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Abstract—Adaptive autonomous (AA) agents are able to make
their own decisions on when and with whom to share their
autonomy based on their states. Whereas dependability gives
evidence on whether a system, (e.g. an agent team), and its
provided services are to be trusted. In this paper, an initial
analysis on AA agents with respect to dependability is conducted.
Firstly, AA is modeled through a pairwise relationship called
willingness of agents to interact, i.e. to ask for and give assistance.
Secondly, dependability is evaluated by considering solely the
reliability attribute, which presents the continuity of correct
services. The failure analysis is realized by modeling the agents
through Petri Nets. Simulation results indicate that agents drop
slightly more tasks when they are more willing to interact
than otherwise, especially when the fail-rate of individual agents
increases. Conclusively, the willingness should be tweaked such
that there is compromise between performance and helpfulness.

I. INTRODUCTION

D
EPENDABILITY IS, and has been for a decade, a

promising research direction for researchers and is con-

sidered central in designing systems that are intended to

work closely with and for humans (e.g. automotive, airborne,

and service robots). Originally, it was devised from software

development areas and can be stated by Avizienis et al.

[1] as "the ability to deliver service that can justifiably be

trusted". The dependability of a system is evaluated by one,

several or all of the attributes including availability, reliability,

safety, integrity, and maintainability. The implementation of

dependability starts with the understanding of the threats to the

system dependability: The threats consists of failures, errors,

and faults. The link between the three is known as fault-error-

failure chain. A failure happens when the services provided

by a system do not comply with its specification. An error

affects the services and leads to the failure of the system.

The hypothesized cause of an error is a fault. Therefore,

there are four means that have been developed to protect the

system dependability which are fault prevention, fault removal,

fault forecasting, and fault tolerance, whereof fault tolerance

is discussed in this work. It is deducible that the fault is

the root of every failure appearing inside and outside of the

system. The most pressing challenge is how to predict the

frequency of faults and the moment a fault occurs, thus fault

analysis is utilized to minimize the probability of faults and

fault prediction is applied to give an estimate of when faults

happen in the system. Thereafter, other means are developed

to protect the dependability with respect to the analysis of the

fault. In order to conduct fault analysis, various approaches

such as Petri Net (PN), fault tree analysis (FTA), failures

modes effects and criticality analysis (FMECA), and hazard

operability (HAZOP) have been introduced in the work of

Bernardi et al. [2]. However, in this work PN is chosen

because this framework provides a probability approach for

fault analysis and fault prevention in both development and

operational stages of designing a system. For instance as an

extension of PN, a stochastic Petri net could be combined with

Markovian models to evaluate the probability of the current

state and the probability of future fault events for a fault

prognosis process. In this work, a Colored Time PN (CTPN) is

utilized for fault analysis in a system of adaptive autonomous

agents.

On the other hand, agent autonomy represents a widely

discussed topic in the literature. It can be described in two

dimensions: self-directedness, i.e. autonomy in determining

one’s own goals, and self-sufficiency, i.e. autonomy in carrying

out a task or goal without outside help [3]. Autonomy is

also a relational concept [4]. There is autonomy from the

environment, which is defined by how much an agent is

independent from the stimuli coming from outside. Moreover,

there is autonomy from other agents – social autonomy – that

is defined by how much an agent is independent from the

influences of those other agents. Castelfranchi [4] grounds the

concept of autonomy on dependence theory. Consequently, an

agent A doing a task might realize that it needs a resource,

know-how, a plan, or an action that it does not have in order

to achieve its goal. If there is an agent B that can provide A
with what it needs, then A will depend on B for that specific

need. As a result A is not autonomous from B. When the

dependencies change, so does the autonomy of the parties

involved. Adaptive autonomy specifically enables the agent

to decide on its own autonomy [5]. In this work, it means that

agents can choose when to depend on others, or when to be

depended upon based on their current circumstances.

The aim of this paper is to analyze an initial concept of

an adaptive autonomous agent developed previously [6] with

respect to fault tolerance by using Petri Nets. The following

sections are organized as follows. First related work both on

Petri Nets and adaptive autonomy is discussed. Thereafter,

the initial agent model is described and it is shown how the

willingness to interact shapes the agent’s autonomy. Next, the

failure analysis is conducted. Simulations are run in order to
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show how the willingness to interact, failure frequency and the

number of tasks dropped by the agents relate to each other.

Finally results are described and discussed.

II. RELATED WORK

A. Dependability

The assessment of system dependability, as aforementioned,

is based on the basic attributes. Depending on the specific ap-

plications, different attributes are used to measure the depend-

ability of a system. In the development of robotics application,

with regards to the reliability, a group of researchers from

India [7] proposed an approach to assess various parameters

that make a multi-robot system more reliable. The proposed

method is a combination of PN and fuzzy lambda-tau. Another

model and analysis for multi-robot based on stochastic PN is

introduced by Sheng et al. [8]. However, the former research

focused on reliability analysis for a navigation system, the lat-

ter one studied of a reliable model for multi-robot exploration.

