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Abstract—The paper uses machine learning methods to deal
with the problem of reducing the cost of applying mutation
testing. A method of classifying mutants of a program using
structural similarity is proposed. To calculate such a similarity
each mutant is firstly converted into a hierarchical graph, which
represents the mutant’s control flow, variables and conditions.
Then using such a graph form graph kernels are introduced to
calculate similarity among mutants.The classification algorithm
is then applied for prediction. This approach helps to lower the
number of mutants which have to be executed. An experimental
validation of this approach is also presented.

I. INTRODUCTION

A
RTIFICIAL intelligence has a long history and has been

successfully applied in different domains. While the

use of artificial intelligence methods in medical applications,

image processing or even art has been widely accepted, the

domain of software engineering has taken longer to start

using such methods. As they are faced with a complex task

of designing, building and testing systems at large scales,

software engineers have started to adopt and use many of the

practical algorithms and techniques that have been proposed

by the AI community. AI algorithms are well suited to such

complex software engineering problems, as they are designed

to deal with one of the most demanding challenges of all; the

replication of intelligent behavior. In particular in software

engineering community three areas of AI are mostly used.

The first one can be described as based on computational

search and optimization techniques (the field known as Search

Based Software Engineering (SBSE). In SBSE based approach,

the aim is to re-formulate software engineering problems as

optimization problems that can then be dealt with by using

search algorithms. This approach has been widely used with

applications from requirements and design to to maintenance

and testing [1], [2].

The other two are related to fuzzy and probabilistic methods

for reasoning in the presence of uncertainty and methods

using classification, learning and prediction algorithms. In

classification and prediction research there has been great

interest in modeling and predicting software production costs

as part of project planning. A wide variety of traditional

machine learning techniques such as artificial neural networks,

cased based reasoning and rule induction have been used for

example in software project prediction, and defect prediction

[3].

The paper presents a continuation of an ongoing research

on using methods of machine learning to reduce the costs

of applying mutation testing [4], [5]. Mutation testing [6] is a

recognized software testing technique used to support selection

of tests [7], [8]. It provides means and an adequacy measure to

assess the quality of the tests and thus it helps to obtain a suite

of tests being adequate to provide dependable testing results.

Testing results are one of the main sources of information used

to establish the degree to which a developed system meets

certain requirements and to decide whether the system is ready

to be deployed or should undergo further improvements.

The concept behind mutation testing is fairly simple, yet

it yields useful results. The assessment of the tests quality is

carried out by checking their ability to detect faulty versions

of a tested system [6]. The faulty versions (called mutants)

are generated from the original version of the system (usually

its source code or model) by inserting into a copy of the

original system small syntactic changes, one per mutant, and

then executed with the tests under assessment. When results

of executing a mutant differs from results of executing the

original system for at least one test from the assessed suite

the mutant is considered to be killed by the test otherwise it

stays alive. The ratio of mutants detected (killed) by the tests

to the total number of the generated mutants (called a mutation

score) is considered to be the most reliable measurement of

the tests adequacy [6]. Presence of alive mutants, if they are

not equivalent mutants [8], indicate inadequacy of the assessed

suite that should be dealt with to increase its quality.

Mutation testing is the most reliable test assessment tech-

nique [7], but unfortunately its application can be very time

consuming [8]. The main reason of the problem is a large

number of mutants that are typically generated and executed.

The approaches presented in [5] and in this paper focus on

providing some solution to the problem.

In this paper a classification based approach is proposed

as a tool to lower the cost of software testing with the use

of mutation testing by limiting the number of times a test

suite has to be executed. The approach proposed is based

on the structural similarity of mutants. To calculate such a
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similarity each mutant is firstly converted into a hierarchical

graph, which represents the mutant’s control flow, variables

and conditions. Then using such a graph form graph kernels

are introduced to calculate similarity among mutants. The

kernels are then used in predicting whether test suite, provided

for the program, would detect (kill) a given mutant or not.

