
Abstract—Scheduling production jobs in the real production

system requires  considering  a number  of  factors which may

prove to exert  a negative effect  on the production processes.

Hence  the  need  for  the  identification  and  compensation  of

potential  disruptions  as  early  as  at  the  production  planning

stage. The aim of this paper is to employ the survival and the

hazard  function  to  anticipate  potential  disruptions  of  the

schedule so that they could be absorbed to produce a robust job

schedule.

I. INTRODUCTION

CHEDULING  of  production  jobs  has  received  much
attention from academic researchers,  which has led to

numerous  works  published  in  the  field.  Authors  have
proposed  various  solutions  aimed  at  creating  effective
production  schedules  [1]–[5].  Many  current  solutions,
however,  are  of  a  purely  theoretical  character  and  are
frequently unfeasible in existing production systems [6]–[7].

S

Practice  shows  that  each  production  process  involves  a
variety of factors impede the performance [7]–[8]. It is for
that  reason  that  we  can  observe  the  trend  referred  to  as
robust  scheduling,  which  describes  job  scheduling  under
uncertainty [7].

This  paper  describes  the  development  of  a  robust  job
schedule  based  on  empirical  data  regarding  the  selected
technological  machine  failure.  In  order  to  determine  the
selected reliability parameters, we have employed the Life-
time Data Analysis, also referred to as the Survival Analysis
[9]. Moreover, we proposed new service buffer input method.

II.  SCHEDULING UNDER MACHINE FAILURE CONSTRAINT

Robust  scheduling  represents  a  process  that  produces  a
schedule that is able to absorb disruptions,  i.e. can account
for  changing  parameters  of  the  production  process  [7–8].
This type of scheduling is composed of the predictive phase
(pertaining  to  the  planning  stage)  and  the  reactive  phase
(pertaining to the production stage) [10]–[11].

Researchers indicate several sources of uncertainty in the
production  process,  including:  job  processing  times,
preparation  and  completion  times,  works  transport
availability  and  times,  machine  availability,  workers  and
tools  availability,  raw  material/semi-finished  product
shortage or delay [7], [12]–[14].  Although  they  are  largely

of  random  character,  the  knowledge  of  the  character  of
uncertainty  factors  is  of  crucial  importance  in  robust
scheduling [8], [15].

An increasing number of studies into robust scheduling of
production  jobs  regard  resource  availability  as  the  major
source of disruption in the production process. In practice,
this  is  strictly  connected  with  the  failure  of  machines
processing  production  jobs  [10],  [16]–[17].  Various
solutions are proposed in this area of research. 

In  his  study,  M.  T.  Jensen  [16]  adopts  a  deterministic
approach and regards machine failure as the times of failure
occurrence, and subsequently tests the developed schedules
for various numbers of machines and jobs. A. Davenport et

al. [17],  S.  Gürel  et  al. [18]  and  V.  J.  Leon  et  al. [19]
include in their works a typical probability distribution and
apply  the  obtained  data  in  developing  robust  schedules.
Many authors suggest employing the times pertaining to the
field  of  Preventive  Maintenance  (PM)  [20].  Deepu  [21],
Hong  Gao  [22],  W.  M.  Kempa  [23]  or  B.  Skołud  [24]
employ  MTTF,  MTBR,  MTTR  and  MTTFF  factors  in
prediction  of  potential  failure,  with  a  view to  developing
robust  schedules.  These  authors  make  use  of  the
redundancy-based techniques,  which are widely applied in
the  research  in  the  field.  An  extensive  body  of  literature
[16]–[17], [21]–[22] emphasises the need for acquisition and
analysis  of  historical  data  of  machine  failure  as  an
invaluable  source  of  knowledge  in  robust  scheduling  of
production jobs.

III. PROBLEM FORMULATION

Formulation  of  the  job  scheduling  problem  under
uncertainty demands establishing the following [25]: 

– set  of  processed  jobs  J,  which  is  the  set  of  n
technological processes (jobs) to carry out:

},,...,,{ 21 nJJJJ  (1)

– set of machines M, which is the set m of technological
machines processing production jobs:

},,...,,{ 21 mMMMM  (2)

– m  n matrix of machine orders  MO representing the
rank of jobs on particular machines:

],[ ijoMO  (3)
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where:  oij – ranking of jobs  i on the machine  j  taking
the  value  of: oij  =  0  –  when  the  operation  i is  not
processed on the machine j, oij  = {1,...,  m} – when the
operation i is processed on the machine j;

– matrix  of  processing  times  PT containing  data
regarding processing times of particular  technological
operations:

PT=[ p
ij
] , (4)

where:  pij – processing time of job i on the machine j,
while for oij = 0, also pij = 0.