These researches are limited to these particular systems.

In the study of fault tolerance analysis for a group of

agents, there are some researches on modeling and analyzing

a distributed system of agents using PN and extended PN. For

instance, Ammour et al. [9] introduced a stochastic Petri net

combined with Markovian models to evaluate the probability

of the current state and the probability of future fault events

for a fault prognosis process in discrete event systems. In

the work of Sun Chen et al., [10] an adaptive consensus

of fault tolerance for a multi-agent system was proposed.

Another automated analysis of fault tolerance for a reliable

communication system is introduced by Stoller and Schneider

[11]. A model, analysis of fault tolerance for a distributed

multi-agent system using Time Colored Petri Nets are provided

by Boukredera et al. [12]. In the work of Kristan et al. [13],

based on PN tool, the activities of agent in a complex multi-

agents system are analyzed. Recently, a combination of a fuzzy

method and PN introduced in [14] is proposed to analyze a se-

quential failure in complex industrial systems. Although some

effective techniques for faults analysis have been developed,

there are lacks of works focusing on the analysis of faults

for adaptive autonomous multi-agent systems. Therefore, a

method based on CTPN is proposed for failure analysis in

the context of autonomous adaptive agents.

B. Agent Autonomy

Alongside adaptive autonomy, there are several other similar

concepts such as adjustable autonomy, collaborative control,

mixed-initiative interaction, and sliding autonomy. Adjustable

autonomy refers to a system in which the human operator is

the one to decide on the levels of autonomy of the agent [5].

Mixed-initiative interaction makes it possible for either the

human or the agent to decide on autonomy levels [5]. Col-

laborative control allows the human and agent to resolve their

inconsistencies through dialogue [15]. Sliding autonomy refers

to a system which can switch between full tele-operation and

autonomy on a task level, i.e. the agent can be tele-operated

with respect to a task T1 whilst executing autonomously a task

T2 [16]. While this list is not exhaustive, it still represents the

most encountered terminology in the literature and serves to

build a general picture of the landscape in the field. Worth

noting is that there has been a paradigm shift in how dynamic

autonomy is handled, from the 10 levels of autonomy [17]

to team-work approaches in which autonomy is not fixed but

rather changes depending on the interdependencies between

agents [18]. Moreover, the authors have proposed a design

methodology which identifies possible interdependencies in a

system, and thus helps the designer provide support for them

in the implementation phase.

Several works aim at providing comparison between sys-

tems with and without adaptive autonomy [19], and between

systems with different approaches to autonomy [5] [20]. Sys-

tems such as RIAACT [21] are oriented toward meeting real-

time requirements of adjustable autonomous agents. Whereas,

STEAM [22] is an agent architecture which adds support

for teamwork. Specifically, team operators, i.e. reactive team

plans, are introduced. The agents also have their individual

plans which do not require teamwork. Kaa [23] is a system

developed on top of the KAoS policy system [24]. KAoS

implements policies to orchestrate multi-agent behavior, and

Kaa allows for their modification on run-time. This solution

is centralized.

In this paper, the willingness to interact is used to shape

agent autonomy. Additionally, the decision of whether to

interact, i.e. whether to ask or to give assistance, is considered

as internal to the agent. There is no hierarchy between them,

nor fixed levels of autonomy.

III. BACKGROUND ON PETRI NETS

A Petri net (PN), from a mathematical perspective, is a

bipartite graph built from a set of tuples (U, V,W ), where

U and V are a set of places and set of transitions respectively.

Meanwhile, W is a set of arcs used to link from a place

to transition and vice versa. Noting that there is no any

connections between places as well as between transitions.

The arcs running out from a place to a transition are known

as input places of transitions, whereas the contrary arcs, i.e,

running out from a transition to place, are called output

places of transitions. PN, therefore, with regards to two types

of flows from a transition, is described as a set of five

tuples (U, V,W,W−,W+), in which W− defines the output

weights and W+ for the input weights from a transition.

The number of tokens inside a place is named marks. The

stage of PN is completely determined based on the marks

of all places, therefore a marking M is used to present

the current state of PN. The marking M is expressed by

a vector [M(p1),M(p2), ...,M(pi), ...,M(pn)], in which n
is the number of places and M(pi) is the mark of place

pi. Let W− is expressed by a two dimensional matrix of

weights where each element W−(pi, tj) is determined as

the number of tokens allowed to move from the place pi to

the transition tj. Similarly, W+ is formulated by the weight

W+(tj, pi) from the transition tj to the place pi. It is noted
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that 1 ≤ j ≤ m, in which m is the number of transitions.