The classification algorithm is then applied for prediction This

approach helps to lower the number of mutants which have

to be executed. Moreover, as the similarity calculations have

to be done only once for a given set of mutants, they can be

used for any new test suite developed for the same system.

An experimental validation of this approach is also presented

in this paper. An example of a program used in experiments

is described and the results obtained, especially classification

errors, are presented.

II. RELATED WORK

Mutation testing was originally introduced to assess tests

ability to detect faults in programs [6], but with the time

its application area has expanded. It is currently used at

both, implementation and model level, to assess the quality

of existing test suites, to improve such suites or to generate

new ones [9], [10], [11], [12], [14], [15], [16]. Mutation testing

provides a very reliable measurement of a test quality [7]. The

effectiveness of the technique can be partially attributed to

the systematic and unbiased way of generating the mutants

by applying so called mutation operators [6]. The mutation

operators controlling the mutants generation process are rules

that specify syntactic changes that can be introduces into

the mutated artifact and the elements that can be changed,

so that the mutants are executable. However, the number of

mutants generated by applying such mutation operators can

be very large and thus their generation and execution can take

a huge amount of time. Several costs reductions techniques

have been proposed so far. They can be roughly divided into

two groups: approaches targeting the mutants generation phase

(selective mutations [17]) and approaches targeting the mutants

execution phase (e.g. mutant sampling [21], mutant clustering

[20], [19] or parallel processing [18]). A short surveys of costs

reduction approaches can be found in [8].

The approach presented in this paper belong to the second

group and shares some similarities with mutant sampling

and mutant clustering. The mutant sampling, as proposed

by Acree [21] and Budd [22], consists in generating all

mutants and executing only their randomly selected subset.

However, random selection may decrease the reliability of

test assessment results. More sophisticated approaches using

clustering algorithms were proposed by Hussain [19] and Ji

at. all [20]. Ji at. all [20] proposed to weight mutants using a

domain specific analysis, divide them into groups basing on the

weighting results and then execute only some mutants being

representative for the groups. Hussain [19] applied clustering

algorithms to group mutants accordingly to their detectablity

and used the results to minimize a suite of tests.

In our approach the mutants are also first generated, and

then their fraction is selected to be a training group. Only

mutants belonging to the training group are executed. The

detectability of the remaining mutants is predicted basing on

their similarity to mutants from a training group.

As in our approach the mutants are represented by graphs

to calculate the similarity among them some form of graph

based measure must be used. The problem of graph similarity

has already been the subject of research in various contexts. In

the current literature three major approaches can be observed.

One of the approaches uses mainly standard graph algo-

rithms, like finding a maximal subgraph or, in more recent

years, mining for frequently occurring subgraphs. The ap-

proach based on frequent pattern mining in graph analysis has

been researched mainly within the context of bioinformatics

and chemistry [25], [26], [27], [28]. The main problem with

this approach results from a huge number of frequent substruc-

tures often found what leads to high computational costs.

Other approach is based on transforming graphs into vectors.

This is done by finding some descriptive features in graphs and

enumerating them. A lot of research using this method, called

vector space embedding of graphs, have been done by Bunke

and Riesen [29], [30]. The main benefit of such transformation

of a graph into a vector is the possibility to use standard

statistical learning algorithms. This approach suffers from the

difficulty in finding appropriate features in graphs and then in

enumerating them. It often causes problems similar to those

in frequent pattern mining. Nevertheless, this approach has

successfully been applied in many domain [29].

Finally the use of the theory of positive defined kernels and

kernel methods [29] was proposed, among others, by Kashima

and Gartner [32], [33]. A lot of research is available on the

defining and use of kernels for structured data, including tree

and graph kernels [32], [33], [34], [35], for example the tree

kernels proposed by Collins and Duffy [34] that were applied

in natural language processing.

Considering graphs we have several choices of different

kernels proposed so far. One of them is the so called all

subgraph kernel which requires enumerating all subgraphs of

given graphs and the calculating the number of isomorphic

ones. This kernel is known to be NP-hard [32]. An interesting

group of graph kernels consists of different variants of kernels

based on computing random walks on compared graphs. This

group includes the product graph kernel [30] and the marginal-

ized kernels [33]. These kernels are computable in polynomial

time (O(n6) [30]).

