
 

 

 

 

 

Abstract— The current advances in hardware led to the 

development of the GPGPU (General-purpose computing on 

graphics processing units) paradigm. Thus, nowadays, the GPU 

(Graphics Processing Unit) is used not only for graphics 

programming, but also for general purpose algorithms. This 

paper discusses several methods regarding the use of CUDA 

(Compute Unified Device Architecture) for 2D and 3D image 

processing techniques. Some general rules for writing parallel 

algorithms in computer vision are pointed out. A theoretic 

comparison between the complexity for CPU (Central 

Processing Unit) and GPU implementations of image processing 

algorithms is given. Also, real computing times are provided for 

several algorithms in order to point out the actual performance 

gain of using the GPU over CPU. The factors that contribute to 

the difference between theoretic and real performance gain are 

also discussed. 

I. INTRODUCTION 

NTIL recently, the GPU was used only for graphics 

programming. The transition from a fixed to a 

programmable rendering pipeline allowed programmers to 

write high level code for graphics applications through 

shaders. Shaders are defined for an element belonging to one 

of the types that are processed in the graphics pipeline, for 

example vertex or fragment, and are executed for all the 

elements of that type in a parallel manner. According to 

Soller [1], early approaches to using the GPU for general 

computation date back to the year 2000. However, for this 

purpose, all tasks had to be mapped to the computer graphics 

domain. The development of the GPGPU paradigm led to a 

revolution in terms of computing times for many algorithms. 

This paper describes some general rules when implementing 

computer vision algorithms with CUDA, as well as 

theoretical and real performance gains of GPGPU 

implementations as compared to sequential ones. The second 

section discusses the state of the art in GPU based image 

processing algorithms. The third section presents theoretic 

comparisons between GPU and CPU implementations of 
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several 2D image processing algorithms. The fourth section 

discusses some issues when processing very big volume data. 

Several comparisons between theoretical results and tests 

conducted on real hardware are presented in the fifth section. 

The conclusions are drawn in the final section. 

II. STATE OF THE ART IN GPU-BASED IMAGE PROCESSING 

Some of the GPGPU image processing methods are 

briefly discussed. 

A. Acceleration of 2D Image Processing Algorithms 

Takamura and Shimizu [2] describe a denoising filter with 

genetic programming schemes for dynamic procedure 

generation. Abdellah [3] presents an easy-to-use CUDA 

library that implements Fast Fourier Transform-shift 

operations. Agrawal et al. [4] perform a real-time GPU-

based generation of the saliency map for a given image. Lee 

et al. [5] improve the computing times of the Viola-Jones 

algorithm for face detection by employing different 

strategies for CPU-GPU task-level parallelism. Ma et al. [6] 

propose a CUDA-based acceleration of the Fisher Vector 

extraction method for various video monitoring applications. 

Hwang et al. [7] present a CUDA implementation of 

foreground detection based on background modeling. Yao et 

al. [8] describe a CUDA-based image inpainting algorithm 

for virtual viewpoint synthesis. 

B. Acceleration of 3D Image Processing Algorithms 

Shewale et al. [9] analyze the performance of different 

CPU/GPU parallel implementations of the Gaussian filter, k-

means clustering based segmentation and Fourier based 

coefficient registration of medical images such as CTs and 

MRIs. Valero [10] proposes a GPU-based implementation 

for accelerating the DARTEL algorithm for diffeomorphic 

registration of brain biomedical images. Langdon et al. [11] 

use genetic programming to improve the performance of an 

existing CUDA implementation for 3D medical image 

registration. 

C. GPGPU Frameworks 

Lee et al. [12] propose optimization strategies for 

compute- and memory-bound algorithms using the CUDA 

architecture. They test their optimization strategies on a 3D 

unbiased nonlinear image registration technique and on a 

non-local means surface denoising algorithm. Ravishankar et 
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al. [13] present a domain-specific language for image 

processing, namely Forma, which provides syntax for stencil 

computation, sampling and other 2D or 3D algorithms. 

