

Abstract— The current advances in hardware led to the

development of the GPGPU (General-purpose computing on

graphics processing units) paradigm. Thus, nowadays, the GPU

(Graphics Processing Unit) is used not only for graphics

programming, but also for general purpose algorithms. This

paper discusses several methods regarding the use of CUDA

(Compute Unified Device Architecture) for 2D and 3D image

processing techniques. Some general rules for writing parallel

algorithms in computer vision are pointed out. A theoretic

comparison between the complexity for CPU (Central

Processing Unit) and GPU implementations of image processing

algorithms is given. Also, real computing times are provided for

several algorithms in order to point out the actual performance

gain of using the GPU over CPU. The factors that contribute to

the difference between theoretic and real performance gain are

also discussed.

I. INTRODUCTION

NTIL recently, the GPU was used only for graphics

programming. The transition from a fixed to a

programmable rendering pipeline allowed programmers to

write high level code for graphics applications through

shaders. Shaders are defined for an element belonging to one

of the types that are processed in the graphics pipeline, for

example vertex or fragment, and are executed for all the

elements of that type in a parallel manner. According to

Soller [1], early approaches to using the GPU for general

computation date back to the year 2000. However, for this

purpose, all tasks had to be mapped to the computer graphics

domain. The development of the GPGPU paradigm led to a

revolution in terms of computing times for many algorithms.

This paper describes some general rules when implementing

computer vision algorithms with CUDA, as well as

theoretical and real performance gains of GPGPU

implementations as compared to sequential ones. The second

section discusses the state of the art in GPU based image

processing algorithms. The third section presents theoretic

comparisons between GPU and CPU implementations of

 This work has been funded by University Politehnica of Bucharest,

through the “Excellence Research Grants” Program, UPB – GEX.

Identifier: UPB-EXCELENTA-2016 “3Diafano – Reconstructia si

vizualizarea tesuturilor pe baza transiluminarii in NIR si a camerelor video

3D”, contract number 01/26.09.2016, code 514. This work has also

received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement 643636

(www.soundofvision.net).

several 2D image processing algorithms. The fourth section

discusses some issues when processing very big volume data.

Several comparisons between theoretical results and tests

conducted on real hardware are presented in the fifth section.

The conclusions are drawn in the final section.

II. STATE OF THE ART IN GPU-BASED IMAGE PROCESSING

Some of the GPGPU image processing methods are

briefly discussed.

A. Acceleration of 2D Image Processing Algorithms

Takamura and Shimizu [2] describe a denoising filter with

genetic programming schemes for dynamic procedure

generation. Abdellah [3] presents an easy-to-use CUDA

library that implements Fast Fourier Transform-shift

operations. Agrawal et al. [4] perform a real-time GPU-

based generation of the saliency map for a given image. Lee

et al. [5] improve the computing times of the Viola-Jones

algorithm for face detection by employing different

strategies for CPU-GPU task-level parallelism. Ma et al. [6]

propose a CUDA-based acceleration of the Fisher Vector

extraction method for various video monitoring applications.

Hwang et al. [7] present a CUDA implementation of

foreground detection based on background modeling. Yao et

al. [8] describe a CUDA-based image inpainting algorithm

for virtual viewpoint synthesis.

B. Acceleration of 3D Image Processing Algorithms

Shewale et al. [9] analyze the performance of different

CPU/GPU parallel implementations of the Gaussian filter, k-

means clustering based segmentation and Fourier based

coefficient registration of medical images such as CTs and

MRIs. Valero [10] proposes a GPU-based implementation

for accelerating the DARTEL algorithm for diffeomorphic

registration of brain biomedical images. Langdon et al. [11]

use genetic programming to improve the performance of an

existing CUDA implementation for 3D medical image

registration.