Many of the graphs kernels are based on the so called

convolution kernels proposed by Haussler [37]. The main idea

of these kernels is to use the number of substructures of any

structured object. This approach was extended by Shin et al

[38], who proposed a mapping kernel for tree data.

Currently the main research focus in kernels is on improving

the performance of the kernel algorithms for simple graphs,

mainly in bioinformatics. This paper on the other hand is

focused on the application of kernel methods in software

testing domain.
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III. KERNEL METHODS FOR STRUCTURED DATA

Many of machine learning algorithms require the input data

to be in a vector or matrix format. It is usually assumed

that there is a number of features that can describe a given

problem.In case of classification problems the data for would

contain vectors of values for all the features and a correct

output value. The input can then be divided into training and

test sets used to find the model describing the problem. Un-

fortunately it is not always easy to represent a given problem

in vector format without loosing some internal relationships

within the data. There are situations when some form of

structured representation fits better then a numerical, vector

based data, yet we still would like to use machine learning

algorithms for this problems.

One of the structure that is becoming more and more

important is a graph. There is a wide acceptance of the fact

that it is important to represent some internal relationships in

data in a form of graphs, yet using machine learning approach

in problems where data has a graph representation is rather

limited.

There has been research on transforming graphs into vectors

by finding some descriptive features in graphs and enumerating

them. This approach has been carried out for example by

Bunke and Riesen [29], [30]. The obvious benefit of trans-

forming a graph into a vector is the possibility to use standard

statistical learning algorithms.

Another approach, which allows for the direct use of

structured data is based on the application of kernel methods.

In order to apply kernel methods to structured data objects,

firstly a kernel function between two structured objects must

be defined. However, defining a kernel function is not an easy

task, because it must be designed to be positive semi-definite,

and some ad hoc similarity functions are not always positive

semi-definite.

A. Kernel methods for graph data

In order to use kernel methods for non-vector data a so

called kernel trick is often used. It consists in mapping

elements from a set A into an inner product space S (with

a natural norm), without having to compute the mapping, i.e.

in case of graphs they do not have to be mapped into some

objects in target space S, but only the way of calculating the

inner product in that space is needed. The results of the linear

classification algorithm in target space are then equivalent

with classifications in source space A. To be able to use this

approach and avoid actual mapping the learning algorithms

which need only inner products between the elements (vectors)

in target space are used. Moreover, the mapping has to be

defined in such a way that these inner products can be

computed on the objects in the source t space by means of

a kernel function. To use classification algorithms a kernel

matrix K must be positive semi-definite (PSD) [32], although

there are empirical results showing that some non PSD kernels

may still do reasonably well, if only they well approximate the

intuitive perception of similarity among given objects.

In case of graph data the first kernel was based on compar-

ing all subgraphs of two graphs and then the value of such

a kernel was calculated as the number of identical subgraphs.

This is a very good similarity measure but enumerating all

subgraphs has a high cost. Another approach proposed by

Kashima et all. [33] uses kernel on sequences of labels of

nodes and edges along each path. It is defined as a product

of subsequent edge and node kernels. Computing this kernel

requires summing over an infinite number of paths but it can

be done efficiently by using the product graph and matrix

inversion [32].

A more general approach was proposed by Haussler in the

form of convolution kernels [37], which are a generic method

for different types of structured data, not specific to graph data.

This approach is based on the fact that any structured object

can be decomposed into components, then kernels can be

defined for those components and the final kernel is calculated

over all possible decompositions.

Let X be the space of all possible structures in a given

problem. Formally, for any two points x, y, from the space X ,

a convolution kernel is defined by equation 1 :

K(x, y) =
∑

(x′,x)∈R

∑

(y′,y)∈R

k(x′, y′), (1)

where R ⊆ X ′×X is a decomposition relation and k is a base

kernel. Haussler [37] proved that if k is positive semi-definite

then also K is positive semi-definite.

