
OpenMP Thread Affinity for Matrix Factorization

on Multicore Systems

Beata Bylina and Jarosław Bylina

Marie Curie-Skłodowska University,

Institute of Mathematics,

Pl. M. Curie-Skłodowskiej 5,

20-031 Lublin, Poland

Email: {beata.bylina,jaroslaw.bylina}@umcs.pl

Abstract—The aim of this paper is to investigate the impact
of thread affinity on computing performance for matrix factor-
ization on shared memory multicore systems with hierarchical
memory. We consider two parallel block matrix factorizations
(LU and WZ) and employ thread affinity to improve their
performance. We study decomposition without pivoting and
we compare differences between various affinity strategies for
diagonally dominant matrices. Our results show that the choice
of thread affinity has the measurable impact on the performance
of the matrice factorizations.

I. INTRODUCTION

T
HE ADVANCE of the shared memory multicore and

manycore architectures caused a rapid development of

one type of the parallelism, namely the thread level paral-

lelism. This kind of parallelism relies on splitting a program

into subprograms which can be executed concurrently. Each

of such subprograms is performed by one or more software

threads.

The thread affinity is a set of policies that determine how

software threads are pinned to processing units [1]. The goal of

the thread affinity is to bind software threads to the hardware

threads in such a way that memory accesses to data shared

between software threads are optimized and all the cores are

equally loaded.

Determining the efficiency of the thread mapping depends

on the machine and the application. There is not a single thread

mapping strategy that suits all the applications. In this work,

we are going to try to state rules which guide us to determine

efficient thread affinity to improve the performance of matrix

factorization on shared memory multithreaded machines.

Efficient parallel matrix factorizations and their implemen-

tations on different contemporary parallel machines are crucial

for engineering applications and computational science. In this

work, we study the LU factorization, and another form of the

factorization, namely the WZ [3], [4] factorization. We assume

that the factorized diagonally dominant matrix is dense, non-

singular, square. For both factorizations (LU and WZ), we

consider block versions which use a standard set of Basic

Linear Algebra Subprograms (BLAS) [2].

The rest of this paper is organized as follows. Section

II describes the methodology of the numerical experiments.

Section III shows the results of numerical experiments carried

out on shared memory multicore architectures and evaluates

different thread affinities for the matrix decomposition. Section

IV concludes our research.

II. ENVIRONMENT

We tested the execution time of two matrix decompositions,

namely the LU factorization and the WZ factorization. We

compared three implementations of these matrix decomposi-

tions, namely:

• a multithreaded implementation of the dgetrfnpi rou-

tine from the MKL library, which computes the complete

LU factorization of a general matrix without pivoting. In

our case, the matrices are square which size is n × n.

In the implementation of the dgetrfnpi routine the

panel factorization (factorization of a block of columns)

is used, as well as the level 3 BLAS routines (DTRSM and

DGEMM). We denoted this LU factorization implementa-

tion by LU.

• a parallel block WZ factorization with the use of mul-

tithreaded level 3 BLAS routines (DTRSM and DGEMM),

where the matrix is partitioned into r × r tiles (denoted

by TWZ(r));

• a parallel block WZ factorization with the use of level 3

BLAS routines (DTRSM and DGEMM) and the OpenMP

standard (denoted by TWZ(r)-OpenMP). OpenMP is

used to parallelize for loops with the dynamic scheduler.

Experiments were carried out on Intel Xeon E5-2670 v.3

(Haswell) with two 12-cores (24 cores). All applications were

compiled with icc using the following options: -xHost,

-mkl, -openmp, -O3. Here, the -xHost option gener-

ates instructions for the highest instruction set and processor

available on the compilation host machine. The -mkl and

-openmp options link the program against two libraries

(MKL and OpenMP). The last one, -O3, orders the compiler

to optimize the code automatically with the use of vectoriza-

tion and parallelization (among others).

All floating point calculations were performed in the double

precision. The input matrices were generated by the author.