III. IMAGE PROCESSING ALGORITHMS WITH CUDA 

From the parallel implementation point of view, most of 

the image processing algorithms belong to one of four 

categories: pixel-to-pixel, neighborhood, global and multi-

steps (Fig. 1). Each of these classes is discussed below. 

 

 

Fig.  1 Discussed 2D image processing algorithms 

 

A. Pixel-to-pixel (P2P) Algorithms 

Pixel-to-pixel algorithms assume that each pixel in an 

image is processed based solely on its characteristics. One of 

the most common pixel-to-pixel algorithms encountered in 

image processing is pixel value remapping, based only on 

the value of the current pixel. Value remapping can be used 

for enhancement of structures characterized by certain 

intensity values. A particular case of value remapping is 

segmentation based on thresholds. This type of algorithm is 

naively parallel due to the fact that each pixel is handled 

independently by a thread. An easy implementation in 

CUDA of this type of algorithm is to copy the image or 

volume into texture memory, so that the access to the pixel 

values is very fast. The output of the algorithm is an 

image/volume with the same size as the input. 

Let Cpixel be the complexity of the operations applied to 

one pixel from an image in a pixel-to-pixel algorithm. Then 

the complexity of the entire algorithm for a 2D image in a 

sequential approach, on the CPU, is: 

 hwCC pixelCPUPP _2
, (1) 

where w is the width of the image and h is its height. As 

previously mentioned, in a parallel approach on the GPU, 

each thread handles only one pixel and accesses only the 

memory related to that pixel. Therefore, the theoretic 

complexity of the same algorithm in a GPGPU approach is 

pixelC . The theoretic performance gain obtained is hw  . 

However, the transfer between host and device memory 

introduces a latency that decreases the performance gain in 

real applications. Also, the actual computing time for the 

operations applied per pixel is not the same for the CPU and 

the GPU and depends very much on the actual hardware. 

The memory transfer latency can be reduced through page 

locked memory and the zero-copy feature, but not 

significantly. 

B. Neighborhood-to-pixel (N2P) Algorithms 

Spatial filters are applied locally, at the level of each 

image pixel, by replacing the value of the current pixel 

depending on the values of the neighboring pixels. Among 

the neighborhood algorithms we can mention the Gaussian 

filter, for noise removal, or the Sobel filter, for edge 

extraction. The difference between neighborhood algorithms 

and pixel-to-pixel algorithms is the access to memory. In 

neighborhood algorithms, the thread corresponding to one 

pixel has to access information not only about the current 

pixel, but also about its neighboring pixels. These algorithms 

can be implemented in the same manner as the pixel-to-pixel 

algorithms, by copying the image/volume into texture 

memory. Another possibility is the use of shared memory, as 

described in [14]. Each thread block can copy parts of the 

image by loading data from texture to shared memory. The 

barrier synchronization forces each thread to wait until all 

the other threads have finished loading the corresponding 

data from texture to shared memory. Even if shared memory 

is faster, the transfer between texture and shared memory 

introduces a lag that determines an insignificant difference 

between the two implementations. The theoretic 

complexities for sequential and parallel implementations are 

similar to those of the pixel-to-pixel algorithms. However, 

the differences between theoretic and actual performance 

gains are bigger in this case. 

C. Global (G) Algorithms 

Global algorithms refer to computations that access 

information about all the pixels in an image, not just a 

neighborhood. Examples of global algorithms are the 

computation of the average intensity or the 

maximum/minimum intensity in an image. The computation 

of a global parameter in an image is not intuitively parallel, 

because it depends on all the pixels in the image.  

