
A Framework for Generating and Evaluating
Parallelized Code

Jarosław Bylina
Maria Curie-Sklodowska University

Lublin, Poland
Email: jaroslaw.bylina@umcs.pl

Abstract—The work describes a flexible framework built to
generate various (parallel) software versions and to benchmark
them. The framework is written with the use of the Python
language with some support of the gnuplot plotting program.
An example of the use of this tool shows the tuning of a
matrix factorization on different architectures (Intel Haswell and
Intel Knights Corner) with various parameters of parallelization,
vectorization, blocking etc.

I. INTRODUCTION

T
HE OPTIMAL use of the contemporary hardware and
software is not an easy and straightforward job. The

efficiency and the accuracy of the applications depends on a
lot of parameters as: places and manners of parallelization and
vectorization, loops’ order, block sizes, scheduling, affinity etc.
The number of possible (and potentially beneficial) combina-
tions is huge and the choice of the best set of parameters is not
always obvious. So, generating different versions, testing and
benchmarking them, and then tuning is very time consuming
and boring, repetitive task. Thus, it is suitable for automation.

Moreover, the code tuned for one hardware often needs a
very different treatment on another machine. The parameters
chosen and set for one machine as the most profitable can
give a very poor performance of the same code after the
change of the memory, the accelerators, or, especially, the
central processing unit. Now, the hardware market is full
of various parallel machines, processors, and coprocessors.
We have multicore architectures (like Intel Haswell — with
not too many cores), as well as manycore ones (like Intel
Knights Corner and other MIC models) and also very-many-
core chips (like various GPU coprocessors). Some of them
have hierarchical shared memory — with various sizes and
numbers of levels — and vector units — of different sizes.
All of them demand a different treatment to acquire the best
results in terms of performance and efficiency. On top of that,
they can be combined into hybrid machines — which have to
be treated differently than their components.

Our framework addresses these problems. It enables de-
velopers to rapidly generate and automatically test a lot of
versions of the algorithms after a little preparation. It can easily
be employed on different architectures and be utilized to find
the optimal set of parameters on them.

There is also a number of tools to create parallel versions
of an algorithm for various hardware — like OpenMP, MPI,
OpenACC, OpenCL and others. Our framework can be used

with all of them; although we tested it with the use of OpenMP
for now.

The philosophy behind our framework is parametrizing and
testing (and tuning) programming units — like functions or
classes. The developer provides the template of the unit —
with some formal parameters — and some sets of actual
parameters with which the function (or class) is to be tested.
The software generates all the permitted (by actual parameters)
versions of the function (class) and tests them (measuring their
computation speed and/or numerical accuracy).

Since our software works on the text of the source code,
it is very flexible. We can, for example, enable and disable
various directives and pragmas (like OpenMP pragmas or
similar), change the sizes of the blocks and also the order of
loops. Shortly, any textual parametrization of the investigated
function/class can be utilized.

The framework itself is a Python 3 application. However,
the source code in any language with separate and named
units (like functions in C or functions and classes in C++) can
be investigated with it. For now, there are configuration files
created to study efficiency and accuracy of the units written
in C and C++ and compiled with Intel C++ Compiler (icc)
and GNU Compiler Collection (gcc), although it can be easily
extended to other languages.

An advantage of such an approach is an automatic gener-
ation, compilation, and testing of a large number of versions
of the same function/class (or functions/classes) which differ
in an organized manner. The output of the software is a set
of plots of the desired characteristics, which can be easily
compared by the developer. However, we prepare a further fa-
cilitation — automatic ordering and selection of the generated
versions on the ground of their efficiency and accuracy.

The remainder of this work is following. Section II gives
some background of other similar projects. Section III de-
scribes the working of our framework. Section IV shows a
working example of the testing and tuning with our software.
Finally, Section V concludes the work and gives some plans
for the future of the project.

II. RELATED WORK

There is a long tradition of software automatic optimization
in scientific computing and other computer applications. Thus,
there are also a lot of software performing tasks similar to our
framework.

