
TARZAN: An Integrated Platform for Security

Analysis

Marek Rychlý, Ondřej Ryšavý

Brno University of Technology

Faculty of Information Technology, Department of Information Systems

IT4Innovations Centre of Excellence

Brno, Czech Republic

Email: {rychly, rysavy}@fit.vutbr.cz

Abstract—In this paper, we present the TARZAN platform,
an integrated platform for analysis of digital data from security
incidents. The platform serves primarily as a middleware between
data sources and data processing applications, however, it also
provides several supporting services and a runtime environment
for the applications. The supporting services, such as a data
storage, a resource and application registry, a synchronization
service, and a distributed computing platform, are utilized by the
TARZAN applications for various security-oriented analyses on
the integrated data ranging from an IT security incident detection
to inference analyses of data from social networks or crypto-
currency transactions. To cope with a large amount of distributed
data, both streamed in real-time and stored, and for the need of a
large scale distributed computing, the platform has been designed
as a big data processing system ensuring reliable, scalable, and
cost-effective solution. The platform is demonstrated on the case
of a security analysis of network traffic.

I. INTRODUCTION

T
HE ABUNDANCE of data sources and the exponen-

tial growth in the volume they produce represents new

challenges for many traditional ICT fields. Digital forensics

and security incident analysis is not an exception. Every

day, security analysts and investigators face the problem of

insufficient tool support. The roots of this problem lie in the

fact that this dramatic change in the heterogeneity and volume

of data makes the existing methods obsolete.

Traditional workflow of digital forensic consists of the well-

defined procedure of data identification, acquisition, preser-

vation, analysis, and reporting. This workflow was devised

and refined in the 1990s when the environment regarding

computing technology and software was rather uniform. Also,

the amount of data that needs to be processed was from our

perspective rather small. For most cases, it was possible to

perform all above-mentioned steps using a single forensic

workstation. Because of the rapid technology advances in the

ICT, this is no longer true. Not only the increasing amount

of data caused by the drop of storage cost and dissemination

of broadband connectivity represents the challenge for digital

This work was supported by Ministry of Interior of the Czech Republic
project “Integrated platform for analysis of digital data from security inci-
dents” VI20172020062; Ministry of Education, Youth and Sports of the Czech
Republic from the National Programme of Sustainability (NPU II) project
“IT4Innovations excellence in science” LQ1602; and by BUT internal project
“ICT tools, methods and technologies for smart cities” FIT-S-17-3964.

forensics. Often even the data acquisition phase is difficult

to achieve with the existing tools and considering the usual

methods of creating the forensic image of the disk drive.

Completing this operation for nowadays common terabyte hard

drive lasts several hours.

Investigators also need to face the problem of high diversity

of computing devices. Smartphones, tablets and other con-

nected smart devices massively penetrate the market. Cloud

services are another emerging technology that changes the re-

quirements on the digital forensics methods. All of this means

that classical approach represented by well-defined workflow

and considering the use of a single forensics workstation

cannot meet the current demands. In many cases, the amount

of data that to be processed exceeds several terabytes. Also,

some forms of cyber crime comprise of the combination of

several sophisticated techniques, and for their investigation, it

is necessary to process and correlate information from several

big datasets. To cope with this problem, several researchers

suggested to apply big data approach, e.g. [1], and this field

has become an active research area.

In this paper, an integrated platform for analysis of digital

data from security incidents (a TARZAN platform) is proposed

to address the issues mentioned above. The platform allows

to gather, store, and process digital forensic data as big data

to perform various security-oriented analyses that range from

an IT security incident detection to inference analyses of data

from social networks or crypto-currency transactions.

The paper is organized as follows. Section II discusses

related work on data security analysis and processing plat-

forms. In Section III, we provide a case study of a PCAP

analysis tool utilizing the proposed platform for real-time

security analysis of network traffic. Section IV introduces the

TARZAN platform and describes its architecture and core

services. The results of the case study implementation on

the platform are discussed in Section V. Finally, we draw

conclusions in Section VI.

II. RELATED WORK

Several approaches were already proposed to perform se-

curity, forensic, and inference analyses. Because conventional

technologies are not always adequate to support long-term,

large-scale analytics [2], big data approaches to the digital

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 561–567

DOI: 10.15439/2017F280

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 561



forensics started to emerge addressing their own challenges

(see [3], [1]). However, the most of the existing approaches

focused on particular selected topics of IT security, related

often only to networking security, rather than providing a

general framework to support and integrate various forensic

data to analyse them and their inferences in a broader context,

such as in the cases of [4] and [5].