They were random matrices, with a dominant diagonal of an

even size of 1024×{1, . . . , 9}. Various numbers of tiles were

tested, namely, each matrix was divided into r = 8, 16, 32, 64

tiles for each side (for the rows and the columns). The

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 489–492

DOI: 10.15439/2017F231

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 489

 1

 10

 100

 0 5 10 15 20 25 30

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

number of threads

CPU, TWZ(r), KMP_AFFINITY=compact, n=9126

r=8
r=16
r=32
r=64

 1

 10

 100

 0 5 10 15 20 25 30

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

number of threads

CPU, TWZ(r), KMP_AFFINITY=scatter, n=9126

r=8
r=16
r=32
r=64

 1

 10

 100

 0 5 10 15 20 25 30

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

number of threads

CPU, TWZ(r), KMP_AFFINITY=none, n=9126

r=8
r=16
r=32
r=64

Fig. 1. Run-time in seconds of the parallel block WZ factorization algorithm
for different r = 8, 16, 32, 64 for a matrix of size 9216 for various numbers
of threads and three values of the KMP_AFFINITY environment variable —
TWZ(r) implementation.

performance times were measured with the use of a standard

function, namely dsecnd() from MKL library. Another

environment variable used in the tests is KMP_AFFINITY,

which is set to one of the three values: compact, scatter,

none. To better control assigning software threads to hard-

ware threads, we chose the granularity as thread.

We studied a connection between the KMP_AFFINITY en-

vironment variable and the following parameters: the number

of the threads — from 1 to 30, the size of the matrix: 1024×{1,

. . . , 9}, the number of the tiles for each side (for the rows and

the columns): r = 8, 16, 32, 64.

III. RESULTS

Figures 1 and 2 present the time (in seconds) of the

block WZ factorization for 4 different numbers of tiles

(r = 8, 16, 32, 64), for different number of threads (1 – 30

threads), for a matrix of the size 9216, for three values of the

KMP_AFFINITY environment variable — for the TWZ(r) and

TWZ(r)-OpenMP implementations (respectively).

Figures 3 and 4 present the time (in seconds) of the block

WZ factorization for various number of tiles (r = 8, 16, 32, 64)

for 24 threads and different sizes of matrices for all three

considered values of the KMP_AFFINITY environment vari-

 1

 10

 100

 0 5 10 15 20 25 30

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

number of threads

CPU, TWZ(r)-OpenMP, KMP_AFFINITY=compact, n=9126

r=8
r=16
r=32
r=64

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

number of threads

CPU, TWZ(r)-OpenMP, KMP_AFFINITY=scatter, n=9126

r=8
r=16
r=32
r=64

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

number of threads

CPU, TWZ(r)-OpenMP, KMP_AFFINITY=none, n=9126

r=8
r=16
r=32
r=64

Fig. 2. Run-time in seconds of the parallel block WZ factorization algorithm
for different r = 8, 16, 32, 64 for a matrix of size 9216 for various numbers
of threads and three values of the KMP_AFFINITY environment variable —
TWZ(r)-OpenMP implementation.

able for the TWZ(r) and TWZ(r)-OpenMP implementations

(respectively).

At least one important conclusion can be seen from these

results. Namely, the number of tiles influences the time of

the computation. For r = 64 the TWZ(r) implementation is

the slowest but TWZ(r)-OpenMP is the fastest. The TWZ(r)

implementation is the fastest for r = 16. This conclusion holds

true independent of the value of the KMP_AFFINITY variable,

the number of threads or the matrix size.

Secondly, we investigate the effect of the thread affinity

on the execution time for all three implementations. Figure

5 compares all three values of the KMP_AFFINITY environ-

ment variable and it shows the time (in seconds) for different

numbers of threads (1–30 threads) for a matrix of the size 9216

— for TWZ(16) (top left), TWZ(64)-OpenMP (top right) and

the LU factorization (at the bottom).

