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Abstract—Data mining is one of the main business intelligence
technique. The volume of Big Data expands in such a way
that the classical Business Intelligence methods need to be

redefined. First, the organization of large data sets requires
new distributed database architectures. Second, it is necessary to
develop distributed data processing models that provide a high
degree of scalability.In this paper we introduce fully scalable BI
platform that is suitable for the most common data processing
issues. The platform is based on our scalable distributed two-layer
data store, which is competitive to existing NoSQL distributed
data base systems. We show examples and experimental results
showing advantages of our approach.

I. INTRODUCTION

B
USINESS Intelligence (BI) is very important branch of

modern analytic in many companies. Analysing gathered

data (like information about company’s clients) can be a huge

source of essential knowledge. Because of that companies can

offer their services on higher level and can multiply their

profits. There are many existing BI tools available to use out

of the box. Some of them, which offers basic functionality, are

even available free of charge. The prices of others, which offer

advanced techniques of data processing, can be very high.

From the basic principles of statistics we know that to

achieve more accurate data analysis, the set of analysed data

should be really big. Unfortunately processing that huge data

sets is still a great challenge. The popularity of Big Data

nowadays is a reflection of this trend. There is still a wide

pressure on developing efficient algorithms that are suitable

for processing huge data sets.

Scalable Distributed Two-Layer Data Store (SD2DS) [1] is

a very powerful data store that was developed in our research

team. The ease of its scalability gave us the opportunity

to develop an efficient BI platform that can process data

distributed on nodes in the cluster. In this paper we present

the prototype of such a system.

This paper is organized as follows. Firstly, we present the

existing BI platforms for data analysis. Then, we discuss the

demand of creating this novel platform. In the next section we

introduce the basic concept of SD2DS. Next, we present key

architectural elements of our platform which is evaluated in

the next section. The paper ends with conclusions.

II. RELATED WORK

The Business Intelligence have a long history. For many

years the basic tools were developed as stand alone systems

that run on a standalone computer. For many people the first

choice to create some kind of data analysis is to use Microsoft

Excel or its open-source equivalent like Libre Office or Open

Office. Among many other tools the QlikView [2] is worth

highlighting. It allows to create advanced and responsive data

analysis. That kind of programs are suitable for most typical

applications.

On the other hand, there are many commercial platforms

provided by the companies such as Oracle [3], SAP [4] or

IBM [5]. They offer BI tools as a part of their whole enterprise

management systems. In the vast majority they are oriented

as client–server systems. In most cases they offer custom

designed solution for specific needs.

Contemporary BI tools use advanced data mining tech-

niques, expert systems and computational intelligence meth-

ods, but still simple methods for analysing large data sets

are needed. Distributed storage and processing is required to

ensure the required performance of Big Data analysis.

The truly distributed data analysis can be developed based

on the framework such as Hadoop [6] which is the open

source implementation of a very popular Google MapReduce

[7] system. On the contrary to the previously presented tools, it

can really process big data. There are many existing scenarios

for BI based on Hadoop solutions [8], [9], [10]. The Hive

[11] processing engine can be considered as one of the most

recognizable examples of such systems.

III. MOTIVATION

All of the systems presented in the previous section have

their limitations. The stand alone systems are obviously not

suitable for huge data sets. For example Libre Office allows to

load only a finite number of data. In the case of the QlikView

system, authors of this paper suffered themselves the ”Out of

Memory” error while processing huge data sets many times.

Commercial products are, in vast majority, based on the typ-

ical relational data bases which have their serious limitations.

Those limitations are well known and are widely discussed

[12], [13]. They were one of the main reason for expansion

of NoSQL data storages.

The MapReduce framework tends to eliminate these draw-

backs. However, it does not provide a complete tool to work

with. It rather provide environment for designing custom

solutions [7]. Their efficiency is strongly correlated with

the programmers skills due to the fact that designing such
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distributed algorithms is not intuitive in comparison with

programming single process programs.

All described above problems concerning processing big

data were the driving force behind designing distributed and

efficient tool for Business Intelligence. As a base of our

platform we have chosen Scalable Distributed 2-Layer Data

Store because it is a very effective architecture for storing

really huge data.

