
Measuring dimensions of Software Engineering
projects’ success in Academic context

Rafał Włodarski
Lodz University of Technology

ul.Wolczanska 215, 90-924 Lodz, Poland
Email: r.wlodarski89@gmail.com

Aneta Poniszewska-Marańda
Lodz University of Technology

ul.Wolczanska 215, 90-924 Lodz, Poland
Email: aneta.poniszewska-maranda@p.lodz.pl

Abstract—The notion of success is unsubstantial, complex and
domain-specific. Software companies have been exploring its
different aspects and aiming to put forward measures to capture
and evaluate them. In this paper three main dimensions of
success have been elicited based on previous industrial studies:
project quality, project efficiency along with social factors and
stakeholder’s satisfaction. By investigation of their assessment
criteria in commercial context a set of metrics and measures
was determined and adapted to provide a structured evaluation
approach for projects developed in academic setting. Profession-
alizing teaching and assessment process is an attempt to close
a gap between workforce’s expectations towards new graduates
and the outcomes of their university education.

I. INTRODUCTION

G
RADING system of students’ work was born at the most
prestigious universities in the world and dates back to

eighteenth century: the first grades were issued at Yale in 1785
[1] while the concept of grading students’ work quantitatively
was implemented by the University of Cambridge in 1792 [2].
These grading systems were straightforward and measured on
a given scale the learning outcomes and extent of assimilation
of knowledge. Although a shift to project-based learning has
been made ever since, no wide-known elaborate framework
that would privilege assessing different dimensions of success
of students’ projects has been published.

While much research has addressed the definition and
measurement of success in industrial software engineering
undertakings [3], [4], [5], so far little attention has been paid
to the same problem in academic context.

This article explores how assessment criteria used for IT
deliverables can be translated into an academic grading context
and aims to introduce a set of metrics, and measures for
evaluation of projects developed by students.

A thorough literature review reveals three main criteria of
project success [3], [5], [6], [7], [9]:

• project quality – source code and product quality,
• project efficiency – resources utilization and productivity

of the team,
• social factors and stakeholders’ satisfaction – team co-

hesion, morale; students’ satisfaction and learning out-
comes.

The presented paper is structured as follows: applicability of
the proposed evaluation framework is discussed in section two,

while the three dimensions and their measurement methods are
detailed in sections three, four and five respectively.

II. ACADEMIC SETTING

While commercial projects are carried out according to the
rules of a certain software development approach – ranging
from plan-driven (Waterfall), through evolutionary (Spiral) to
iterative and agile (Scrum, XP), academic projects do not
always adhere to any formal processes. They could however,
follow certain phases of development as software projects do:

• requirements engineering, usually in the form of function-
ality imposed by the lecturer that needs to be analyzed
by students,

• design, when architecture and the technology stack of the
project are defined,

• implementation, in form of coding that involves the most
effort relative to the rest of the project,

• testing, which allows students to internally verify adher-
ence to functional requirements and encompasses tutor’s
evaluation.

The project life cycle in a commercial context acts as
a structure that allows for coordination and management,
efficient allocation of resources, risk assessment and mitigation
and a common and shared vocabulary [6], [7]. While the
evaluation framework provided in this article is not tailor made
for a particular development approach, it requires application
of distinct project phases.

III. PROJECT QUALITY

Paul Ralph and Paul Kelly [3] investigate the dimensions of
software engineering success, yield 11 different themes with
project being the most important and central concept. In this
article two types of quality are explored:

Internal quality aspects vary depending on the chosen
software development methodology and include [8]:

• requirements documentation – in the form of user stories
for Agile approaches and written communication for
traditional ones,

• detailed design documents – applicable in traditional
models,

• the code and adherence to continuous integration practice
– also comprised in Agile models.

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 1207–1210

DOI: 10.15439/2017F295
ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1207



External quality aspects are observable outside the develop-
ment team and are assessed by client in commercial projects
and professor in academic ones. They encompass both:

• documentation materials – presentation, user manual,
installation guide [8] and

• software’s characteristics – adherence to functional re-
quirements, user-friendliness, robustness and reliability.