The  general  problem  with  scheduling  in  job-shop
conditions consists in ordering jobs from the set of jobs  J
between  the  machines  from  the  set  of  machines  M,
accounting for the technology described in the matrix  MO,
so  that  the  resulting  schedule  corresponds  to  the  furthest
extent with the defined objective criterion.

In order to produce the robust schedule, which will absorb
potential disruptions in the stock of machines,  it is crucial
determine for each m of the uncertain machines:

– the set of failure times of machines FTm containing data
on machine failure times:

FT
m
={f

m1
, f

m2
, . . ., f

mi
}, (5)

where:  fmi –  is  a  factor  determining  the  probable
machine failure times;

– the set of time buffers TBm, which contains data on the
machine servicing time buffers that must be included in
the development of the robust schedule:

TB
m
={t

m1
, t

m2
, . .. , t

mi
}. (6)

To determine the specified values of the sets which are
crucial to developing the robust schedule of production jobs
we have  employed  selected  Survival  Analysis  techniques.
The  applied  techniques  enable  the  determination  of  the
survival  model  of  a  given  object  or  phenomenon,  and
produce data that may be used in the prediction of survival
patterns  [10].  It  was  resolved  that  the  analysis  of  the
character  of  the  technological  machine  failure  occurrence
will  be  conducted  by  means  of  the  survival  and  hazard
functions in the robust schedule. 

IV. SURVIVAL AND HAZARD FUNCTIONS

Let  T be  a  non-negative  random  variable  with  the
probability density function  f(t),  t  > 0 and the cumulative
distribution function 

F( t )=P(T< t ) . (7)

Bellow we assume, that the random variable T represents the
waiting  time  until  the  failure  (death  of  plant).  In  the
literature the variable T denotes the survival time [26]. The
value  F(t)  determines  the  probability  that  the  failure
(breakdown) occurs by duration. The survival function

S ( t )=P (T≥t )=1−F (t )=∫
t

∞

f ( s ) ds (8)

presents  the probability of correct  work of a machine just
before duration t (the probability of surviving to duration t),
generally the probability that the failure (breakdown) does
not  occur  by  duration  t.  The  survival  characteristic  of  a
machine may be presented by a hazard function

h (t )= lim
dt →0

P (t≤T<t+dt|T≥t )
dt

= (9)

= lim
dt →0

∫
t

t+dt

f ( s ) ds

dtP (T≥t )
=

f (t )
S ( t )

The value of this function represents an instantaneous rate of
occurrence of failure [9]. From (8) the formula (9) we may
rewrite as

h (t )=−
d

dt
lnS (t ) (10)

By solving the expression (10) we obtain a formula for the
survival function

S ( t )=exp (−H (t ) ) (11)

where  H ( t )=∫
0

t

h (s ) ds is  called  the  cumulative  hazard

function. The cumulative hazard function represents the sum
of risks occurring from the duration 0 to t [9].

V. NUMERICAL EXAMPLE

The techniques for developing robust schedules presented
in the preceding sections will be now presented in practice,
to analyse the machine failure and servicing times at one of
the  representatives  of  the  automotive  industry.  The  data
obtained from the analysis was afterwards employed in the
scheduling of production jobs.

A. The Survival and Hazard Function

Let  {(ti,  di)}1≤k≤n be  a  sequence  of  described  failures,
where  ti is a time after which the failure occurred but  di –
number  of  this  events.  We assume that  times  {ti}1≤k≤n are
ordered,  0  <  t1 <  …  <  tk.  Fig.  1  presents  the  empirical
cumulative distribution function

Fig. 1 The cumulative distribution function of failure

The  survival  function  (8)  is  usually  obtained  with  the
Kaplan-Meier method. The estimate of the survival function
is given by the following formula
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Ŝ ( t )={
1, t<t

1
,

∏
t
i
≤t

r i−di

r i

, t1 ¿t
(12)

where ri represents the number of individuals at risk at time
ti, 1 < i < k (number of individuals who die at time ti or later)

and  is  calculated  as  r i=∑
j=i

k

d j
.  Fig.  2  presents  the

survival function with 95% confidence intervals. From (11)
the estimate of cumulative hazard function may be obtained
as

Ĥ ( t )=−ln ( Ŝ (t ) ) (13)

The full  black  curve  with  jumps  in  Fig.  3  represents  the

values of estimate of the cumulative hazard function Ĥ (t ) .

