieved through a kind of implementation

trick - the position of the vertex transmitted to the calculator

function of the limiter is updated only in the context of

adjacent neighbors. The disadvantage of the position-based

model in the present implementation is the tendency to fabric

block itself on high elasticity.

Both methods of cloth simulation generate the desired visual

effect, ie realistic folds and wrinkles of the fabric and its char-

acteristic positioning on the object. Their quality is minimal

for the position-based model. There are no minor vibrations

there and more responsive to changes in stiffness coefficient.

It should be noted that for example, for games in many

cases there is no need for detailed mapping of fabric details,

these can be obtained using normal maps. The two discussed

methods have a faithful reproduction of this aspect even for a

small number of edges. With the turn, when considering dense

grids, there is a problem with the speed of animation. A high

number of vertices requires a sufficiently high stiffness factor,

this slows down fabric shifting, especially in a position-based

model. The solution could be a more accurate matching of

coefficients or an increase in the δt parameter, unchanged in

simulation. Improvements to the situation can also be achieved

by setting other stiffness parameters for each of the groups

of springs or stops (ie parallel to the edge of the fabric,

lying diagonally and such as the first, but located one position

further). The collision detection method has proved to be a

major disadvantage in the visual effects issue. It does not

satisfactorily resolve internal collisions, and external collision

errors are often encountered, eg when the fabric falls on the

cuboid. To fix the problem, a different technique would have

to be implemented. However, it would definitely entail the

loss in performance and the most demanding computational

component of the simulation.

The tests clearly indicate the winner of this performance

comparison. GPUs are many times faster than CPUs when

calculating issues that can be processed in parallel, and that is

exactly what the problem is. Spreading the cloth overheads to

individual GPUs is an intuitive and efficient solution despite

the redundancy. Regardless of the amount of data, the recorded

speed of performance turns out to be the same, which can not

be said for CPU implementations, where it decreases linearly.

Split into working threads increases it twice, which a little

improves the situation, but in the case of detailed fabrics and

so the performance is too low. With the turn on the GPU,

there was a limitation by the transformational feedback of the

rendered frames in one second to the value that matched the

refresh of the screen. This is a defect that does not allow full

evaluation of the performance and in some cases blocks the

full speed of the application. The problem might be solving a

change of test equipment to another, or using another GPGPU

computation API.

All this does not change the fact that CPU implementation

also has its uses and advantages. It is necessary to use it if

device does not support OpenGL ES 3.0 or any specialized

API such as OpenCL. OpenGL ES is a flavor of the OpenGL

specification intended for embedded devices. It may be that it

would have a performance advantage when the test platform

had a very low-level GPU. It can also be used with certainty

when the data set is only a very small number of vertexes,

or if you have decided to do animation only in 2D space.

It should also be noted that fabric simulation is much easier

to implement on the CPU, as it does not require a deeper

knowledge of the graphical API or GPGPU, and the creation

of fairly complex buffering, homogeneous variables, programs,

and transformational feedback.

The performance of mobile devices in this issue will be

many times lower than that of PCs. Creation of two versions

of the application, one on the Android platform, the other on

the Windows platform, confirmed this assumption. The speed

difference is about 300 times, the problem with the number of

rendered frames per second disappears in the PC add-on. As

far as how a GPU smartphone can seamlessly animate a very

MARCIN WAWRZONOWSKI ET AL.: MOBILE DEVICES’ GPUS IN CLOTH DYNAMICS SIMULATION 1289

dense mesh fabric that is sufficient to reproduce most details,

this platform is harnessing a number of significant issues.

The first is the repeated lack of textured buffers on the

part of the device, which limits the maximum possible quality.

Cloth simulation heavily utilizes hardware capabilities, lead-

ing to overheating of the device. This leads to performance

degradation by the operating system, which, in turn, results in

significantly longer processing times and has had an impact

on test results.