These software quality attributes account for four out of
six areas covered by the quality model proposed by ISO/IEC
9126.

A. Internal quality

As mentioned, there are two major factors that influence the
internal quality of a project: source code and extent of adher-
ence to continuous integration practices. Studies have shown
that more complex code, or "spaghetti code", produced by
undergraduate students in particular, is difficult to understand,
more prone to produce errors than a well-designed and coded
module [12].

1) Code complexity and size measure: Cyclomatic com-

plexity (CC) is a measure of complexity of a program and is
determined by counting the number of decisions (linearly inde-
pendent paths) made in a given source code. It is a commonly
used metric in the industry and according to McCabe Software
Company [11] it meets three qualities of a good complexity
measure. It is:

• descriptive, as it objectively measures something – deci-
sion logic in the case of CC,

• predictive, as it correlates with something important –
errors and maintenance effort,

• prescriptive as it guides risk reduction – testing and
improvement.

While Cyclomatic Complexity proves to be a good indi-
cation of quality, the Software Assurance Technology Center
(SATC) at NASA [13] found that the most effective evaluation
is a combination of size and complexity. Source code of
significant size and high complexity bears very low reliability.
Likewise, software with low size and high complexity, as it
tends to be written in a very terse fashion, renders the source
code difficult to change and maintain [14].

An additional success criterion of students’ projects is
its quality of Object Oriented Design. This is a core of
any computer science related course and a paradigm that is
applied to a majority of students’ future undertakings [36]. As
suggested by SATC [13] a pertinent evaluation is the Weighted
Methods per Class, introduced by Chidamber and Kemerer
[15]. WMC is the sum of the complexity of the methods of a
class and a predictor of how much time and effort is required
to develop and maintain the class [13], which is particularly
important for students as they share the code with other team
members.

2) Continuous integration: Continuous Integration is a con-
cept first introduced by Booch [17] whose aim was to avoid
pitfalls while merging code from different programmers and
thus reduce the work and time effort required for the project.

Though initially employed only in a commercial setting,
CI has gained popularity in the students’ undertakings, as
effective teamwork requires use of a version control system on
regular basis. In a Technical University of Munich study [9],
continuous integration was perceived as beneficial according
to 63% of a sample of 122 students and only 13% did not
agree with that statement.

To measure adherence to this practice in a large-scale agile
transformation in multiple companies, Olszewska et al. [18]
propose a metric called Pacemaker: Commit pulse by counting
the average number of days between commits and aiming at
keeping it as low as possible. Evenly distributed workload
and regular merges reduce the complexity of integration and
decrease the pressure related to issues of meeting a deadline,
which is a frequent challenge in students’ undertakings.

The metric is applicable to both plan-driven and agile
settings as data can be collected and evaluated with respect
to any significant time frame, e.g. sprint, month, or semester.

The three aforementioned metrics can be easily elicited
from source code written in any major programming language
[10], [16] and give meaningful insight into a product’s internal
quality.

The calculation method of Cyclomatic Complexity, CC is
given by:

CC =
∑n

i=1
Ei −

∑nm

j=1
Nj + 1,

where: N: number of nodes – logic branch point, such as
if, while, do, case statements in switch, E: number of edges –
an edge represents a line between nodes.

The calculation method of Weighted Method per Class,

WMC is given by:

WMC =
∑n

i=1
ci,

where: C: given class, M: methods defined in a class, c:
complexity of a method.

The calculation method of Pacemaker Commit Pulse, PCP

is given by:

PCP =
∑n,m=n−1

i=1,j=i+1
(Cj − Ci)/N

where: Ci: timestamp of a commit, Cj : timestamp of the
following commit, N: total number of commits in a given
period.