C. GPGPU Frameworks

Lee et al. [12] propose optimization strategies for

compute- and memory-bound algorithms using the CUDA

architecture. They test their optimization strategies on a 3D

unbiased nonlinear image registration technique and on a

non-local means surface denoising algorithm. Ravishankar et

U

GPU Accelerated 2D and 3D Image Processing

Anca Morar, Florica Moldoveanu, Alin Moldoveanu, Oana Balan,Victor Asavei
University POLITEHNICA of Bucharest

Email: anca.morar@cs.pub.ro, florica.moldoveanu@cs.pub.ro, alin.moldoveanu@cs.pub.ro,

oana.balan@cs.pub.ro, victor.asavei@cs.pub.ro

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 653–656

DOI: 10.15439/2017F265

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 653

al. [13] present a domain-specific language for image

processing, namely Forma, which provides syntax for stencil

computation, sampling and other 2D or 3D algorithms.

III. IMAGE PROCESSING ALGORITHMS WITH CUDA

From the parallel implementation point of view, most of

the image processing algorithms belong to one of four

categories: pixel-to-pixel, neighborhood, global and multi-

steps (Fig. 1). Each of these classes is discussed below.

Fig. 1 Discussed 2D image processing algorithms

A. Pixel-to-pixel (P2P) Algorithms

Pixel-to-pixel algorithms assume that each pixel in an

image is processed based solely on its characteristics. One of

the most common pixel-to-pixel algorithms encountered in

image processing is pixel value remapping, based only on

the value of the current pixel. Value remapping can be used

for enhancement of structures characterized by certain

intensity values. A particular case of value remapping is

segmentation based on thresholds. This type of algorithm is

naively parallel due to the fact that each pixel is handled

independently by a thread. An easy implementation in

CUDA of this type of algorithm is to copy the image or

volume into texture memory, so that the access to the pixel

values is very fast. The output of the algorithm is an

image/volume with the same size as the input.

Let Cpixel be the complexity of the operations applied to

one pixel from an image in a pixel-to-pixel algorithm. Then

the complexity of the entire algorithm for a 2D image in a

sequential approach, on the CPU, is:

 hwCC pixelCPUPP _2
, (1)

where w is the width of the image and h is its height. As

previously mentioned, in a parallel approach on the GPU,

each thread handles only one pixel and accesses only the

memory related to that pixel. Therefore, the theoretic

complexity of the same algorithm in a GPGPU approach is

pixelC . The theoretic performance gain obtained is hw .

However, the transfer between host and device memory

introduces a latency that decreases the performance gain in

real applications. Also, the actual computing time for the

operations applied per pixel is not the same for the CPU and

the GPU and depends very much on the actual hardware.

The memory transfer latency can be reduced through page

locked memory and the zero-copy feature, but not

significantly.

B. Neighborhood-to-pixel (N2P) Algorithms

Spatial filters are applied locally, at the level of each

image pixel, by replacing the value of the current pixel

depending on the values of the neighboring pixels. Among

the neighborhood algorithms we can mention the Gaussian

filter, for noise removal, or the Sobel filter, for edge

extraction. The difference between neighborhood algorithms

and pixel-to-pixel algorithms is the access to memory. In

neighborhood algorithms, the thread corresponding to one

pixel has to access information not only about the current

pixel, but also about its neighboring pixels. These algorithms

can be implemented in the same manner as the pixel-to-pixel

algorithms, by copying the image/volume into texture

memory. Another possibility is the use of shared memory, as

described in [14]. Each thread block can copy parts of the

image by loading data from texture to shared memory. The

barrier synchronization forces each thread to wait until all

the other threads have finished loading the corresponding

data from texture to shared memory. Even if shared memory

is faster, the transfer between texture and shared memory

introduces a lag that determines an insignificant difference

between the two implementations. The theoretic

complexities for sequential and parallel implementations are

similar to those of the pixel-to-pixel algorithms. However,

the differences between theoretic and actual performance

gains are bigger in this case.

C. Global (G) Algorithms

Global algorithms refer to computations that access

information about all the pixels in an image, not just a

neighborhood. Examples of global algorithms are the

computation of the average intensity or the

maximum/minimum intensity in an image. The computation

of a global parameter in an image is not intuitively parallel,

because it depends on all the pixels in the image.