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 493–496

DOI: 10.15439/2017F230
ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 493



One of the approaches to the optimization of the algorithms
(or their building blocks) is auto-tuning. It is based on per-
forming many efficiency tests on different versions of building
blocks (like BLAS subroutines) and choosing the best for
a given architecture. Some examples of the narrow libraries
using this approach are ATLAS [10] and FFTW [3]. There
are also languages and libraries which employ the approach
of auto-tuning to general source codes and use the parameter
space (similar to our framework). Their examples are Active
Harmony [9], Atune-IL [7], Chapel [2].

On the other hand, we have profilers and similar tools
which investigate the code and gather information about the
utilization of the architecture and weak points of the imple-
mentations. Their examples are PAPI [1], Tau [8], Vampir [5],
Scalasca [4], Intel VTune Amplifier [13], Intel Advisor [12].

Finally, there is ELAPS (Experimental Linear Algebra Per-
formance Studies), an interactive multi-platform open source
framework [6]. It is designed to build experiments testing
dense linear algebra algorithms, functions, libraries. However,
that software tests ready subroutines and their combinations
and it is very convenient for standard linear algebra building
blocks, but it is not very usable for other applications.

III. THE FRAMEWORK DESCRIPTION

Figure 1 shows the workflow of the framework. The dashed
arrows represent the steps not requiring the user’s intervention
(that is, intermediate steps) and the dashed borders represent
files not demanding user’s direct concern (or even user’s view).
However, all the work can be repeated from an arbitrary step
— for example, after some changes in the configuration.

The flexibility of the framework is provided in two manners
— in the preparation of input files and in choosing configu-
ration options.

A. Input files

The first step the user is to make is to prepare input files.
The files are source codes of tested units (functions and/or
classes) with some of their text parametrized — one file per
unit. Both the formal parameters and actual parameters are
included in the file. The formal parameters are represented
in the code as the Python format strings, that is, %(name)s
where name is an arbitrary name of the parameter. The actual
sets of parameter values are given as special comments in the
beginning of the file. In C or C++ these must be single-line
comments starting with //, directly after which there is a
character indicating the kind of configuration command.

B. Configuration

There are some configuration options with which we can
set other features of the tests. We have, among others:

• the language and the compiler used in tests (C/C++ on
icc/gcc for now);

• the compiler options;
• the precision of the computations (like float, double

etc);

Fig. 1. The framework operation scheme (dashed lines shows the elements
processed without the user’s awareness)

• the investigated measure (or measures — accuracy, run
time and performance for now);

• the number of repetitions of each test (the final value of
the performance or accuracy is computed as a mean value
from these repetitions);

• the set of the number of threads;
• the set of the problem sizes;
• various parameters of the target plots (groups of plots,

ranges etc.).

IV. A FRAMEWORK APPLICATION EXAMPLE

We show more details on the operation of the framework
on an example of parallelizing a numerical problem, namely
the WZ factorization [11]. Two sequential versions of this
algorithm (in pseudocode) are shown in Figures 2 (the basic
version) and 3 (the fission version). In both versions, the matrix

494 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



a is an input-output data and the matrix w is an output data
(the factors of the given matrix a of the size n are stored in
matrices a and w after the end of the algorithm).

for(k = 0; k < n/2-1; k++) {

p = n-k-1;

akk = a[k][k]; akp = a[k][p];

apk = a[p][k]; app = a[p][p];

detinv = 1 / (apk*akp - akk*app);

for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p]

- app*a[i][k]) * detinv;

w[i][p] = (akp*a[i][k]

- akk*a[i][p]) * detinv;

for(j = k+1; j < p; j++)

a[i][j] = a[i][j]

- w[i][k]*a[k][j]

- w[i][p]*a[p][j];

}

}

Fig. 2. The pseudocode of the basic WZ factorization algorithm

for(k = 0; k < n/2-1; k++) {

p = n-k-1;

akk = a[k][k]; akp = a[k][p];

apk = a[p][k]; app = a[p][p];

detinv = 1 / (apk*akp - akk*app);

for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p]

- app*a[i][k]) * detinv;

w[i][p] = (akp*a[i][k]

- akk*a[i][p]) * detinv;

}

for(i = k+1; i < p; i++)

for(j = k+1; j < p; j++)

a[i][j] = a[i][j]

- w[i][k]*a[k][j]

- w[i][p]*a[p][j];

}

Fig. 3. The pseudocode of the fission WZ factorization algorithm

We would like to use our software to parallelize the WZ
factorization with the use of the OpenMP standard and to
test it on two platforms, namely Intel Haswell (denoted CPU)
and Intel Knights Corner (denoted MIC). To achieve that we
use our framework, writing our algorithms in C, with some
parameters which can help us try various variants and test
them on both platforms (CPU and MIC).