IV. SCALABLE DISTRIBUTED TWO-LAYER DATA STORE

The Scalable Distributed Two-Layer Data Store (SD2DS)

is an efficient NoSQL key-value database, which has been

designed by the authors for the last couple of years. Its main

goal is to store huge data sets that are too big to be efficiently

stored by typical relational databases. It allows to run in

distributed environment and is capable to scale its storage

capacity almost infinitely.

On the base of the SD2DS the very mature standard of Dis-

tributed Linear Hashing (LH∗) [14] was utilized. It organizes

the data in so called buckets which are located on nodes in a

cluster. Each bucket is responsible for storing some set of data

portions (components). All of the buckets are distributed on a

nodes in a cluster. The main advantage of the LH∗ is the ease

of addressing the components without any central directory

while preserving full data scalability. Each component consists

of two parts: headers and bodies. The component body is the

data itself while the component header consists of metadata

that allows to manage the bodies. The LH∗ mechanism is

responsible for managing the first layer of the store which

is responsible for storing headers. The bodies are stored in

the second layer of the store. That layer division was firstly

introduced to eliminate the main drawback of the single layer

store, namely the need of constantly reorganizing the whole

structure [15].

The example architecture of SD2DS is presented in Fig. 1.

The first layer consists of the set of headers while the second

layer consists of the set of bodies. If a client wants to access

specific component (component number 2 in the figure) it

first needs to access specific header in the first layer. The

appropriate first layer bucket, that contains desired header, is

found based on the h(key) function according to the LH∗

scheme. The locator inside header is used then to access the

corresponding body. When a client wants to insert data item

into SD2DS it first needs to insert appropriate data header. The

first layer is responsible for allocating the space for the body

in the second layer. This indirect access gave us opportunity

to introduce additional functionality like throughput scalability

[16] or fault tolerance.

The Fig. 2 and Fig. 3 present the time of accessing the data

in SD2DS in comparison to the most recognizable representa-

tives of the NoSQL systems: MongoDB [17] and MemCached

[18]. The overall evaluation was presented in [1] and [19]. The

MongoDB and MemCached was chosen because they have

many similarities with SD2DS. First of all, all of those systems

were developed using C++ language and allowed to store the

data in distributed environment. Secondly, they all allow to

extensively use main memory of machines to speed up the all

operations. Both figures 2 and 3 present the results of getting

the data portions in the relation to the number of clients that

simultaneously operate on the system. Figure 2 presents the

results of getting data portions of 5MiB while figure 3 presents

the results of getting 10MiB data portions.

In all of these two cases the best results were achieved for

SD2DS. The times for MongoDB are strongly correlated to

the number of the mongos elements. The mongos elements

are responsible for properly addressing the data portions in

MongoDB system. Because the clients does not know the exact

location of the data it has to direct their queries to the central

element that is aware of the current configuration of the system

[17]. The SD2DS is free of that kind of drawback. Our SD2DS

proved to have better performance even in comparison with

the MemCached system. The MemCached is optimised mostly

for the small data portions. It does not do best with the data

portions that are greater that 1MiB. It also does not work well

under the heavy clients load when it just rejects clients after

specified time [20].

In its basic form SD2DS stores the data in raw format which

does not use any schema at all. Because of that its basic

application was storing multimedia data [21], [22], [23] like

photos or videos. We also successfully utilized our data store

for gathering data from advanced Internet of Things system

[24] and used it as a base for anonymous storing the data in

the Cloud environment [25], [26].

V. ARCHITECTURE OF SD2DS-BASED BI PLATFORM

In this section we presented the essential parts of the

architecture of our BI platform. The main goal to face with

was to develop an efficient processing model that can process

the data effectively in the distributed environment. Due to the

fact that in our previous work we mostly used raw portion of

the data we also needed to develop a simple yet effective data

model to begin with.

A. Data model

In the original conception of SD2DS bodies were just a

block of data that have no structural form at all. Hence, in

our previous work, we used it mostly for large data portions

like high resolution photos and videos. To efficiently store

structural data we needed to develop a method of storing

a set of structured data into a single body. We decided to

introduce simple data schema in which the whole set of

data is divided into records. Each record was then divided

into dimensions. Because of the nature of the most data and

also simplicity we assumed that all records had the same

dimensions. Additionally we assumed that the number of

dimensions (n) was constant to all records. In that form all of

the bodies could consist of a separable subset of all records

(so called block). The Table I illustrate this concept.