Let
pixelC be the complexity of the operations applied to

one pixel in a global algorithm. For example, when

computing the maximum intensity in one image,
pixelC is the

complexity of comparing the intensity of the current pixel

with the current maximum value and modifying the current

maximum value, if necessary. The complexity of a global

algorithm in a sequential implementation is hwCpixel . A

parallel approach to implementing global algorithms is the

reduction method. CUDA threads are organized into blocks

and grids. The blocks can be structured into a one-

dimensional grid of size h and the threads can be structured

into one-dimensional blocks of size w. Thus, each block

handles one row in an image. The threads in a block

cooperate in order to determine a partial global parameter

which depends only on the current row. For example, when

computing the maximum intensity in an image, this partial

global parameter is the maximum intensity for the pixels

located on the current row. Each block loads the data into

shared memory, into an array of size w. The computation of

654 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

the partial global parameter for the current block is done in

)(log 2 w iterations. In each iteration, the number of active

threads is divided by 2. The computation of the final global

parameter is also accomplished with the reduction method,

but in)(log 2 h iterations. In each iteration, the active threads

run in parallel, but before going to the next iteration, they

need to synchronize. The theoretical complexity for the

parallel implementation of a global algorithm is:

)(log)(log 22_ hwCC pixelGPUG . (2)

The theoretical performance gain obtained when using the

reduction method for global algorithms is)(log/ 2 whw .

Besides the lag introduced by the memory transfers and

access, the latency caused by the barrier synchronization in

the reduction method influences the real performance gain.

In a multi-GPGPU approach, the image can be divided

based on the number of available GPUs. After each GPU

computes a partial global parameter, the final global

parameter is computed on the CPU in N iterations. For N

GPUs, the complexity of the global algorithm is:

 N

N

hw
CC pixelMultiGPUG

)(log)(log 22
_

 (3)

D. Multi-steps (MS) Algorithms

These algorithms are executed in more iterations, the

processing of the
thk iteration depending on the result of the

processing from the thk)1(iteration. An example of multi-

steps algorithm is breadth first search (BFS) for images,

which starts with a seed pixel and discovers similar pixels

connected with this one. The similarity measure can be

defined based on the intensity values, the gradient, etc.

An image can be interpreted as a graph where each node is

a pixel. The graph edges can be defined based on the

similarity of the pixels. A common practice in BFS is to

define the edges that connect pixels in a 4-neighborhood. In

the worst-case scenario, the seed pixel is the one located in

the middle of the image and all the pixels are similar. If the

complexity for one pixel is
pixelC , the sequential complexity

for the worst-case scenario is:

 2,2max2

_ 4...441 hw

pixelCPUMS CC . (4)

The CUDA implementation of the BFS in image

processing is described in [15]. The complexity for the

CUDA implementation of the BFS for the worst case

scenario is:

 42,2max_ hwCC pixelGPUMS
. (5)

The theoretic performance gain obtained when

approaching the BFS in a parallel manner is:

 42,2max

4...441 2,2max2

hw

Gain
hw

MS
. (6)

A recursive algorithm is not suitable for multi-GPGPU

approaches. Multiple GPUs can be used only if there are

more than one seed pixel in the BFS, or more than one initial

image in the recursive splitting.

IV. VOLUME DATA (3D) PROCESSING WITH CUDA

The computation of the theoretic complexities can be

easily extended to the 3D image processing. A 3D volume

can be seen as a stack of s 2D images or slices, each of size

hw . For the pixel-to-pixel and the neighborhood-to-pixel

algorithms, the sequential complexity is:

 shwCC pixelCPUPPD _2_3
. (9)

The theoretic parallel complexity remains
pixelC , as in the

2D case.