The basic versions implemented with the use of our frame-
work is presented in Figure 4, and the fission version — in
Figure 5. Here, the matrices are represented in 1D vectors,
stored column-wise or row-wise and accessed through the
macros INDc and INDr, respectively.

We can see that both are quite straightforward implemen-
tations of pseudocodes from previous Figures — apart from
first lines (special comments) and % signs (parameters). The
meanings of the special comments are following (their order
is freeform).

• //= gives the template of the unit (here: function) name.
Each file generates a lot of functions, and functions
have to possess unique names. We achieve this including
parameters into the name template.

• //? describes the header of the function, where a special
parameter %s is the name of the function (generated on
the basis of the previous line).

• Each //: describes one of the template parameters. Con-
secutively, we give the name of the parameter (IND, for
example) and then its possible values, in two variations
each: the first used in the function name (here: col, row
— it should be short and adjusted to the function name
syntax) and the second used in the function body (here:
INDc and INDr, respectively; _ means ‘space’).

• In Figure 5, we can also see //+ which restricts the
function names to strings containing the given character
sequences (here, we want to test different loop orders, so
we use it to disable incorrect loops, that is ii and jj

allowing only ij and ji).

A lot of functions were generated, compiled and tested on
CPU and MIC for various sizes of the matrix and numbers
of threads. The plots for the results were also automatically
created.

As we can see, we can quite freely shape our source code
and test cases with the use of described above directives. We
can easily investigate the influence of

• the matrix storage order,
• OpenMP scheduling,
• vectorization,
• loop order,

and many others — not presented here; however, everything
which can be parametrized within the text of the function can
be investigated.

V. CONCLUSION

The aim of our work was to create a software which can
support a program developer in his attempts to utilize the
hardware, the compiler, and the libraries the best.

The advantage of the framework is generating a lot of
versions of parallel (for example, but not only) code. These
versions differ in an organized way. Moreover, they are au-
tomatically compiled and run, then some measures are taken
and plots are drawn. The results in such form can be easily
compared by the code developer.

Our framework can be easily used to test not only programs
written with the use of OpenMP on CPU and MIC, but it
can also be adapted to tests on GPU with the use of CUDA
compilers, OpenCL and OpenACC — for example.

Very important — but missing for the present — feature
is the next step in the automatic analysis, namely, automatic
selection of the best (that is the fastest or the most accurate)
sets of parameters. We are working on such a feature to be
included in the future versions of the framework.

JAROSŁAW BYLINA: A FRAMEWORK FOR GENERATING AND EVALUATING PARALLELIZED CODE 495



//=wz_bas_%(IND)s_%(sch)s_%(vec)s

//?void %s(int n, double * a, double * w)

//:IND col INDc row INDr

//:sch d10 dynamic,10 d1 dynamic,1 \

s static g guided

//:vec v0 _ v1 #pragma_simd

{

int p, k, i, j;

double det;

for (k = 0; k < n/2-1; k++) {

p = n-k-1;

det = a[%(IND)s(p,k)]*a[%(IND)s(k,p)]

- a[%(IND)s(k,k)]*a[%(IND)s(p,p)];

#pragma omp parallel for default(shared) \

private(i, j) schedule(%(sch)s)

for (i = k+1; i < p; i++) {

w[%(IND)s(i,k)] =

(a[%(IND)s(p,k)]*a[%(IND)s(i,p)]

- a[%(IND)s(p,p)]*a[%(IND)s(i,k)])

/det;

w[%(IND)s(i,p)] =

(a[%(IND)s(k,p)]*a[%(IND)s(i,k)]

- a[%(IND)s(k,k)]*a[%(IND)s(i,p)])

/det;

%(vec)s

for (j = k+1; j < p; j++)

a[%(IND)s(i,j)] =

a[%(IND)s(i,j)]

- w[%(IND)s(i,k)]*a[%(IND)s(k,j)]

- w[%(IND)s(i,p)]*a[%(IND)s(p,j)];

}

}

}

Fig. 4. The basic algorithm for the WZ factorization implemented in our
framework

REFERENCES

[1] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable pro-
gramming interface for performance evaluation on modern processors.
Int. J. High Perform. Comput. Appl., 14(3):189–204, Aug. 2000.