Thus, the marking is updated by the following equation.

M ′(p) = M(p) +W+(t, p)−W−(p, t), ∀p. (1)

Let M0 being an initial marking, the tuple (U, V,W,W+,W−)
is extended to (U, V,W,W+,W−,M0). The marking M is

reachable if M ′ is the result of applying a sequence of update

equation (1), starting from M . The state-space analysis of PN

shows a full graph of all possible markings that are reachable

from M0 and all possible paths of transition from a marking to

another. However, the complexity of the state-space analysis

dramatically increases with respect to the number of places and

transitions of a PN network. Thus, the state-space analysis is

completely suitable for the small PN network.

There are various types of extension of PN. The colored

PN (CPN) is one of them, in which CPN utilizes different

color to mark tokens [25]. Additionally, each type of token

separately fires with the transition. The transition behavior for

different colors is decided by the arc expressions which are

built from operators and functions. Another extension type is

the stochastic PN in which a time delay is added to each

transition, and a random variable is used to estimate the firing

rate. A probabilistic inference, therefore, is utilized to analyze

the state-space of the PN network. In this work, a hybrid PN

called colored time PN (CTPN) is applied to deal with both

non-deterministic and deterministic variables of the time delay.

CPNTools [25] are utilized to model the proposed system and

perform the failure analysis.

Figure 1. Agent Model

IV. AGENT MODEL

The agent is realized as a state machine with 5 operational

states which are idle, execute, interact, regenerate and

out_of_order (Figure 1). An agent starts its operation in the

idle state, in which it will generate a task with a probability P .

As long as it is in idle the agent has not committed to any task.

A change of state occurs either if a request for help is received,

or if the agent has generated a task. In the former, the agent

switches to the interact state and decides whether it will give

assistance or not (not interruptible process). This decision will

depend on the agent’s willingness to give assistance (defined

probabilistically). In the positive case the agent will put the

task in a queue and switch to execute, otherwise it will discard

the request and resume what it was doing (either back in idle
or execute). In the latter, the agent will put its own generated

task into a queue and will change its state to execute. At

the beginning of the execution of a task the agent decides on

whether it needs outside assistance or not. This is based on

the agent’s willingness to ask for assistance. If it does, it will

select the agent which was perceived as most helpful in the

past and make a help request. This is a blocking operation.

Nonetheless, the agent waits for a reply for a finite amount

of time, after which it will return to idle regardless of the

outcome. In principle, the agent could receive a request while

being in the execute state as well. If the agent reaches critical

levels of battery, i.e. lower than some predefined threshold,

it will switch to out_of_order. As of now, the agent will

immediately switch to regenerate, in which the recharge

takes place, and into idle right after. The willingness to ask and

give assistance make up the agent’s willingness to interact, i.e.

they are like the two sides of a coin. Modeling these elements

mathematically is part of the research for adaptive autonomous

agents. Nonetheless, for the purposes of this work, they are

expressed through probabilistic distributions, as is explained

in the next section.

Figure 2. Design of the agent module

V. FAILURE ANALYSIS

Based on the description given in the previous section the

agent module is designed. Moreover, all agents share the same

structure which is represented by PN (Figure 2). All tasks

are generated by the agents. The agent once completing the

task will put the completed tasks in a submodule known

as completed tasks. Otherwise, the task will be put on a

submodule called dropped tasks. The agent, right after, will

send a helping request. If there is an available agent which is

willing to give assistance, the agent will take the task from a
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place named tasks need helps and try to finish the unfinished

tasks. The agent, while doing the task, is being checked for its

energy. When the agent’s battery is in critical low level, the

agent will drop the task and change into out-of-order state.

Thereafter, it is assumed that the agent goes into recharging

itself. After this process has completed, the agent will be

regenerated and shift into idle state and be ready to do a new

task.

Figure 3. Design of the task management module

The task management module (Figure 3) is utilized as a

main module to analyze the failures happening in the system.

It is supposed that there are three agents (a1, a2, a3). The

agents are placed in the task management module and their

internals correspond to the one in the agent module (Figure

2). Moreover, Figure 3 also represents when the agents are

in the interact state. Each agent generates one hundred tasks

to evaluate the performance of fault analysis of dropping

tasks due to the lacks of energy. The tuple of parameters

(t1, t2, t3, t4) which are modeled by exponential distributions,

present the willingness to interact of the agent. In detail, t1
and t2 describe the non-willingness and willingness of asking

for help, meanwhile, t3 and t4 present willingness and non-

willingness to give assistance respectively. The executing time

of each agent for a task is assumed τe = 20sec. Meanwhile,

the fail event (out of power) of an agent is modeled by a

random variable of the exponential distribution with the mean

time λe (value failmean in agent). Once the agent is out of

power, the agent will fall into failed state. The failure of the

system is analyzed based on a probability of failure which is

given by prob = dt/gt = dt/(dt + ct), in which dt is the

number of dropped tasks, gt is the number of generated tasks,

and ct is the number of completed tasks.