Figure 6 compares all three values of the KMP_AFFINITY

environment variable and it shows the time (in seconds) for

different matrix sizes for 24 threads — for TWZ(16) (top left),

TWZ(64)-OpenMP (top right) and the LU factorization (at the

bottom). Thus, it implies that (for the considered applications)

the best value of the KMP_AFFINITY environment variable

is scatter which is further investigated.

490 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

matrix size

CPU, TWZ(r), 24 threads, KMP_AFFINITY=compact

r=8
r=16
r=32
r=64

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

matrix size

CPU, TWZ(r), 24 threads, KMP_AFFINITY=scatter

r=8
r=16
r=32
r=64

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

matrix size

CPU, TWZ(r), 24 threads, KMP_AFFINITY=none

r=8
r=16
r=32
r=64

Fig. 3. Run-time in seconds of the parallel block WZ factorization algorithm
for different r = 8, 16, 32, 64 for various sizes of matrices for 24 threads
and three values of the KMP_AFFINITY environment variable — TWZ(r)
implementation.

Finally, we analyzed the execution times of the three imple-

mentations (namely LU, TWZ(16) and TWZ(64)-OpenMP) for

the KMP_AFFINITY environment variable set to scatter.

Figure 7 compares the performance times (in seconds) of the

TWZ(16), TWZ(64)-OpenMP and LU implementations for

scatter and for different numbers of threads and matrix

sizes.

The shortest execution time is obtained for LU. Our

TWZ(64)-OpenMP implementation is a little worse. The

slowest implementation is TWZ(16). To better investigate

the performance time for LU and our best implementation,

they were tested for larger matrices and various values of

the KMP_AFFINITY environment variable. Table I presents

the times (in seconds) of the LU and TWZ(64)-OpenMP

implementations.

For none our implementation is faster than LU; however,

for scatter, LU wins. This implies that LU is more sensitive

for the KMP_AFFINITY setting.

The tests show the following facts. The number of the

threads. To achieve the shortest execution time, it is the best

to use all the physical cores (here, 24 threads), although,

without hyper-threading. The matrix size. For small matrices,

our implementations are better. It is caused by the fact that

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

matrix size

CPU, TWZ(r)-OpenMP, 24 threads, KMP_AFFINITY=compact

r=8
r=16
r=32
r=64

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

matrix size

CPU, TWZ(r)-OpenMP, 24 threads, KMP_AFFINITY=scatter

r=8
r=16
r=32
r=64

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

matrix size

CPU, TWZ(r)-OpenMP, 24 threads, KMP_AFFINITY=none

r=8
r=16
r=32
r=64

Fig. 4. Run-time in seconds of the parallel block WZ factorization algorithm
for different r = 8, 16, 32, 64 for various sizes of matrices for 24 threads
and three values of the KMP_AFFINITY environment variable — TWZ(r)-
OpenMP implementation.

TABLE I
THE TIMES (IN SECONDS) OF THE LU AND TWZ(64)-OPENMP

IMPLEMENTATIONS — FOR VARIOUS VALUES OF KMP_AFFINITY

matrix size implementation compact scatter none

12 288 TWZ(64)-OpenMP 4.06 2.22 2.39
LU 3.66 1.80 3.50

13 312 TWZ(64)-OpenMP 5.16 2.70 2.24
LU 4.53 2.23 4.70

14 336 TWZ(64)-OpenMP 6.59 3.39 3.50
LU 5.69 2.77 4.30

15 360 TWZ(64)-OpenMP 8.18 4.08 4,24
LU 6.96 3.42 6.40

MKL does not create threads for small problems. However,

for the size of 9216, the shortest time is achieved by LU.