In [4], a digital forensic data reduction process were pro-

posed based on a selective imaging, to speed up the forensic

process by locating evidences, or by providing examiners with

a quick understanding of the data to enable a better focus for

full analysis (e.g., for a cross-device or cross-case analysis).

Although the proposed process is general enough to support

the examination of various types of the stored big data, it is

not designed for custom autonomous big data analyses.

Feature Collection and Correlation Engine (FCCE, [5]) was

introduced to find correlations across a diverse set of data types

spanning over large time windows with very small latency

and with minimal access to raw data. The engine entailed

a complete framework for ingesting, aggregating, storing, as

well as retrieving big data, by implementing feature extrac-

tion, aggregation, storage, and retrieval APIs, respectively. It

was applied in IT security to detect fluxing domain names

and identify persistent threat infections. However, the engine

did not provide an implementation platform to build system

utilizing the implemented APIs.

Network forensic analysis, which is the subject of the case

study presented in this paper to demonstrate the TARZAN

platform (see Section III), comprises of methods for capturing,

collecting and analysing network data for information gather-

ing, evidence identification, or security incident investigation.

A new generation of Internet services opens space for new

cybercrime activities. Security analyst and Law Enforcement

Agency officers have to act accordingly to detect unlawful

or unauthorized activities efficiently. The investigation is not

possible without the tool support. While technology advances

provide hardware technology able to capture communication at

speeds that match current wire speed the software equipment

for analysis of captured traffic has difficulties with packet

traces of several gigabytes.

Network forensic analysis methods were implemented in

various tools. General purpose tools include network analysers

(Wireshark, TCP dump), IDS systems (Snort, Bro), finger-

printing tools (Nmap, p0f), and tools to identify and analyse

security threats.

Tools dedicated to network forensic analysis implement

specific features to aid investigation process. They can capture

an entire network traffic and allow an investigator to analyse it

and reconstruct the communication. Several widely used open

source tools exist. In the following, we briefly overview three

freely available tools that employ the typical features. Survey

of network forensic tools can be found in [6].

PyFlag is a general purpose forensic package which can be

used as disk forensics, memory forensics, and network foren-

sics tool. This tool was developed by M. Cohen of Australian

Federal Police in 2005 [7]. PyFlag is designed around the

Virtual File System concept. For each supported data source

a specific loader is implemented. To deal with PCAP files,

the PCAP filesystem loader opens PCAP file, parses and

dissects individual packets up to lower layer protocols, collects

related TCP packets into streams and finally applies higher

level protocol dissectors. A forensic investigator is usually

interested in high-level information that can be extracted from

the communication. PyFlag enables to reassemble the content

of communication, e.g., web pages, email conversation, etc.

Network Miner1 is an open source tool that integrates packet

sniffer and higher-layer protocol analysers into a tool for pas-

sive network traffic monitoring and analysis. Because captured

traffic can be processed in the same way, Network Miner is

also a valuable tool for network forensics analysis. Network

Miner offers several useful features, such as the possibility

of operating system identification, traffic classification, and

reassembling the transferred files for HTTP, FTP, TFTP and

SMB protocols.

Xplico2 is a modular tool aimed at the reconstruction of

the data content carried in the network traffic. The software

consists of the input module handling the loading source

data, decoding module equipped with protocol dissectors for

decoding the traffic and exporting the content, and the output

module organizing decoded data and presenting them to the

user. Contrary to PyFlag and NetworkMiner, Xplico is not

a typical desktop application but it is deployed as a server

service with the web-based interface. The authors claim the

possibility to analyze large PCAP files of many gigabytes.

Because the Xplico design is a classical client-server architec-

ture, the performance of the tool is limited by the hardware

configuration of the server running the Xplico backend.

To analyse the network traffic as big data, a scalable internet

traffic analysis system was presented in [8]. The system,

which was able to process multi-terabytes libpcap dump files,

utilized Apache Spark for data processing to analyse captured

transmitted data and protocol fields. Unfortunately, the system

did not allow to integrate non-network data and perform the

analyses of the network data in broader contexts.

Another approaches to the network traffic security big data

analysis were presented in [9], [10], [11], and [12]. Apache

Metron [13] and Apache Spot [14] projects are more interest-

ing. They try to form general frameworks for security analyses

of IT threats, secondary processing also firewall and appli-

cation logs, emails, intrusion-detection reports, etc. However,

analogously to the first case, also the all of these approaches

were focused primarily and narrowly on the network data

and unable to find correlations with other forensic data or to

provide a comprehensive platform for big data forensics.