By defining X ′

x as a set {x′ ∈ X ′|(x′, x) ∈ R} the equation

1 can be reformulated into equation 2 :

K(x, y) =
∑

(x′,y′)∈X′

x×Y ′

y

k(x′, y′). (2)

B. Mapping kernels

Looking at the equation above it can be observed that the

main problem with this approach is that the kernel has to be

computed over the whole cross product of X ′

x × Y ′

y . To deal

with this problem a so called mapping kernel was introduced

by Shin et al.[38]. It has been successfully used for trees and

it allows to limit the calculations to the subset of the cross

product. This subset is defined as Mx,y ⊂ X ′

x × Y ′

y . Then,

the mapping kernel is defined by equation 3:

K(x, y) =
∑

(x′,y′)∈Mx,y

k(x′, y′). (3)

It has to bo noticed, however, that while for the convolution

kernel if k is PSD then K is always PSD, in case of the

mapping kernel for K to be PSD k has to be PSD and M

has to be transitive [36]. Thus the deciding factor here is the

choice of the mapping system M .

IV. STRUCTURAL REPRESENTATION OF PROGRAMS

Programs are usually graphically represented in a form of

a so called control flow diagram (CFD). An example of a

CFD is depicted in Fig. 1 (It was obtained from a Java source
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a)                                                                             b)

Fig. 1. Examples of control flow diagrams for program from Fig. 2a showing a) internal elements of an expression and b) of a condition

code by an Eclipse plug-in). In the figure it can be observed

that it labels the nodes representing expressions with the

term "expression" and the actual expression is only available

as an attribute (Fig. 1a). Also loops are labelled only by

conditions without information on the loop type; this data

is also only available as attributes (Fig. 1b). Moreover this

attribute contains the whole expressions, and thus it cannot

be directly used to compare programs, as for that reason we

need to compare each element of any expression or condition

separately. However, this information can be parsed to obtain a

structural representation better suited for comparing programs.

A. Hierarchical graphs

In this paper we propose to use a so called hierarchical

control flow graph (HCFG), which is a combination of CFD

and hierarchical graphs [40], [4]. Such a graph adds a level of

hierarchy to the traditional control flow diagram. As a result

it facilitates the representation of each element of a method in

a single node. Such a structural representation is much more

adequate for comparing.

In Fig. 2b an example of such a hierarchical control flow

graph (HCFG) is depicted. This graph represents a method

search(...) presented in Fig. 2a. It can be noticed that each

non-hierarchical node (i.e. a node that does not contain child

nodes) represents the most basic elements of a program, such

as variables, constants, operators. Hierarchical nodes, on the

other hand, represent expressions or composed statements

such as conditions or loops. The hierarchical nodes not only

simplify the representationę but also reflect the context in

which the basic elements are placed within the program. Edges

of the graph represent flow of control between nodes, both

hierarchical and non-hierarchical as well as internal structure

of expressions.

A hierarchical graph consists of nodes and edges, that can

be labeled and attributed. As opposed to simple graphs, nodes

in hierarchical graph can contain other nodes. More formally,

let RV and RE denote the sets of node and edge labels,

respectively and ǫ be a special symbol used for unlabelled

edges. The set RV consists of the set of all possible keywords,

names of variables, operators, numbers and some additional

grouping labels (like for example declare or array shown in

Fig. 2b. The set of edge labels RE contains Y and N . Then

a hierarchical control flow graph is defined formally in the

following way:

Definition 1: A labelled hierarchical control flow graph

HCFG is a 5-tuple (V,E, ξV , ξE , ch) where:

1) V is a set of nodes,

2) E is a set of edges, E ⊂ V × V ,

3) ξV : V → RV is a function assigning labels to nodes,

4) ξE : E → RE ∪ {ǫ} is a function assigning labels to

edges,

5) ch : V → P (V ) is a function, which assigns to each

node a set of its children, i.e. nodes directly nested in

v.