The sequential complexity of the global algorithms is

shwCpixel . The parallel implementation of a global

algorithm assumes the computation of partial global

parameters, one for each slice, and the computation of the

final global parameter, for the whole volume, with the

reduction method, in)(log 2 s iterations. Thus, the theoretic

parallel complexity of the global algorithms is:

)(log)(log)(log 222__3 shwCC pixelGPUGD .(10)

The BFS extension to 3D assumes the inspection of two

more neighbors for each voxel, one on the upper adjacent

slice and the other one on the lower adjacent slice. Thus, the

sequential complexity for the worst-case scenario becomes:

 2,2,2max2

__3 6...661 shw

pixelCPUMSD CC .(11)

The parallel implementation will have the following

complexity:

 6)2,2,2max(__3 shwCC pixelGPUMSD
. (12)

Many volume data come from CT or MRI scans. The

main problem of 3D image processing is the large size of the

data acquired from the scanning devices. An example of

neighborhood algorithm that processes volumes is marching

cubes. The increased complexity of the marching cubes

algorithm, caused by the huge number of intersections that

are processed, implies slow computing times and high

memory usage. The classic CUDA implementation of this

algorithm [15] leads to real time surface reconstruction, but

can handle only small datasets. GPUs can lead to significant

performance gains as compared to sequential

implementations, but the GPU memory is limited. We

proposed an approach that divides the initial volume into

sub-volumes, which can be computed serially on the GPU

without exceeding the memory pool [16].

V. RESULTS

This section presents results derived from tests conducted

on real hardware. The tests were made on an i7-2600K 3.40

ANCA MORAR ET AL.: GPU ACCELERATED 2D AND 3D IMAGE PROCESSING 655

GHz processor with 8 GB RAM and an Nvidia GeForce

GTX 590 card with 1.5 GB RAM.

Table I presents the computing times of running a value

remapping on the CPU and on the GPU.

Table II presents the computing times of applying a

Gaussian filter on the CPU and on the GPU. We tested the

implementation using only global memory, using shared

memory and a multi-GPGPU implementation.

Table III presents a comparison between serial and

parallel implementations of determining the maximum

intensity in an image.

VI. CONCLUSIONS

This paper focuses on theoretic comparisons between

sequential and parallel implementations of 2D/3D image

processing algorithms. It also provides comparisons of real

computing times for several CPU and GPU algorithms.

Four main classes of image processing algorithms are

discussed. The main issues of CUDA programming in

relation to these algorithms are presented. The paper also

gives general rules for implementing image processing

algorithms in CUDA, such as the type of GPU memory

which should be used based on the particularities of the

algorithms and the manner of translating non-intuitively

parallel algorithms to parallel ones or best practices for

multiple GPUs.

In theory, parallel implementations introduce a very high

performance gain as compared to sequential

implementations. In practice, memory transfer lags, memory

access and real hardware characteristics lead to a smaller

performance gain. Still, GPGPU image processing

algorithms are undeniably faster than CPU ones.

REFERENCES

[1] Stephan Soller, "GPGPU Origins and GPU and GPU Hardware

Architecture", Practical Term Report, High Performance Computing

Center Stuttgart, Stuttgart Media University, 2011.

[2] S. Takamura, A. Shimizu, “GPGPU-assisted denoising filter

generation for video coding”, GECCO Comp '14 Proceedings of the
Companion Publication of the 2014 Annual Conference on Genetic

and Evolutionary Computation, 2014, pp. 151-152.

[3] M. Abdellah, “CufftShift: High Performance CUDA-accelerated

FFTshift Library”, Proceedings of the High Performance Computing
Symposium, ser. HPC ’14. San Diego, CA, USA: Society for
Computer Simulation International, 2014.

[4] R. Agrawal, S. Gupta, J. Mukherjee, R.K. Layek, “A GPU based real-
time CUDA implementation for obtaining visual saliency”,
Proceedings of the 2014 Indian Conference on Computer Vision

Graphics and Image Processing, ACM, 2014

[5] 5. Y. Lee, C. Jang, H. Kim, “Accelerating a computer vision
algorithm on a mobile SoC using CPU-GPU co-processing: a case

study on face detection”, Proceeding MOBILESoft '16 Proceedings of
the International Conference on Mobile Software Engineering and

Systems, 2016.