III. CASE STUDY: PCAP ANALYSIS

Digital investigators process network traffic as a source

of evidence in many types of computer crimes. Captured

traffic can be analyzed to obtain the content and also to show

1http://www.netresec.com/?page=NetworkMiner
2https://github.com/xplico/xplico

562 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



the actions taken by the offender. Network traffic can also

be important for corroborating evidence. Obtaining network

traffic as a source of evidence is usually more complicated than

other digital evidence. Transmitted data are only available on

the network device for a limited amount of time. Inappropriate

collection method can lead to data corruption or incomplete

capture. As messages exchanged between applications are

segmented into many pieces, it is important to gather all

relevant packets and be able to combine them again into data

streams. When collecting data on shared links, there may be

a huge amount of traffic from which only a fraction is rele-

vant to the investigation. Moreover, many different protocols

are in use which requires applying corresponding decoding

algorithms. Although existing tools for information security

can be adapted for a forensics investigation, they usually

lack features for evidence collecting and preservation. For

the forensic investigation, there are two important activities,

namely examination and analysis [15]. The examination is

characterized by the mostly automatic data processing that

ends with a collection of relevant data extracted from the

data source. The analysis follows examination, and it is

often a manual or more interactive activity that interprets the

significance and meaning of the extracted data. Also, data

correlation, finding links and patterns in the extracted data

is the desired result of the analysis.

From the examination viewpoint, the important features of

network forensic tools are as follows:

✎ Flow reconstruction. Because network conversation is

split into many packets exchanged by communicating

applications, the first step of data examination is to

combine these fragments to form flows again.

✎ Protocol identification. Network communication is gov-

erned by protocols. There are many protocols in the

Internet communication. The ability to identify which

protocol was used to data exchange is crucial for fur-

ther processing. Protocol identification is difficult for

encrypted traffic where traditional pattern based methods

may be less accurate results.

✎ Protocol decoding. To understand the communication we

often need to extract data from protocol header fields and

data payload. Network forensic tools support a wide va-

riety of protocols. Sometimes these decoders can identify

anomalous packets that do not conform to the protocol

specification.

✎ Data reduction. Not all data needs to be analyzed.

Data reduction can filter out uninterested data. The filter

applied depends on the information obtained from the

protocol decoding step. We can be, for instance, interested

only in Web traffic.

✎ Data recovery. If communication is not encrypted, the

communication payload is visible. This gives us the pos-

sibility to recover digital objects from the communication

such as web pages, images, e-mail messages.

✎ Pattern search. The common investigative approach is

to search for occurrences of known patterns, e.g., email

addresses, keywords, etc. Pattern search in network traffic

needs to consider specifics of various protocols, such as

encoding, compressing, etc.

Forensic data analysis can involve different methods and

procedures. The following techniques are commonly applied:

✎ Developing the timeline from significant events offers

investigators a high-level view on the extracted data. Dif-

ferent kinds of communication can contribute to timeline

by various events, such as e-mail delivery, web search,

file download, etc.

✎ The temporal analysis aims to identify patterns or anoma-

lies that are often processed by the further and deeper

analysis. For instance, we are seeking for the periods of

peak data transfer or occurrences of an unusual protocol.

✎ The relation analysis provides links among different

entities. Relations can be analyzed on different layers,

linking devices, services, or end-users

✎ Classification methods assign extracted data to different

classes according to the predefined criteria, such as sys-

tem traffic, web traffic, suspicious traffic, malware related

traffic, etc.

✎ Clustering techniques can deal with a lot of entities by

grouping them according to some essential characteris-

tics. Often these methods do not require learning and

thus are easily applicable.

✎ Correlation is a statistical technique that can identify

the relation between different entities. It is, for instance,

possible to identify the same activity recorded in various

data sources.

Digital investigation is a time-consuming and labor-

intensive process. Thus, there is a strong emphasis on using

tools that can reduce the examination time and improve

the automatization of analysis activities. In the next section,

we will show, how the proposed platform can achieve both

requirements. First, examination time can be reduced by

allocating more computation nodes. Second, some analysis can

be automated by applying machine learning algorithms.

The complex PCAP analysis requires processing of a huge

amount of data. The processing must be done both in real-time

to detect security incidents or to perform security audits, and

later on large stored datasets to answer queries of an analyst.