It is proved that the cloth simulation can be implemented

on mobile devices and the mid-range GPU can perform very

well, producing smooth animation of fabric’s dense mesh, but

not without a few important limitations. These include less

useful API functions and shorter work time on battery as a

result of intensive computations and tendency to overheating.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a technique for efficient fabric simu-

lation in the real-time on a mobile device. The experience has

shown that mobile devices can be used for real-time simulation

of cloth animation with fast vertex optimization methods in

mobile GPU units.

Tests have shown that while the GPUs of mobile devices

are slightly slower than PC’s ones, the relationship between

processing speed on CPU and GPU remains similar. The GPU

in both cases is significantly faster than the CPU built into the

same machine.

Although technical aspects of User Interface have been

created, they still require UX testing and further development.

REFERENCES

[1] Wojciechowski, A. Camera navigation support in a virtual environment.
Bulletin of the Polish Academy of Sciences-Technical Sciences 61, 871-
884 (2013).

[2] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987.
Elastically deformable models. SIGGRAPH Comput. Graph. 21, 4
(August 1987), 205-214

[3] David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation.
In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques (SIGGRAPH ’98). ACM, New York, NY, USA,
43-54.

[4] B. Eberhardt and O. Etzmuß and M.Hauth. 2000 Implicit-Explicit
Schemes for Fast Animation with Particle Systems. Computer Animation
and Simulation 2000: Proceedings of the Eurographics Workshop in
Interlaken, Switzerland, August 21-22, 2000, Springer Vienna, 137-151

[5] Hu X., Wei L., Li D. (2007) A Modified Numerical Integration Method
for Deformable Object Animation. In: Park JW., Kim T.G., Kim YB.
(eds) AsiaSim 2007. AsiaSim 2007. Communications in Computer and
Information Science, vol 5. Springer, Berlin, Heidelberg

[6] Wei-Wen Feng, Yizhou Yu, and Byung-Uck Kim. 2010. A deformation
transformer for real-time cloth animation. In ACM SIGGRAPH 2010
papers (SIGGRAPH ’10), Hugues Hoppe (Ed.). ACM, New York, NY,
USA, Article 108, 9 pages

[7] Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sum-
ner, Forrester Cole, Mark Meyer, Tony DeRose, and Markus Gross.
2014. Subspace clothing simulation using adaptive bases. ACM Trans.
Graph. 33, 4, Article 105 (July 2014), 9 pages.

[8] Russell Gillette, Craig Peters, Nicholas Vining, Essex Edwards, and Alla
Sheffer. 2015. Real-time dynamic wrinkling of coarse animated cloth. In
Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium
on Computer Animation (SCA ’15). ACM, New York, NY, USA, 17-26.

[9] Wojciechowski, A., Gałaj, T. GPU Assisted Self-Collisions of Cloths.
Journal of Applied Computer Science 24, 39-54 (2016).

[10] François Faure, Christian Duriez, Hervé Delingette, Jérémie Allard,
Benjamin Gilles, et al.. SOFA: A Multi-Model Framework for Interactive
Physical Simulation. Yohan Payan. Soft Tissue Biomechanical Modeling
for Computer Assisted Surgery, 11, Springer, pp 283-321, 2012, Studies
in Mechanobiology, Tissue Engineering and Biomaterials, 978-3-642-
29013-8. <10.1007/8415_2012_125>

[11] Lander, J. 1999. Devil in the blue-faceted dress: Real-time cloth anima-
tion. Game Developer Magazine (May)

[12] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff.
2007. Position based dynamics. J. Vis. Comun. Image Represent. 18, 2
(April 2007), 109-118.

[13] Huamin Wang, Florian Hecht, Ravi Ramamoorthi, and James F. O’Brien.
2010. Example-based wrinkle synthesis for clothing animation. In ACM
SIGGRAPH 2010 papers (SIGGRAPH ’10), Hugues Hoppe (Ed.). ACM,
New York, NY, USA, Article 107, 8 pages

[14] H. Li, Y. Wan and G. Ma, A CPU-GPU hybrid computing framework
for real-time clothing animation, 2011 IEEE International Conference on
Cloud Computing and Intelligence Systems, Beijing, 2011, pp. 391-396.

1290 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