All three implementations scale well in regard to the size

of the matrix. The number of the tiles. The block size

used by the MKL implementation of dgetrf is internally

hidden in the library and unknown to us at the time of this

writing. The r parameter impacts the execution time of the

block WZ factorization for both implementations. Thread

Affinity. The thread affinity had an important impact on

the performance. All three implementations (both the LU

factorization implementation provided by a vendor as well as

the WZ factorization implemented by the author) work fastest

BEATA BYLINA, JAROSŁAW BYLINA: OPENMP THREAD AFFINITY FOR MATRIX FACTORIZATION ON MULTICORE SYSTEMS 491

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

matrix size

CPU, TWZ(16), 24 threads

KMP_AFFINITY=none
KMP_AFFINITY=scatter

KMP_AFFINITY=compact

 0.001

 0.01

 0.1

 1

 10

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

matrix size

CPU, TWZ(64)-OpenMP, 24 threads

KMP_AFFINITY=none
KMP_AFFINITY=scatter

KMP_AFFINITY=compact

 0.001

 0.01

 0.1

 1

 10

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

matrix size

CPU, LU, 24 threads

KMP_AFFINITY=none
KMP_AFFINITY=scatter

KMP_AFFINITY=compact

Fig. 6. Run-time in seconds of the parallel block WZ factorization algorithm
(top left: TWZ(16); top right: TWZ(64)-OpenMP) and the LU factorization
(at the bottom) for different matrix sizes for 24 threads for three values of
the KMP_AFFINITY environment variable.

 0.001

 0.01

 0.1

 1

 10

 0 1024 2048 3072 4096 5120 6144 7168 8192 9216

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

matrix size

CPU, 24 threads, KMP_AFFINITY=scatter

LU
TWZ(64)-OpenMP

TWZ(16)

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

number of threads

CPU, KMP_AFFINITY=scatter, n=9216

LU
TWZ(64)-OpenMP

TWZ(16)

Fig. 7. Run-time in seconds of TWZ(16), TWZ(64)-OpenMP and LU for
KMP_AFFINITY=scatter — for various numbers of threads and matrix
sizes

 1

 10

 100

 0 5 10 15 20 25 30

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

number of threads

CPU, TWZ(16), n=9126

KMP_AFFINITY=none
KMP_AFFINITY=scatter

KMP_AFFINITY=compact

 1

 10

 100

 0 5 10 15 20 25 30

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

number of threads

CPU, TWZ(64)-OpenMP, n=9126

KMP_AFFINITY=none
KMP_AFFINITY=scatter

KMP_AFFINITY=compact

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

ti
m

e
 [

s
],

 l
o
g
a
ri

th
m

ic
 s

c
a
le

number of threads

CPU, LU, n=9126

KMP_AFFINITY=none
KMP_AFFINITY=scatter

KMP_AFFINITY=compact

Fig. 5. Run-time in seconds of the parallel block WZ factorization algorithm
(top left: TWZ(16); top right: TWZ(64)-OpenMP) and the LU factorization
(at the bottom) for a matrix of the size 9216 for different numbers of threads
for three values of the KMP_AFFINITY environment variable.

for scatter, and slowest for compact — and it does not

depend on the number of threads, the matrix size or the value

of r.

IV. CONCLUSION

The paper highlights the significant impact of thread affinity

on the performance of the matrix factorizations which use

BLAS operations in their implementations. For the matrix fac-

torization, the KMP_AFFINITY environment variable should

be set to scatter because this way we efficiently exploit the

potential of modern shared memory multicore machines. With

this setting, threads are put far from each other (as on different

packages) what improves the total memory throughput and the

usage of the caches.

REFERENCES

[1] Matthias Diener, Eduardo H. M. Cruz, Marco A. Z. Alves, Philippe
O. A. Navaux, and Israel Koren. Affinity-based thread and data mapping
in shared memory systems. ACM Comput. Surv., 49(4):64:1–64:38,
December 2016.

[2] J. Dongarra, J. DuCroz, I. S. Duff, and S. Hammarling. A set of level-3
Basic Linear Algebra Subprograms. ACM Trans. Math. Software, 16:1–
28, 1990.

[3] D.J. Evans and M. Hatzopoulos. A parallel linear system solver.
International Journal of Computer Mathematics, 7(3):227–238, 1979.

[4] P. Yalamov and D.J. Evans. The WZ matrix factorisation method. Parallel

Computing, 21(7):1111–1120, 1995.

492 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