As the such processing is difficult to do by conventional

centralized approaches in highly scalable, high-throughput,

and fault-tolerant way [2], the PCAP analysis tool will be

implemented on the TARZAN platform.

IV. THE TARZAN PLATFORM

To ensure communication of TARZAN applications and

provide them with required services and a runtime environ-

ment, the TARZAN platform consists of three core compo-

nents, namely, Platform Bus which implements a distributed

communication bus for the applications and the components,

Platform Storage which provides a distributed storage service

(NoSQL databases, distributed filesystem, resource registries,

etc.), and Platform Computation component to provide the

MAREK RYCHLÝ, ONDREJ RYŠAVÝ: TARZAN: AN INTEGRATED PLATFORM FOR SECURITY ANALYSIS 563



TarzanPlatform

+bus : PlatformBus

+storage : PlatformStorage

+computation : PlatformComputation
subscriptions_management

ManageSubscriptions

PublishMessage

ReceiveMessage

communication

database

filesystemFileDistStorage

DataDistStorage tasks_management

computation

ManageTasks

ExecuteTask

configurationConfigService
storage

notifications_and_callbacks

notifications_and_storage

Fig. 1. The TARZAN platform architecture.

runtime environment for distributed computation tasks of

TARZAN applications.

In Figure 1, architecture of the TARZAN platform is mod-

elled in an UML composite structure diagram. Each of the

three core components provides its services to TARZAN ap-

plications by the platform’s external interfaces. Moreover, the

components communicate and cooperate inside the platform.

The individual components are described in the following

sections.

A. Platform Bus

The main goal of the platform bus core component is

to enable asynchronous communication of other TARZAN

components. More specifically, the platform bus implements a

publisher-subscriber communication model based on message

queues. A client is able to publish messages to particular

topics acting as a producer, or to subscribe to receive messages

of particular topics as a consumer (see the corresponding

interfaces in Figure 1). The platform bus guarantees delivery

of the published messages to their appropriate consumers.

The communication via the bus is utilized by both external

TARZAN applications and the core TARZAN components.

In the first case, the applications can connect themselves to

various data sources to ingest sensor data, events, logs, etc.;

interconnect their components into data processing topologies

to perform data parsing, normalizing, validating, marking,

enrichment, etc.; and consume or feed data from/into the

platform storage components. In the second case, the platform

bus helps the other core components to send/receive their data,

for example, to store the transmitted data into the platform

storage and deliver the storage update notifications, or to

deliver input data and pass output data of tasks of the platform

computation including callbacks.

To achieve high-throughput message passing in highly scal-

able distributed environments, the platform bus is based on

Apache Kafka [16]. In Kafka, messages are communicated

in topics. Each topic, as a general category of particular

messages, consists of multiple partitions (queues). A producer

submits a message to a particular topic (or topics) where

in each topic, the message is assigned to a particular single

partition (automatically for load-balancing or as required by

the producer). A consumer can belong to a particular consumer

Message

Topic Partition

Producer

Consumer

ConsumerGroup

1..* 1

1

1..*

1

*

*

1

sender 1

*

consuming from

sent by

enqueued in

submitted to

Fig. 2. A conceptual model of basic entities in Apache Kafka.

group and subscribes to one or more topics. In each of

the subscribed topics, the consumer has assigned particular

partition for exclusive reception. For relationships of these

concepts, see Figure 2.

In TARZAN, Kafka’s concepts of a message, topic, parti-

tion, producer, consumer, and consumer group are utilized for

consuming data sources and communication with computation

tasks as follows.

1) Broadcasting from data sources: A data source (pro-

ducer) submits data (a message) of a particular type (topic)

under the data source’s identification (partition). A subscriber

(consumer) listens to a particular topic and a particular parti-

tion, that is for messages of the particular type from the partic-

ular data source. A message will be received by (broadcasted

to) all subscribed consumers in different consumer groups.

✎ Messages = data produced by the sources.

✎ Topics = individual data source types (e.g., PCAP).

✎ Partitions = particular data sources (e.g., a sensor moni-

toring a network traffic on a particular network interface).

✎ Consumer groups = subscribers for data produced by a

particular data source (e.g., a component for process-

ing/analysing/storing PCAPs).

2) Load-balancing of data processing tasks: A client (pro-

ducer) submits a task invocation (message) to a particular

service (topic) without any partition (it will be assigned

automatically by Kafka for load-balancing). In the case of a

request-reply task invocation, the message should contain also

the client’s identifier which will be utilized for the callback (a

particular partition name in “callback” topic).