[6] W. Ma, L. Cao, L. Yu, G. Long, Y. Li, “GPU-FV: Realtime Fisher

Vector and Its Applications in Video Monitoring”, ICMR '16 -

Proceedings of the 2016 ACM on International Conference on

Multimedia Retrieval, pp. 39-46.

[7] S. Hwang, Y. Uh, M.Ki, K. Lim, D. Park, H. Byun, “Real-time

background subtraction based on GPGPU for high-resolution video

surveillance”, IMCOM '17 Proceedings of the 11th International

Conference on Ubiquitous Information Management and

Communication, 2014.

[8] L. Yao, Y. Han, X. Li, “Virtual Viewpoint Synthesis using CUDA
Acceleration”, 22nd ACM Conference on Virtual Reality Software and

Technology, pp/ 367-368, 2016.

[9] A. Shewale, N. Waghmare, A. Sonawane, U. Teke, “High
Performance Computation Analysis for Medical Images using High

Computational Methods”, ICTCS '16 Proceedings of the Second
International Conference on Information and Communication

Technology for Competitive Strategies, 2016

[10] P. Valero-Lara, “A GPU approach for accelerating 3d deformable
registration (Dartel) on brain biomedical images”, in Proceedings of
the 20th European MPI Users’ Group Meeting, EuroMPI ’13, New
York, NY, USA, 2013, ACM, pp. 187–192.

[11] W.B. Langdon, M. Modat, J. Petke, M. Harman, “Improving 3D
Medical Image Registration CUDA Software with Genetic

Programming”, Annual Conference on Genetic and Evolutionary, pp.
951-958, 2014.

[12] D. Lee, I. Dinov, B. Dong, B. Gutman, I. Yanovsky, A. W. Toga,

"CUDA Optimization Strategies for Compute- and Memory-Bound

Neuroimaging Algorithms", Jounral on Computer Methods and

Programs in Biomedicine", vol 106(3), pp. 175-187, 2012.

[13] M. Ravishankar, J. Holewinski, V. Grover, “Forma: A DSL for image

processing applications to target GPUs and multi-core CPUs”,
GPGPU, 2015, pp. 109–120

[14] A. Morar, F. Moldoveanu, V. Asavei, A. Egner, "Multi-GPGPU

Based Medical Image Processing in Hip Replacement", Journal of

Control Engineering and Applied Informatics, vol. 14(3), pp. 25-34,

2012.

[15] A. Morar, "Analysis and Visualization of Data from Medical Images",

PhD Thesis, University POLITEHNICA of Bucharest, 2012.

[16] L. Petrescu, A. Morar, F. Moldoveanu, V. Asavei, "Real Time

Reconstruction of Volumes from Very Large Datasets using CUDA",

Proceedings of the 15th International Conference on System Theory,

Control and Computing, pp. 462-466, 2011.

TABLE I.

COMPUTING TIMES FOR VALUE REMAPPING

Image size

(pixels)

CPU

implem (ms)

GPGPU

implem (ms)

multi-

GPGPU (ms)

2562 0.2 0.19 0.39

5122 1 0.34 0.42

10242 3.4 0.85 0.7

TABLE II.

COMPUTING TIMES FOR GAUSSIAN FILTER

Image

size

(pixels)

CPU

implem

(ms)

GPGPU

implem

(ms)

GPGPU

shred

implem (ms)

multi-

GPGPU

(ms)

2562 1.1 0.2 0.21 0.39

5122 3.7 0.38 0.37 0.39

10242 14.6 1.04 0.99 0.71

TABLE III.

TIMES FOR COMPUTING THE MAXIMUM INTENSITY IN AN IMAGE

Image size

(pixels)

CPU

implem (ms)

GPGPU

implem (ms)

2562 2.1 0.7

5122 2.2 0.88

10242 2.4 1.68

656 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