Let 
pixelC  be the complexity of the operations applied to 

one pixel in a global algorithm. For example, when 

computing the maximum intensity in one image, 
pixelC  is the 

complexity of comparing the intensity of the current pixel 

with the current maximum value and modifying the current 

maximum value, if necessary. The complexity of a global 

algorithm in a sequential implementation is hwCpixel  . A 

parallel approach to implementing global algorithms is the 

reduction method. CUDA threads are organized into blocks 

and grids. The blocks can be structured into a one-

dimensional grid of size h and the threads can be structured 

into one-dimensional blocks of size w. Thus, each block 

handles one row in an image. The threads in a block 

cooperate in order to determine a partial global parameter 

which depends only on the current row. For example, when 

computing the maximum intensity in an image, this partial 

global parameter is the maximum intensity for the pixels 

located on the current row. Each block loads the data into 

shared memory, into an array of size w. The computation of 
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the partial global parameter for the current block is done in 

)(log 2 w  iterations. In each iteration, the number of active 

threads is divided by 2. The computation of the final global 

parameter is also accomplished with the reduction method, 

but in )(log 2 h  iterations. In each iteration, the active threads 

run in parallel, but before going to the next iteration, they 

need to synchronize. The theoretical complexity for the 

parallel implementation of a global algorithm is: 

  )(log)(log 22_ hwCC pixelGPUG  . (2) 

The theoretical performance gain obtained when using the 

reduction method for global algorithms is )(log/ 2 whw  . 

Besides the lag introduced by the memory transfers and 

access, the latency caused by the barrier synchronization in 

the reduction method influences the real performance gain. 

In a multi-GPGPU approach, the image can be divided 

based on the number of available GPUs. After each GPU 

computes a partial global parameter, the final global 

parameter is computed on the CPU in N iterations. For N 

GPUs, the complexity of the global algorithm is: 

 





 


 N

N

hw
CC pixelMultiGPUG

)(log)(log 22
_

 (3) 

D. Multi-steps (MS) Algorithms 

These algorithms are executed in more iterations, the 

processing of the 
thk  iteration depending on the result of the 

processing from the thk )1(   iteration. An example of multi-

steps algorithm is breadth first search (BFS) for images, 

which starts with a seed pixel and discovers similar pixels 

connected with this one. The similarity measure can be 

defined based on the intensity values, the gradient, etc.  

An image can be interpreted as a graph where each node is 

a pixel. The graph edges can be defined based on the 

similarity of the pixels. A common practice in BFS is to 

define the edges that connect pixels in a 4-neighborhood. In 

the worst-case scenario, the seed pixel is the one located in 

the middle of the image and all the pixels are similar. If the 

complexity for one pixel is 
pixelC , the sequential complexity 

for the worst-case scenario is:  

   2,2max2

_ 4...441 hw

pixelCPUMS CC  . (4) 

The CUDA implementation of the BFS in image 

processing is described in [15]. The complexity for the 

CUDA implementation of the BFS for the worst case 

scenario is:  

   42,2max_  hwCC pixelGPUMS
. (5) 

The theoretic performance gain obtained when 

approaching the BFS in a parallel manner is: 

 
 

  42,2max

4...441 2,2max2





hw

Gain
hw

MS
. (6) 

A recursive algorithm is not suitable for multi-GPGPU 

approaches. Multiple GPUs can be used only if there are 

more than one seed pixel in the BFS, or more than one initial 

image in the recursive splitting. 

IV. VOLUME DATA (3D) PROCESSING WITH CUDA 

The computation of the theoretic complexities can be 

easily extended to the 3D image processing. A 3D volume 

can be seen as a stack of s  2D images or slices, each of size 

hw  . For the pixel-to-pixel and the neighborhood-to-pixel 

algorithms, the sequential complexity is: 

 shwCC pixelCPUPPD _2_3
. (9) 

The theoretic parallel complexity remains 
pixelC , as in the 

2D case.  