✎ Messages = task invocations including data payloads and

callback addresses if needed.

✎ Topics = names of individual services (e.g., PCAP Ana-

lyzer).

✎ Partitions = individual instances of a particular service

(e.g., a particular process of the PCAP Analyzer).

✎ Consumer groups = single-member groups representing

the instances as above.

3) Delivery of the tasks’ replies: A particular service task

instance (producer) submits a reply/result (message) to the

previously received task invocation as a callback. The reply

(message) will be delivered to a particular client who sent the

564 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



task invocation (to his partition in “callback” topic).

✎ Messages = replies/results to the previously submitted

task invocations.

✎ Topics = a single topic with name "callback" only.

✎ Partitions = one partition for each individual client.

✎ Consumer groups = single-member groups representing

the clients as above.

B. Platform Storage

While the platform bus described in the previous section is

necessary for data processing, the platform storage implements

the data persistence in distributed environments. The dis-

tributed data storage is the necessary requirement of distributed

data processing to be able to scatter and deliver data across

processing nodes. Three types of data storage services are

supported: a distributed filesystem, a distributed database, and

a distributed and synchronized configuration service (see the

corresponding interfaces in Figure 1).

The platform storage services are utilized by both external

TARZAN applications to provide a shared storage and by

the core TARZAN components to store the platform runtime

data. In the second case, the storage services are utilized

for a resource registry of various resources accessed and

manipulated by the platform (e.g., topic and partition names

for the platform bus, or declarations and definitions of tasks

in the platform computation components).

For the distributed filesystem and the distributed and syn-

chronized configuration service, Hadoop Distributed File Sys-

tem (HDFS) from Apache Hadoop [17] and Apache Zookeeper

[18] were adopted, respectively. Both software products are

widely utilized in the TARZAN platform and well-integrated

with other components. For example, the platform bus based

on Apache Kafka is utilizing Zookeeper for message queue

management and the platform computation component based

on Apache Spark is utilizing HDFS for a data storage and

Hadoop for a cluster management.

Although the distributed database service is not designated

for a particular NoSQL database, Apache Cassandra [19] is the

preferred database in the TARZAN platform. The main reason

for this preference is a perfect integration of Cassandra with

the rest of the software stack (e.g., well-established Cassandra-

Spark and Cassandra-Kafka connectors). Moreover, Cassandra

provides an optimal storage for large sensor data [20].

C. Platform Computation

To support distributed computing on data communicated

and stored in the TARZAN platform, the platform compu-

tation core component is provided. The component allows

TARZAN applications to run tasks, e.g., to process (normal-

ize/aggregate), enrich, label, combine, etc. the data and to

utilize other TARZAN components.

Tasks for the platform computation component are regis-

tered by external application components and then they can

be executed by TARZAN applications (for the corresponding

interfaces, see Figure 1) as demonstrated in Figure 3 to

perform malware or data-breach detections, or to analyse

+bus : PlatformBus

+storage : PlatformStorage

+computation : PlatformComputation

TarzanPlatform<<component>>

PCAPIngestor

<<component>>

FirewallIngestor

<<component>>

BitcoinTransIngestor

<<component>>

SocialNetworksIngestor

<<component>>

DataBreachIncidentMonitor

<<component>>

MallwareActivityMonitor

<<component>>

BitcoinTransAnalyzer

<<component>>

MalwareRecognition

<<component>>

DataBreachDetection

PublishMessage ReceiveMessage

ExecuteTask DataDistStorage

ManageTasks

Fig. 3. An example of external application components utilizing the
TARZAN platform (the ingestors on the left side are feeding data to the
platform, computation tasks and an application on the top and bottom are
processing the data, and the monitors on right side are passing results to
clients).

Bitcoin transaction based on capture network traffic, firewall

logs, Bitcoin blockchain, and social network profiles.

As the most of the use-cases for data processing in the

TARZAN platform operate on big data (in the sense of data

characterized by four Vs: volume, variety, velocity, and value

[21]), the platform computation tasks must be able to do big

data processing. The applications need to process both data

streams and data batches (e.g., to do a real-time analysis of

firewall logs and to execute on-demand tasks, respectively).

Therefore, Apache Spark [22] has been selected as the imple-

mentation technology for the platform computation component

and it tasks, as it supports both the stream and batch processing

of big data.