As in further consideration an access to a node of which

a given node is a child may be needed we have to formally

define such a node- called a parent. Let ch(v) denotes the

set of children of v, and |ch(v)| the size of this set. Let par

be a function assigning to each node its parent (i.e. a direct

ancestor) and let λ be a special empty symbol (different from

ǫ), par : V → V ∪ {λ}, such that par(v) = w if v ∈ ch(w)
and λ otherwise.
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public int search(int v)
{

int i;
for(i=0;i<size;i=i+1)

if(values[i]==v)
return i;

return -1;
}

a)                                                                                 b)

Fig. 2. a) Source code of a part of the example program b) a hierarchical flow graph for this source code

B. Kernel methods for programs

In this paper new kernel functions, based on the convolution

kernel [37] and on mapping kernel template proposed by Shin

et al ([38]) are introduced for hierarchical control flow graphs.

These kernels are based on the decomposition of a HCFG

into substructure composed of a node, its parent, the set of

its children and all its first level neighbors. For the kernel

calculations the label of a given node, number and labels

of its children (and thus its internal complexity), the label

of its parent (and thus its position within the structure of

the program), the number and labels of edges connecting

this node with its neighborhood nodes (both incoming and

outgoing edges are taken into account) and the labels of the

neighboring nodes are taken into account. This kernel uses

two node kernels, an edge kernel and a tree kernel as base

kernels. The way the node and edge kernels are defined is

presented below. The tree kernel, used within the node kernel

to compare expression trees, is a standard one [36].

The first node kernel is a binary kernel and is used for a

simple comparison of two nodes on the basis of the identity

of their labels.

Definition 2: A binary node kernel, denoted knode(vi, vj),
where vi, and vj are nodes of a hierarchical control flow graph,

is defined in the following way:

knode(vi, vj) =

{

1 : ξV (vi) = ξV (ej)
0 : ξV (vi) 6= ξV (ej).

The second node kernel uses the hierarchical structure of

some nodes and is denoted kV (v, w), where v, and w are

nodes of a hierarchical control flow graph.

Definition 3: A node kernel, denoted kV (v, w), where v,

and w are nodes of a hierarchical control flow graph, is defined

in the following way:

kV (v, w) =

{

KT (ch(v), ch(w)) : ξV (v) = ξV (w)
0 : ξV (v) 6= ξV (w).

It can be observed that if the nodes have children, thus

containing an expression trees, a tree kernel KT is used to

compute the actual similarity. For nodes having different labels

the kernel returns 0.

Definition 4: An edge kernel, denoted kE(ei, ej), where ei,

and ej are edges of a hierarchical flow graph, is defined in the

following way:

kE(ei, ej) =

{

1 : ξE(ei) = ξE(ej)
0 : ξE(ei) 6= ξE(ej).

C. Decomposition kernel for HCFGs

On the basis of the above kernels a similarity for HCFG is

computed by a decomposition kernel denoted KKer2HCFG.

Definition 5:

KKer2HCFG(Gi, Gj) =

m
∑

i=1

n
∑

j=1

KS(Si, Sj), (4)
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where m and n are the numbers of nodes in each graph and

KS(Si, Sj) = kV (vi, vj) + knode(par(vi), par(vj))

+
∑

wi∈Nb(vi)

∑

wj∈Nb(vj)

kedge((vi, wi), (vj , wj))knode(wi, wj),

(5)

where each Si is a substructure of Gi centered around node

vi and consisting of this node, its parent par(vi), and its

neighbourhood Nb(vi) (containing nodes and edges linking

them with vi).

The kernel defined by equation (4) is a modification of the

one proposed in [4], [41], as it uses a binary node kernel given

by definition 2 to compare the neighbouring nodes rather than

the more complex kV kernel which was previously used. It

lowers the number of times a tree kernel is computed and

does not affect the accuracy of the classification.

D. Mapping kernels for HCFGs

The above kernel has to compute the substructure kernel

over all possible combinations of substructures but a mapping

kernel can limit the number of this calculation by taking into

account only those pairs of substructures which belong to the

mapping M. In this paper two mappings are proposed.