This data model gave us opportunity to fast access value

of any dimension (i) in record (j) within specified block (b)

simply by utilizing the following equation:
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Fig. 1. Architecture of SD2DS
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Fig. 2. Time comparison of getting components of fixed (5MiB) size [19]

TABLE I
DATA MODEL IN SD2DS

dimension1 dimension2 . . . dimensionn

value1,1 value2,1 . . . valuen,1

value1,2 value2,2 . . . valuen,2

. . . . . . . . . . . .

value1,m value2,m . . . valuen,m

value(i, j, b) = block b[j ∗ n+ i] (1)

where:

• b – block number

• j – record number in b–th block
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Fig. 3. Time comparison of getting components of fixed (10MiB) size [19]

• i – dimension number in j–th record in b–th block

The main advantage of this model is that it can access

each value within the block in constant time regardless of

the number of dimensions and the number of records within

block.

B. Processing model

The natural distribution of blocks within buckets creates a

great opportunity to distribute the processing on all buckets

within SD2DS. All buckets are responsible for processing

blocks that are stored within. Because all bodies are accessible

through the first layer there are used to aggregate the results

given from the second layer. The partially aggregated results
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from the first layer are then fully aggregated by the client.

This creates the processing model which requires to define

two functions:

• fb(b, . . .) – Block function

• fa(x, y) – Aggregate function

The fb(b, . . .) function is responsible for processing spec-

ified block of data (b). Depending of the nature of the

processing it may require additional parameters. The results

of all fb(b, . . .) functions are then used as a parameters of the

fa(x, y) functions which aggregates the partial results. The

fb(b, . . .) function is executed on the second layer buckets

while fa(x, y) is executed both on the first layer buckets and

by clients. This creates a processing model similar to one

introduced in MapReduce framework [7].

The results of both fb(b, . . .) and fa(x, y) has to produce

the result in the same form. Additionally aggregate function

should work with only one parameter in such a way that:

fa(fb(b1), null) = fa(null, fb(b1)) = fb(b1) (2)

Additionally, because results of different blocks can be ex-

ecuted in different order the following two constraints should

be satisfied:

fa(fb(b1), fb(b2)) = fa(fb(b2), fb(b1)) (3)

fa(fa(fb(b1), fb(b2)), fb(b3)) =

=fa(fa(fb(b2), fb(b3)), fb(b1)) =

=fa(fa(fb(b3), fb(b1)), fb(b2))

(4)

The sample architecture and the execution model of defined

functions are presented in Figure 4. In this example SD2DS

consists of three first layer buckets and three second layer

buckets. Each second layer bucket consists of three blocks

(bodies). First second layer bucket consists of blocks b1,

b4 and b7, second bucket consists of blocks b2, b5 and b8
while the third bucket consists of blocks b3, b6 and b9. To

accomplish processing, each second layer bucket executes

fb(b, . . .) function on all blocks for which it is responsible.

Then the results of block functions are passed to appropriate

first layer bucket which executes the fa(x, y) to aggregate the

results from second layer buckets. Next, the results from all

first layer buckets are transferred to the client which executes

again fa(x, y) functions for each intermediate results.

C. Example: Finding Maximum Value

For better understanding of the role of the fb(b, . . .) and

fa(x, y) functions we present an example calculation of the

maximum value of the i-th dimension in all records. The

algorithm 1 presents the block function for finding max value

while algorithm 2 presents the aggregate function.

The function fmax
b

(b, i), like all other block function requires

the b parameter which indicates the block that operates on.

Additional parameter i determines the dimension on which the

maximum value is searched. In its basic form it searches on all

Algorithm 1 fmax
b

(b, i) – Block function for finding maximum

value

result ← null;

2: r ← 0;

while r ≤ m do

4: if result = null ∨ result < value(i, r, b) then

result ← value(i, r, b);
6: end if

r ← r + 1;

8: end while

return result

Algorithm 2 fmax
a

(x, y) – Aggregation function for finding

maximum value

if x > y then

2: return x

else

4: return y

end if

records within the blocks but can easily be modified to process

only specific records that follow user defined constraints.