The sequential complexity of the global algorithms is 

shwCpixel  . The parallel implementation of a global 

algorithm assumes the computation of partial global 

parameters, one for each slice, and the computation of the 

final global parameter, for the whole volume, with the 

reduction method, in )(log 2 s  iterations. Thus, the theoretic 

parallel complexity of the global algorithms is: 

  )(log)(log)(log 222__3 shwCC pixelGPUGD  .(10) 

The BFS extension to 3D assumes the inspection of two 

more neighbors for each voxel, one on the upper adjacent 

slice and the other one on the lower adjacent slice. Thus, the 

sequential complexity for the worst-case scenario becomes: 

   2,2,2max2

__3 6...661 shw

pixelCPUMSD CC  .(11) 

The parallel implementation will have the following 

complexity: 

 6)2,2,2max(__3  shwCC pixelGPUMSD
. (12) 

Many volume data come from CT or MRI scans. The 

main problem of 3D image processing is the large size of the 

data acquired from the scanning devices. An example of 

neighborhood algorithm that processes volumes is marching 

cubes. The increased complexity of the marching cubes 

algorithm, caused by the huge number of intersections that 

are processed, implies slow computing times and high 

memory usage. The classic CUDA implementation of this 

algorithm [15] leads to real time surface reconstruction, but 

can handle only small datasets. GPUs can lead to significant 

performance gains as compared to sequential 

implementations, but the GPU memory is limited. We 

proposed an approach that divides the initial volume into 

sub-volumes, which can be computed serially on the GPU 

without exceeding the memory pool [16]. 

V. RESULTS 

This section presents results derived from tests conducted 

on real hardware. The tests were made on an i7-2600K 3.40 
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GHz processor with 8 GB RAM and an Nvidia GeForce 

GTX 590 card with 1.5 GB RAM. 

Table I presents the computing times of running a value 

remapping on the CPU and on the GPU. 

Table II presents the computing times of applying a 

Gaussian filter on the CPU and on the GPU. We tested the 

implementation using only global memory, using shared 

memory and a multi-GPGPU implementation.  

Table III presents a comparison between serial and 

parallel implementations of determining the maximum 

intensity in an image. 

VI. CONCLUSIONS 

This paper focuses on theoretic comparisons between 

sequential and parallel implementations of 2D/3D image 

processing algorithms. It also provides comparisons of real 

computing times for several CPU and GPU algorithms.  

Four main classes of image processing algorithms are 

discussed. The main issues of CUDA programming in 

relation to these algorithms are presented. The paper also 

gives general rules for implementing image processing 

algorithms in CUDA, such as the type of GPU memory 

which should be used based on the particularities of the 

algorithms and the manner of translating non-intuitively 

parallel algorithms to parallel ones or best practices for 

multiple GPUs. 

In theory, parallel implementations introduce a very high 

performance gain as compared to sequential 

implementations. In practice, memory transfer lags, memory 

access and real hardware characteristics lead to a smaller 

performance gain. Still, GPGPU image processing 

algorithms are undeniably faster than CPU ones.  
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TABLE I. 

COMPUTING TIMES FOR VALUE REMAPPING 

Image size 

(pixels) 

CPU 

implem (ms) 

GPGPU 

implem (ms) 

multi- 

GPGPU (ms) 

2562 0.2 0.19 0.39 

5122 1 0.34 0.42 

10242 3.4 0.85 0.7 

 

TABLE II. 

COMPUTING TIMES FOR GAUSSIAN FILTER 

Image 

size 

(pixels) 

CPU 

implem 

(ms) 

GPGPU 

implem 

(ms) 

GPGPU 

shred 

implem (ms) 

multi- 

GPGPU 

(ms) 

2562 1.1 0.2 0.21 0.39 

5122 3.7 0.38 0.37 0.39 

10242 14.6 1.04 0.99 0.71 

 

TABLE III. 

TIMES FOR COMPUTING THE MAXIMUM INTENSITY IN AN IMAGE 

Image size 

(pixels) 

CPU 

implem (ms) 

GPGPU 

implem (ms) 

2562 2.1 0.7 

5122 2.2 0.88 

10242 2.4 1.68 
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