For the batch data processing in Spark, computation tasks

can utilize a data abstraction called Resilient Distributed

Dataset (RDD) to execute various parallel operations on a

Spark cluster and to gather resulting data in shared broadcast

variables and accumulators provided by Spark on the cluster’s

nodes. In the case of the stream data processing, Spark

Streaming provides computation tasks with Discretized Stream

(DStream) abstraction where each stream is represented by a

continuous series of RDDs that is divided into micro-batches

and processed by the tasks in the similar way as in the

batch processing above. Because DStreams follow the same

processing model as batch systems, the two can naturally be

combined [23] and the platform computation component and

it tasks can implement identical algorithms for both the stream

and batch processing.

V. EVALUATION

The TARZAN platform has been evaluated by means of

the PCAP analysis case study described in Section III. A

corresponding TARZAN application has been implemented to

read and analyse data of network traffic monitoring stored

in the PCAP format. After the PCAP data are read from

input PCAP files or real-time generated by network traffic

monitoring tools, they are transferred (including their related

meta-data) via platform bus for a primary analysis by tasks

of platform computation. The tasks also ensure that both the

input data and the output primary analysis results are stored

in platform storage. Afterwards, a secondary analysis can

MAREK RYCHLÝ, ONDREJ RYŠAVÝ: TARZAN: AN INTEGRATED PLATFORM FOR SECURITY ANALYSIS 565



Apache Metron

PCAP_data_file

Kafka_PCAP_buffer
T

PCAP_Ingestor

PCAP_network_tap

TARZAN

Platform_clients

PCAP_Primary_analysis

stream processing

PCAP_Storage
D

Primary_analysis_results
D

Secondary_analysis

batch processing

Secondary_analysis_results
D

Fig. 4. Architecture of the PCAP Analysis tool with data-flows (including
processes, data storages, and external data sources and entities).

be executed on the stored data and the previous results to

perform various security and forensic analyses, e.g., to detect

communication patterns, apply clustering methods for data

mining, etc.

The primary analysis is operating on continuously incom-

ing data and the primary analysis tasks implement real-time

stream processing to quickly extract traffic basic features such

as source and destination IP addresses and port numbers,

defragment fragmented packets into network flows, analyse

flow properties, application protocols, etc. These tasks utilize

the Spark Streaming extension of the core Apache Spark

API to process DStreams. In Spark, tasks are scalable, high-

throughput, fault-tolerant, so the ability to process the in-

coming live data in real-time can be improved, if necessary,

by an appropriate cluster configuration and the application

deployment. However, the primary analysis must perform only

basic analytical tasks.

Contrary to the primary analysis which employs real-time

steam processing, the secondary analysis can implement a

batch processing of the previously stored data and the primary

analysis results. Therefore, the stored inputs can be represented

as RDDs and processed by means of Spark RDD API,

Spark SQL, and also machine learning algorithms provided

by Spark’s machine learning library (MLlib) can be applied.

The secondary analysis is executed on demand as required

by the platform’s client applications, e.g., to provide data

for visualisations, analyse network communications related to

security incidents under investigation, or related to cryptocur-

rency transactions or malware activities.

The overall architecture of the PCAP Analysis tool is

depicted in Figure 4. To feed input PCAP data into the system,

several modules were adopted and adapted from the Apache

Metron project [13], namely: metron-sensors, metron-pcap,

and metron-api. In the first module, Apache Metron brings

into TARZAN the integration of Data Plane Development

Kit3 (DPDK) probes for high speed packet capture and Yet

Another Flowmeter4 (YAF) to processes packet data from

3http://dpdk.org/
4https://tools.netsa.cert.org/yaf/

PCAP dumpfiles (as generated by tcpdump or libpcap). The

next two Metron modules provide a topology for streaming

network packets into HDFS and low-level analytics/filtering

on the PCAP files in HDFS before they are submitted into a

Kafka message queue acting as a buffer for further processing.

Then, a continuous stream processing in the primary analysis

and an on-demand batch processing in the secondary analysis

is performed by utilizing the TARZAN platform components

as described above.

In comparison with the Apache Metron [13] or Apache Spot

[14] discussed in Section II, the current implementation of

the PCAP analysis tool in TARZAN provides the same basic

functionality, however, it enables a better integration with the

other TARZAN applications into a seamless security analysis

framework where results of the PCAP analyses may contribute

to various security investigations, e.g., to trace cryptocurrency

transactions or malware activity.

In comparison with the existing approaches and the related

work (see Section II), the TARZAN platform is a step further

in the design and development of open forensic platform

capable of processing big data. As we demonstrated in the

PCAP analysis case study, our approach is compatible and

easily integrated with other approaches to big data forensic.