The first one is relatively straightforward; two substructures

Si of G1 and Sj of G2 belong to mapping only if the labels

of the nodes around which they are centered (i.e. vi ∈ VG1

and vj ∈ VG2
, respectively), have identical labels. Thus M1 =

{(Si, Sj)|ξV (vi) = ξV (vj)}. Such a mapping is transitive, as

it is based on the equality of labels.

Definition 6:

KMap1HCFG(Gi, Gj) =
∑

(Si,Sj)∈M

KS(Si, Sj), (6)

where KS(Si, Sj) is defined as above.

For the second mapping we take into account the position

of a given node within the structure of the hierarchical control

flow graph. This can be done by taking into account the

label of a given node and the label of its parent. Then the

mapping M2 = {(Si, Sj)|ξV (vi) = ξV (vj) ∧ ξV (par(vi)) =
ξV (par(vj)). As this mapping is also defined on the basis of

the equality relation it is also transitive. The second mapping

kernel is defined in the following way:

Definition 7:

KMap2HCFG(Gi, Gj) =
∑

(Si,Sj)∈M2

KS(Si, Sj), (7)

where KS(Si, Sj) is defined as above.

V. EXPERIMENTS AND RESULTS

A. Data Preparation

The experiment was carried out on two simple, but rep-

resentative example programs. Both examples are modified

versions of benchmarks commonly used in mutation testing

related research [23], [24], [42], [43]. A part of one of the

example programs is shown in Fig. 2a. The following two

steps were performed for each example:

• generation of mutants

• generation of hierarchical control flow graphs for the

mutants

All mutants were generated by muJava tool [39]. For the first

example the tool generated 38 mutants, and for the second

one - 67 mutants. The tool uses a set of traditional and

object-oriented mutation operators [39], [44]. The traditional

mutation operators usually modify expressions by replacing,

inserting or deleting arithmetical, logical or relational opera-

tors or some parts of expressions. Mutation operators related

to object-oriented features of Java implemented into the tool

refer to the object-oriented features such as encapsulation,

inheritance, polymorphism and overloading.

Examples of mutants generated for the method search(...),
depicted in 2a are shown in Figs. 3a and b. The one depicted

in Fig. 3a is an example of applying a Relational Operator

Replacement (ROR), that in this case replaced the condition

values[i] == v within the if instruction by false. The

mutant in Fig. 3b is an example of using an Arithmetic

Operator Insertion (AOI). Here the short-cut operator −−
was inserted into variable i in a return statement. In Figs.

4a and b the hierarchical control flow graphs for the above

mutants are depicted. It can be observed in Fig. 4a that the

subtree representing the condition within the if instruction

was replaced by a single node labeled with value false.

The HCFG representation of the second mutant (in Fig. 4b)

differs from the graph representation of the original by the

replacement of a single node labelled i, inside the node

representing one of the return statements, by the subtree

representing the expression −− i.

The experimental data includes also test suites. For the first

example three test suites were provided and for the second

example (more complex one) - five test suites were used.

B. Classification results

The k−NN classification algorithm was used on mutants

generated for the two examples. Previously graph edit distance

and a distance computed from simple HCFG kernel were used

in this algorithm [4]. In this paper distances are computed from

the three new kernels described in sections IV-C and IV-D. (De-

noted as Ker2HCFG - defined by equation 4 and Map1HCFG

and Map2HCFG - by equations 6 and 7, respectively).

In the experiments for the first example all three test suites

provided were used. The set of mutants was divided into three

parts of similar size, the first was used as a training set and

the remaining two as instances to classify. The division of

mutants was guided by the type of mutation operators used

to obtain particular mutants. That is each set was generated

in such a way that it consisted of mutants generated by all

operators. Moreover the proportion of mutants generated by

a given operator in each set was related to the proportion of

such mutants in the full set. The process of dividing the set of

mutants was repeated five times resulting in obtaining different
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public int search(int v)
{

int i;
for(i=0;i<size;i=i+1)

if(false)
return i;

return -1;
}

a)                                                                                 b)

public int search(int v)
{

int i;
for(i=0;i<size;i=i+1)

if(values[i]==v)
return --i;

return -1;
}

Fig. 3. An example of a) the ROR mutant and b) one of the AOI mutants of the method from Fig. 2a

a)                                                                                                b)

Fig. 4. Examples of flow graphs a) a graph for ROR mutant from Fig. 3a, b) a flow graph for AOI mutant from Fig. 3b

partitions of this set and the classification results obtained were

averaged.