Another  method  of  estimating  the  cumulative  hazard
function is the Nelson-Aalen estimator

H̄ ( t )=∑
t
i
≤t

d
i

r
i

(14)

which is represented in Fig. 3 by the red broken curve with
jumps.

Fig. 2 The survival function – Kaplan-Meier estimate 

Fig. 3 The cumulative hazard function and Nelson-Aalen estimate

The  data  obtained  from  both  the  survival  and  hazard
functions may be used in the robust schedule development.
Decreasing survival translates to a longer life of the object,
and consequently higher probability of machine failure.  In
terms  of  hazard,  the  abrupt  jumps  denote  numerous
instances  of  failures  in  given  periods.  High  values  of
intensity function denote high risk of machine failure [10].

B. Applied Survival Analysis Results in Robust Scheduling

The  presented  analyses  provided  data  that  was
subsequently employed in the robust schedule development
for the following scenarios  m  n:  32,  33,  34,  43,
45 and  46. The values of MO and  PT were randomly
generated. The obtained data was used to elaborate standard
Schedule.  The  scheduling  method  applied  was  the  dispa-
tching  rules,  whereas  the  objective  criterion  was  the
maximum makespan (Cmax) – LiSA software was used in the
study.  The data  form enterprise  obtained  from the failure
analysis  was  applied  to  produce  the  robust  schedule.  The
application of the survival and hazard functions is presented
in Fig. 4.

Fig. 4 The hazard function employed in the development of the robust
schedule (S – machining servicing buffers) 

It  was  established  that  the  resulting  plot  of  function
determines the failure characteristics of the machine M1. The
set  of  failure  times  FT1 was  obtained  from the  results  of
analysis of the survival and hazard functions:

f
11
=108 [h]; f 12

=216 [h] (15)

and the values of the machine servicing time buffer TB1:

t
11
=t

12
=55 [min] ≈0 .92 [h] (16)

The  values  of  machine  servicing  time  buffers  were
obtained from the empirical indicator MTTR.
 In  scheduling  it  was  established  that  the  machine  M1

worked  for  100 h  prior  to  commencement  of  production,
hence the machine servicing time buffer f11  was set to occur
after  8  h,  and  the  buffer  f22  occurred  after  116  h  (if
necessary).  The machines  worked to 65% capacity,  which
provided  the  basis  for  the  generation  of  the  elements  of
matrix  MO.  The maximum job processing time was 16 h,
therefore  elements  of  matrix  PT were  also  randomly

generated from the range of p
ij
∈⟨0;16 ⟩ .  The results of

analysis are presented in Table I.
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VI. CONCLUSION

The  analysis  of  results  obtained  from  the  robust
scheduling of production jobs indicates that the inclusion of
the  machine  servicing  time  buffer M1 did  not  exert  a
considerable effect on Cmax. In the majority of the analysed
scenarios the difference between the standard and the robust
schedule  was negligible (approx.  1 h),  or  practically  non-
existent. It was only in the case of 32 scheduling problem
(scheduling with dispatching rules) and problem 45 that a
substantial  discrepancy  of  schedule  makespans  was
observed  (on  average  8.14  h).  The difference  in  question
resulted  from  the  fact  that  in  these  particular  cases,  the
machine  M1  was  heavily  burdened  with  jobs,  and
simultaneously  the  values  of  processing  times  were
considerably high. 

Further investigations should concentrate on introducing a
procedure limiting the machine servicing time buffers in job
processing, with a view to obtaining lower values of sche-
duling assessment. That help to implement proposed method
it  the  real  production  systems.  Job  scheduling  under
uncertainty  requires  further  development  and  employing
various inference and analysis engines.
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TABLE I.

RESULTS OF ROBUST SCHEDULING USING SURVIVAL AND HAZARD FUNCTIONS

Dispatching 

rules

Nominal schedule Cmax [h] Robust schedule Cmax [h]

32 33 34 44 45 46 32 33 34 44 45 46

LPT 35 41 28 51 51 54 44 41 29 51 60 54

SPT 47 43 31 51 50 67 47 43 31 51 56 67

FCFS 47 43 31 51 53 54 47 43 31 51 62 54

LQUE 35 41 28 51 51 54 44 41 29 51 60 54

EDD 47 41 31 51 50 54 47 41 31 51 56 54
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