TARZAN applications can utilize HDFS as suggested in a

conceptual model of big data forensics by Zawoad and Hasan

[24]. Also a framework for the forensic analysis of big

heterogeneous data presented by Mohammed et al. [25] can

be realized using the TARZAN platform. Their framework has

three layers that follow acquisition, examination, and analysis

approach to extract metadata from acquired data sources and

build a semantic web-based model for further analysis. While

they do not specify the particular implementation of such

system, the presented concepts are in accordance with the

architecture of the TARZAN platform. Analogously, Irons and

Lallie [26] discussed the shortcomings of the current analysis

methods and suggested to use more intelligent techniques and

demonstrated the possible application of artificial intelligence

(AI) to computer forensics. The TARZAN platform can easily

integrate the AI investigative methods because the underlying

components provide rich libraries of various AI algorithms.

VI. CONCLUSION

In this paper, we have introduced a TRAZAN platform, an

integrated platform for analysis of digital data from security

incidents. The architectural design has been presented to

explain which core component are available in the platform

and which services are provided to TARZAN applications. The

platform allows to gather, store, and process digital forensic

data as big data to perform various security-oriented analyses.

As a sample case study, a PCAP analysis tool has been

implemented on the platform utilizing the platform bus com-

ponent to integrate individual modules, the platform storage

component to store input data and analyses results, and the

platform computation component to perform both stream and

batch processing of big data.

566 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



It has been concluded that the TARZAN platform constitutes

an open forensic platform capable of processing big data

and provides a sufficient framework for further integration

of various existing approaches. The integration of various

existing approaches and existing tools for forensic analyses

as external TARZAN components and applications is a part

of ongoing work.

REFERENCES

[1] A. Guarino, Digital Forensics as a Big Data Challenge.
Wiesbaden: Springer Fachmedien Wiesbaden, 2013, pp. 197–203.
ISBN 978-3-658-03371-2. [Online]. Available: http://dx.doi.org/10.
1007/978-3-658-03371-2_17

[2] A. A. Cardenas, P. K. Manadhata, and S. P. Rajan, “Big data
analytics for security,” IEEE Security Privacy, vol. 11, no. 6, pp.
74–76, Nov. 2013. doi: 10.1109/MSP.2013.138. [Online]. Available:
http://dx.doi.org/10.1109/MSP.2013.138

[3] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou,
J. M. Patel, R. Ramakrishnan, and C. Shahabi, “Big data and
its technical challenges,” Commun. ACM, vol. 57, no. 7, pp.
86–94, Jul. 2014. doi: 10.1145/2611567. [Online]. Available: http:
//doi.acm.org/10.1145/2611567

[4] D. Quick and K.-K. R. Choo, “Big forensic data reduction: digital
forensic images and electronic evidence,” Cluster Computing, vol. 19,
no. 2, pp. 723–740, 2016. doi: 10.1007/s10586-016-0553-1. [Online].
Available: http://dx.doi.org/10.1007/s10586-016-0553-1

[5] D. L. Schales, X. Hu, J. Jang, R. Sailer, M. P. Stoecklin, and
T. Wang, “FCCE: Highly scalable distributed feature collection and
correlation engine for low latency big data analytics,” in 2015

IEEE 31st International Conference on Data Engineering, Apr. 2015.
doi: 10.1109/ICDE.2015.7113379. ISSN 1063-6382 pp. 1316–1327.
[Online]. Available: http://dx.doi.org/10.1109/ICDE.2015.7113379

[6] E. S. Pilli, R. Joshi, and R. Niyogi, “Network forensic frameworks:
Survey and research challenges,” Digital Investigation, vol. 7, no. 1-
2, pp. 14–27, 2010. doi: https://doi.org/10.1016/j.diin.2010.02.003.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1742287610000113

[7] M. I. Cohen, “Pyflag: An advanced network forensic framework,”
in Proceedings of the 2008 Digital Forensics Research Workshop.
DFRWS, Aug. 2008. [Online]. Available: http://www.pyflag.org

[8] A. Lukashin, L. Laboshin, V. Zaborovsky, and V. Mulukha,
Distributed Packet Trace Processing Method for Information Security

Analysis. Cham: Springer International Publishing, 2014, pp. 535–543.
ISBN 978-3-319-10353-2. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-10353-2_49

[9] M. Wullink, G. C. M. Moura, M. Muller, and C. Hesselman,
“ENTRADA: A high-performance network traffic data streaming
warehouse,” in NOMS 2016 - 2016 IEEE/IFIP Network Operations and