Table I presents the results obtained for this example using

all three kernels introduced in this paper, and compares them to

results obtained with edit distance (from [4], [41]). Parameter

k for k−NN was, after some experimental tuning, set to 5 for

all experiments. In the first column of the table the percentage

of instances classified correctly, i.e. classification accuracy,

is shown. The percentage of mutants classified incorrectly

is given separately for those classified as detectable, while

actually they are not (column labelled incorrect killed) and

for those classified as not detected, while they actually are

detected by a given test suite (column labelled incorrect not

killed). Separating these two values was done because of the

meaning of these misclassifications. Misclassifying a mutant

not to be detected may lead to overtesting, while the misclassi-

fication of the second type is potentially more dangerous as it

can result in missing some faulty code. Especially, taking into

account that the results are to be used to evaluate the quality

of test suites provided for the application. Thus incorrectly

classifying a mutant as not detected leads to giving a test suite

lower score than actual one, why the second misclassification

leads to overvaluation of a given test suite.

As it can be observed in table I the classification performed
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TABLE I
THE CLASSIFICATION OF MUTANTS OF EXAMPLE 1

method correct incorrect killed incorrect not killed

TS 1

GED 65.2% 13.06% 21.74%
Ker2HCFG 76.1% 5.3% 18.6%
Map1HCFG 79.2% 4.2% 16.6%
Map2HCFG 84.5% 3.1% 12.4%

TS 2

GED 78.25% 8.5% 13.25%
Ker2HCFG 84.9% 5.8% 9.3%
Map1HCFG 87.6% 5.1% 7.3%
Map2HCFG 91.3% 5.2% 3.5%

TS 3

GED 82.6% 8.7% 8.7%
Ker2HCFG 83.1% 4.5% 12.4%
Map1HCFG 86.4% 4.1% 9.5%
Map2HCFG 89.8% 3.8% 6.4%

TABLE II
THE CLASSIFICATION OF MUTANTS OF EXAMPLE 2

method correct incorrect killed incorrect not killed

TS 1

GED 75.7% 12.1% 12.2%
Ker2HCFG 79.3% 7.1% 13.6%
Map1HCFG 82.4% 5.5% 12.1%
Map2HCFG 86.1% 4.5% 9.4%

TS 2

GED 73.4% 6.5% 20.1%
Ker2HCFG 79.1% 5.3% 15.6%
Map1HCFG 79.2% 4.8% 16.0%
Map2HCFG 82.5% 4.5% 13.0%

TS 3

GED 60.5% 26.2% 16.3%
Ker2HCFG 61.2% 23.7% 15.1%
Map1HCFG 70.2% 18.4% 11.4%
Map2HCFG 73.8% 16.1% 10.1%

TS 4

GED 78.2% 10.3% 11.5%
Ker2HCFG 84.5% 4.25% 11.25%
Map1HCFG 88.6% 3.5% 7.9%
Map2HCFG 92.1% 3.1% 4.8%

TS 5

GED 76.4% 11.3% 12.3%
Ker2HCFG 79.6% 8.2% 12.2%
Map1HCFG 83.3% 7.6% 9.1%
Map2HCFG 88.2% 5.0% 6.8%

reasonably well for all test suites. All three new kernels pro-

posed in this paper gave better classification results than results

obtained by using graph edit distance. It can be explained by

the fact that graph edit distance captures only the structural

difference in a graph i.e. it takes into account only a change

but not the location of this change. For example the mutant

shown in Fig. 4b, where variable i was replaced by − − i,

what resulted in replacing a node be a subtree, and another

one, in which variable i in different location undergone the

same change would result in identical graph edit distance from

other mutants. In the domain of mutation testing the location

of the change is as important as the kind of change itself.