[2] R. S. Chen and J. K. Hollingsworth. Towards fully automatic auto-
tuning: Leveraging language features of chapel. Int. J. High Perform.
Comput. Appl., 27(4):394–402, Nov. 2013.

[3] M. Frigo and S. G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Pro-
gram Generation, Optimization, and Platform Adaptation”.

[4] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and B.
Mohr. The scalasca performance toolset architecture. Concurr. Comput.:
Pract. Exper., 22(6):702–719, Apr. 2010.

[5] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach.
Vampir: Visualization and analysis of mpi resources. Supercomputer,
12:69–80, 1996.

[6] E. Peise, P. Bientinesi. The ELAPS Framework: Experimental Linear
Algebra Performance Studies. arXiv:1504.08035, 2015.

[7] C. Schaefer, V. Pankratius, and W. Tichy. Atune-IL: An instrumentation
language for auto-tuning parallel applications. In H. Sips, D. Epema,
and H.-X. Lin, editors, Euro-Par 2009 Parallel Processing, volume 5704
of Lecture Notes in Computer Science, pages 9–20. Springer Berlin
Heidelberg, 2009.

[8] S. S. Shende and A. D. Malony. The tau parallel performance system.
Int. J. High Perform. Comput. Appl., 20(2):287–311, May 2006.

//=wz_fiss_%(i)s%(j)s_%(IND)s_%(sch)s_%(vec)s\

_%(for1v)s_%(for2v)s

//?void %s(int n, double * a, double * w)

//:IND col INDc row INDr

//:sch s static d10 dynamic,10 \

d1 dynamic,1 g guided

//:i i i j j

//:j i i j j

//:vec v0 _ v1 #pragma_simd

//:for1v f1v0 _ f1v1 simd

//:for2v f2v0 _ f2v1 simd

//+wz_fiss_ij

//+wz_fiss_ji

{

int p, k, i, j;

double det;

for (k = 0; k < n/2-1; k++) {

p = n-k-1;

det = a[%(IND)s(p,k)]*a[%(IND)s(k,p)]

- a[%(IND)s(k,k)]*a[%(IND)s(p,p)];

#pragma omp parallel for %(for1v)s \

default(shared) private(i) schedule(%(sch)s)

for (i = k+1; i < p; i++) {

w[%(IND)s(i,k)] =

(a[%(IND)s(p,k)]*a[%(IND)s(i,p)]

- a[%(IND)s(p,p)]*a[%(IND)s(i,k)])

/det;

w[%(IND)s(i,p)] =

(a[%(IND)s(k,p)]*a[%(IND)s(i,k)]

- a[%(IND)s(k,k)]*a[%(IND)s(i,p)])

/det;

}

#pragma omp parallel for %(for2v)s \

default(shared) private(i,j) schedule(%(sch)s)

for (%(i)s = k+1; %(i)s < p; %(i)s++) {

%(vec)s

for (%(j)s = k+1; %(j)s < p; %(j)s++)

a[%(IND)s(i,j)] =

a[%(IND)s(i,j)]

- w[%(IND)s(i,k)]*a[%(IND)s(k,j)]

- w[%(IND)s(i,p)]*a[%(IND)s(p,j)];

}

}

}

Fig. 5. The fission algorithm for the WZ factorization implemented in our
framework

[9] C. Ţăpuş, I.-H. Chung, and J. K. Hollingsworth. Active Harmony:
Towards automated performance tuning. In Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, SC ’02, pages 1–11, Los
Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[10] R. C. Whaley and J. J. Dongarra. Automatically Tuned Linear Algebra
Software. In Proceedings of the 1998 ACM/IEEE Conference on Su-
percomputing, SC ’98, pages 1–27, Washington, DC, USA, 1998. IEEE
Computer Society.

[11] P. Yalamov and D.J. Evans. The WZ matrix factorisation method.
Parallel Computing 21 (7), pages 1111–1120, 1995.

[12] https://software.intel.com/en-us/

intel-advisor-xe

[13] https://software.intel.com/en-us/

intel-vtune-amplifier-xe

496 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