Management Symposium, Apr. 2016. doi: 10.1109/NOMS.2016.7502925
pp. 913–918. [Online]. Available: http://dx.doi.org/10.1109/NOMS.
2016.7502925

[10] M. Aupetit, Y. Zhauniarovich, G. Vasiliadis, M. Dacier, and Y. Boshmaf,
“Visualization of actionable knowledge to mitigate DRDoS attacks,” in
2016 IEEE Symposium on Visualization for Cyber Security (VizSec),

Oct. 2016. doi: 10.1109/VIZSEC.2016.7739577 pp. 1–8. [Online].
Available: http://dx.doi.org/10.1109/VIZSEC.2016.7739577

[11] N. Promrit and A. Mingkhwan, “Traffic flow classification and
visualization for network forensic analysis,” in 2015 IEEE 29th

International Conference on Advanced Information Networking and

Applications, Mar. 2015. doi: 10.1109/AINA.2015.207. ISSN 1550-
445X pp. 358–364. [Online]. Available: http://dx.doi.org/10.1109/
AINA.2015.207

[12] L. He, B. Tang, M. Zhu, B. Lu, and W. Huang, NetflowVis: A Temporal

Visualization System for Netflow Logs Analysis. Cham: Springer
International Publishing, 2016, pp. 202–209. ISBN 978-3-319-46771-9.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-46771-9_27

[13] (2016) Apache Metron: Real-time big data security. [Online]. Available:
https://metron.incubator.apache.org/

[14] (2016) Apache Spot (incubating): A community approach to fighting
cyber threats. [Online]. Available: https://spot.incubator.apache.org/

[15] Eoghan and Casey, “Network traffic as a source of evidence: tool
strengths, weaknesses, and future needs,” Digital Investigation, vol. 1,
no. 1, pp. 28–43, 2004. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1742287603000033

[16] (2016) Apache Kafka: A high-throughput distributed messaging system.
[Online]. Available: https://kafka.apache.org/

[17] (2014) Welcome to Apache Hadoop! [Online]. Available: https:
//hadoop.apache.org/

[18] (2010) Apache ZooKeeper. [Online]. Available: https://zookeeper.
apache.org/

[19] (2016) Apache Cassandra. [Online]. Available: https://cassandra.apache.
org/

[20] J. S. van der Veen, B. van der Waaij, and R. J. Meijer, “Sensor data
storage performance: SQL or NoSQL, physical or virtual,” in 2012

IEEE Fifth International Conference on Cloud Computing, Jun. 2012.
doi: 10.1109/CLOUD.2012.18. ISSN 2159-6182 pp. 431–438. [Online].
Available: http://dx.doi.org/10.1109/CLOUD.2012.18

[21] J. Gantz and D. Reinsel, “Extracting value from chaos,” IDC iview, vol.
1142, no. 2011, pp. 1–12, 2011.

[22] (2016) Apache Spark: Lightning-fast cluster computing. [Online].
Available: https://spark.apache.org/

[23] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream processing on
large clusters,” in Proceedings of the 4th USENIX Conference on Hot

Topics in Cloud Ccomputing, ser. HotCloud’12. Berkeley, CA, USA:
USENIX Association, 2012.

[24] S. Zawoad and R. Hasan, “Digital forensics in the age of big data:
Challenges, approaches, and opportunities,” 2015 IEEE 17th Interna-

tional Conference on High Performance Computing and Communica-

tions (HPCC), 2015 IEEE 7th International Symposium on Cyberspace

Safety and Security (CSS), and 2015 IEEE 12th International Conf on

Embedded Software and Systems (ICESS), pp. 1320–1325, 2015. doi:
10.1109/HPCC-CSS-ICESS.2015.305

[25] H. J. Mohammed, N. L. Clarke, and F. Li, “An automated
approach for digital forensic analysis of heterogeneous big data,”
JDFSL, vol. 11, no. 2, pp. 137–152, 2016. [Online]. Available:
http://ojs.jdfsl.org/index.php/jdfsl/article/view/410

[26] A. Irons and H. Lallie, “Digital forensics to intelligent forensics,” Future

Internet, vol. 6, no. 3, pp. 584–596, 2014. doi: 10.3390/fi6030584.
[Online]. Available: http://doi.acm.org/10.3390/fi6030584

MAREK RYCHLÝ, ONDREJ RYŠAVÝ: TARZAN: AN INTEGRATED PLATFORM FOR SECURITY ANALYSIS 567