The fmax
a

(x, y) function determine the maximum value

from the two output of block functions, from other aggregate

functions or from one block and one aggregate function. It

simply determines the maximum value from two intermediate

values. Its simplicity is very important because it is also

executed by the client for every intermediate results obtained

by the all first layer buckets. It is also important to not change

the first layer buckets which are responsible for serving other

clients requests.

VI. USE CASE

To evaluate our platform we designed a special implemen-

tation that gave us an opportunity to visualise the exchange

rates of different currencies in relation to the ”polish złoty”

(PLN). The data about the exchange rates was taken from the

[27]. Although the data set was relatively small (approx. 250

records per year) it allowed us to evaluate the correctness of

the calculation by comparing it with different standalone tools.

The data consisted of 38 dimensions. Each record represented

the exchange rates of 35 different currencies for the specified

day. The 3 additional dimension was used to represent the date

(one dimension per year, month and day). The user interface

of the prepared tool is presented in figure 5. It allowed to

create visualization data aggregated in SD2DS environment.

The figures 6–8 present the results of executing different

queries of the different subsets of the whole data set. The figure

6 shows the average exchange rate of United State Dollar in

the months of the year 2014. The figure 7 presents the maximal

exchange rate of Great British Pound that was obtained in the

evaluated years. At last figure 8 presents the average exchange

rate of Euro of specified days in each month of the year 2012.
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Fig. 5. User interface

Fig. 6. Average value of United States Dollar per month in the year 2014

Fig. 7. Maximum value of Great British Pound per year

VII. EXPERIMENTAL RESULTS

The exchange rate use case presented in section VI did not

allow to evaluate the efficiency of the platform in relation to

the size of the overall dataset. To determine the efficiency

in that matter we used synthetic dataset that contained of the

same value in all dimensions in all records. We use 16 nodes of

cluster for the SD2DS buckets. Each node consists of one first

layer bucket and one second layer bucket. Additional node was

used for client application. In all cases each block consisted

of 1,000 records. The time given in all experiments was the

average value of 1,000 tries.

In our first evaluation we measured the processing time of

16 blocks with different number of dimensions. The results

are presented in figure 9. We measured the processing time

for blocks that contained 1 to 100 dimensions. The obtained

results of processing time were independent of the number

of data dimensions. It oscillated from 0.008 to approximately

0.0083 second for all cases regardless on the dimensions

number.

The goal of the next experiment was to evaluate the pro-

Fig. 8. Average value of Euro in days of the month in the year 2012
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Fig. 9. Processing time in relation to the number of data dimensions

cessing time in relation to the number of data records. We

evaluated our tool with the records number from 1,000 to

128,000. The results are presented in figure 10. The overall

figure can be divided into three sections. The first section

(from 1,000 to 16,000 records) presents the situation where

the processing time drastically increased. It was caused by

the fact that the processing was not distributed on the whole

set of buckets. Because of that the the client waits for reduced

number of buckets to response and the number of execution of

aggregate function is also reduced. The second section (from
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16,000 to approx. 70,000) presents the situation where the

processing time was very similar in each case. It represents

the situation where all of the data were properly distributed

on all buckets within the cluster. In the third section (from

approx. 70,000 and above) the processing time started to

increase slightly. It represents the situation when the buckets

became heavy loaded and additional portions of data increased

the overall processing time. This situation indicated the need

to introduce additional buckets to the structure to ensure

scalability.

VIII. CONCLUSIONS

In this paper we introduced our SD2DS based BI platform

that is suitable for processing Big Data sets. We chose our

Scalable Distributed Two-Layer Data Store for this purpose

because of its efficiency that had been established in our

previous work. We introduced a special data model that gave

us the opportunity to take advantage of its high performance

to achieve our goal. We also proposed a special processing

model which allowed to distribute the computation on the

nodes in the cluster on similar way than MapReduce model.

The preliminary experiments, carried out in this paper, are very

promising and we are planning to develop truly scalable BI

platform as our future work.
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