VI. RESULTS

The parameters in the simulation are configured so as

to assess how the system behaves as the agent gets more

Table I
PRESENTATION OF THE NUMERICAL RESULTS. D - DROPPED TASKS, C -

COMPLETED TASKS, P - PROBABILITY (EXPRESSED IN %)

Fail Mean
t1 = t2, t3 = t4 t1 < t2, t3 = t4 t1 = t2, t3 > t4 t1 < t2, t3 > t4

D C P D C P D C P D C P

10 284 16 94.67 288 12 96 293 7 97.67 295 5 98.33

20 265 35 88.33 271 29 90.33 265 35 88.33 271 29 90.33

30 237 63 79 245 55 81.67 245 55 81.67 245 55 81.67

40 211 89 70.33 219 81 73 221 79 73.67 224 76 74.67

50 188 112 62.67 202 98 67.33 215 85 71.67 208 92 69.33

60 174 126 58 187 113 62.33 191 109 63.67 187 113 62.33

70 156 144 52 158 142 52.67 176 124 58.67 174 126 58

80 138 162 46 156 144 52 169 131 56.33 168 132 56

90 121 179 40.33 134 166 44.67 147 153 49 151 149 50.33

100 118 182 39.33 127 173 42.33 139 161 46.33 137 163 45.67

dependent on other agents. Specifically, for the case in which

t1 = t2, the agents are configured with the same probability

of asking for help and of not asking for help once it generates

a new task. Meanwhile, t1 < t2 reveals that the agent is more

dependent on other agents to complete the tasks. A similar

meaning is expressed with the two configurable parameters t3
and t4, where t3 > t4 shows that the agent is more willing

to help other agents to complete a task. Overall, the cases

t1 = t2, t1 < t2 combined with t3 = t4, t3 > t4 are used to

evaluate the failures happening in the system. Moreover, the

dropped tasks as well as the completed tasks are computed to

give the probability of failure in the system with respect to the

changes of those parameters. The fail mean varies from 10 to

100 time units (10 ≤ λe ≤ 100). It can be seen that the results

reflect what is expected, i.e. there is an increase in dropped

tasks when the agents need more help from the others as well

as they are willing to give assistance. Meanwhile the dropped

tasks decrease when the intervals between two fail events (fail

mean) are prolonged. Table I shows that the probability of

failure increases when t2 increases. The results illustrated in

rows 1 − 3 and 7 − 9 present that the probability of failures

decrease when the agents are less willing to give assistance and

the fail means are longer. Moreover, it is possible to observe

that being more willing to help results in slightly more tasks

dropped than being more willing to ask for help – especially

for longer fail means. This is because, it is possible for an

agent which gives help for a task to ask for help for the same

task. Finally, the results in the last three rows (10−12) express

the worst case in which the agents are more dependent to the

others and also are willing to give assistance. Therefore, the

system will fall into the failed state with a higher probability.

VII. CONCLUSION

In this work, the formulation of CTPN has been introduced

for the failure analysis of a system composed of a group of

adaptive autonomous agents. The failure analysis is evaluated

by the probability of dropped tasks. The CTPN models have

been designed to probabilistically evaluate the failure rate

of the system. From the experimental results, the analysis

has shown the correlation of the probability of failure of the

system (rise in the number of dropped tasks) with the failure

mean of an agent. Moreover, it could be observed that a high
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willingness to interact when the fail mean is low induces

a slightly higher number of dropped tasks. It is possible to

conclude that, while being willing to interact and collaborate

is a desired characteristic for an agent, it will not always result

in higher performance. Consequently, the agents need proper

reasoning mechanisms that will allow them to make the best

of any situation they are in. In some cases this might mean

being helpful, and in others it might mean focusing on one’s

own tasks/goals.

In the future, the proposed approach will be extended to

deal with a more complex agent architecture in which relevant

factors that should shape the willingness to interact will be

identified and analyzed. Consequently, appropriate models will

be developed so as to reflect the impact of these factors and

will replace the distributions used in this work. Ultimately,

agents should be able to find a balance between helping each

other, completing their tasks and face failures of different

frequencies. Another concern relates to the potential scalability

of such approach by considering a bigger population of agents

in ranges of 10, 20, 50 etc. Finally, the actual communication

between the agents will be addressed as well in future PN

models, as it is central to the adaptive autonomous agent model

described in this paper.
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