The results obtained by the use of the decomposition kernel

(Ker2HCFG) and the first mapping kernel (Map1HCFG)

are similar in case of classification accuracy, but the mapping

kernel results in a bit smaller number of mutants incorrectly

predicted to be detected. But the most important difference

between these two kernels is related to the number of kernel

calculations which have to be performed. In case of the

decomposition kernel it is calculated for each node of each

control flow graph, while in case of mapping kernel it is

limited to a small subset of the nodes. While the actual number

of the calculations can not be estimated, as it depends on

the program structure, in typical program no given element

or construction should constitute more than several percent of

all the elements of the program.

The second mapping kernel (Map2HCFG) shows improve-

ment over both previous kernels. It can be explained by the

observation concerning the nature of the mutants. Mutant ob-

tained by the introduction of a particular change in a particular

location is not necessarily detectable by the same test as the

mutant obtained by the introduction of the identical change

in different location. The second mapping system contains

substructures centered around nodes not only representing

identical constructs, but also located within nodes representing

identical elements, thus the results obtained for this kernel are

more accurate. Moreover, as it takes into account less pairs of

the substructures the number of calculations decreases further.

In the second example five test suites were used and the

set was divided into four parts of similar size, because of the

higher number of mutants. The process of dividing the set of

mutants was carried out according to the same criteria as in

the first example. And the classification was done in the same

way.

Table II presents the results obtained for this example. It

may be observed that the results follow similar pattern as for
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the first example. It can be noticed that the results for TS 3

were visibly worse than for other suites. Closer inspection

seems to suggest that this results from the fact that TS 3

detects only 22 out of 87 mutants and there may occur an over-

representation of detectable mutants in the training set thus

leading to incorrectly classifying many mutants as detectable.

C. Using the results

Typical use of classification results is predicting the class

membership of new elements, in this case new mutants. While

it of course would be possible to generate new mutants for a

given program and predict whether they would be killed by a

given test suite the typical scenario here is different. After the

classification is finished for each mutant not in the training set

its k nearest neighbours are stored. Then, when a new test suite

for the program is provided its needs to be run only against the

mutants belonging to the training set, the detectability of the

other mutants is decided on the basis of the stored neighbours.

VI. CONCLUSIONS AND FUTURE WORK

The research presented in this paper deals with the problem

of reducing the number of mutants to be executed and thus

reducing the cost of applying mutation testing by using the

classification algorithm. In contrast to other mutant reduction

approaches, which are based on some programming language

related knowledge, this approach limits the number of mutants

to be executed in a dynamic way i.e. depending on the

structure of the program for which the mutants were generated.

The application of the mapping kernel template allowed

for comparing control flow graphs with better use of the

knowledge of the nature of the mutants and at the same time

significantly reduce the number of elements to be compared,

thus reducing the time required to compute the similarity of

programs.

The results of the classification allow to assess new test

suites. During the application building process it is common

that tests suites are iteratively updated. Each newly updated

test suite has to be assessed to check if it fault detection

ability is improved. Thus having to run each new test suite

only on a fraction of all mutants significantly reduces the time

a developer needs to provide a high quality test suite for an

application.

Although the results are satisfactory and allow for using

this method in practice there are several possible directions

for future research on using classification in mutation testing.

One of them is related to better use of the knowledge of the

way tests are executed. When a test is executed it follows

one of many possible paths within the program flow. Using

this fact in the way a training set of mutants is selected

could possibly improve the classification. This information

could also be incorporating into the way the substructures

in the kernel function are defined, for example limiting the

neighbourhood of the node taken into account only to the

nodes on the same path.

Another possible improvement could be based on replacing

an arbitral choice of k by a more flexible approach such as

the one proposed in [45]. Future research are also planned

to involve trying to define a set of features allowing for the

description of programs in a vector form. Such a representation

would allow for the use of non-kernel based classifiers.
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