B. External quality

While in commercial environment the testing phase is an
elaborate process carried out by dedicated personnel and
lasting weeks, in the academic setting, it involves mostly a
rudimentary test campaign performed by students to ensure
that the requested functionality is in place before assignment
completion. The tutor performs additional ad-hoc tests to eval-
uate functional conformance and judge his overall satisfaction
level with the results. What additionally differs between the
two contexts is that the latter often lacks a framework for
defects categorization and tracking. In this article a minimal
formal process for testing is proposed so that the external
quality factor can be incorporated into the project success
evaluation.

1208 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



1) Orthogonal Defect Classification: Businesses provide
considerable effort to analyse and improve their software
development life cycle process; one of early adopters of a
formalized approach was IBM. Chillarege et al. [32] introduce
an Orthogonal Defect Classification (ODC), a conceptual
framework using semantic information from defects to extract
cause-effect relationships in the development process. It in-
volves classifying defects according to different attributes at
two points in time:

• once by a submitter, who evaluates the functional cor-
rectness of software,

• once the defect has been fixed or responded to by a tech-
nical team member, who identifies the type of problem
origin.

In order to keep the classification simple and the overhead
added minimal, only the first phase is retained as part of the
proposed framework. When a defect is detected, it needs to
be classified according to three attributes [33]:

• Activity, which refers to the actual process step (code
inspection, function test etc.) that was being performed
at the time the defect was discovered.

• Trigger, which describes the environment or condition
that had to exist to expose the defect.

• Impact, which refers to either perceived or actual impact
on the customer.

IV. PROJECT EFFICIENCY

From a classical project-management point of view the
underpinning of a process’s success is respect of underlying
budget and time constraints. Indeed, a systematic literature
review of 148 papers published between 1991 and 2008
[27] revealed that Effort and Productivity were defined as
success indicators in 63% of studies of process improvement
initiatives. In the simplest terms, effort is the time spent by the
team during the development process and productivity is its
output size in terms of KLOC (kilo lines of code) [28]. In this
paper, more nuanced ways of evaluating project efficiency and
team productivity are investigated as motivation to produce
significant amounts of code can be detrimental to the quality
and is not representative of delivered software value.

A. Defining measurements units

An antagonistic approach of measuring functional size was
introduced by Middleton et al. [30], who invented a method
called Function Point Analysis (FPA). Ever since, multiple
recognized standards and public specifications were defined
based on the notion of Functional Points. In parallel, other
size-based estimation models emerged, such as Use Case

Points [31] or story-based estimation in Agile techniques.
While complex frameworks might yield precise results, they
require experience that students lack and are frequently time-
consuming.

Function Point will thus be understood as an informed high-
level estimation of an underlying piece of functionality (known
as Early Function Point Analysis). Professors are encouraged
to provide the estimates along with the specification of projects

or assist and share their knowledge with students if the
estimation process is within the assignment scope.

In order to adopt a reference unit, students need to track
the time spent on the project. Abrahamsson [29] suggests
collecting effort for each defined task with a precision of
1 minute using paper/pen and predefined excel-sheet as the
primary collection tools. While feasible in a commercial
setting, students are required to estimate their effort with a
precision of 15 minutes. This number is more suitable to a
working environment that is characterized by irregular efforts
and little attention to one’s own time tracking.

B. Productivity and efficiency metrics

The definition of effort and reference unit sets the ground for
the evaluation of project efficiency through the application of
multiple metrics. The first one, suggested by Olszewska et al.
[18] is Hustle Metric: Functionality/Time spent, which mea-
sures how much functionality can be delivered with respect
to a certain work effort. It is calculated by dividing function
points of a task, module or even an entire project by total
amount of implementation time spent by the students.

The calculation of Hustle Metric: Functionality/Time spent,

HM is given by:

HM =
∑n

i=1
Fpi/

∑n

i=1
Ti,

where: Fpi: number of functional points of an artefact (task,
module etc.) considered, Ti: overall time spent by the team
implementing the considered functionality.

The evaluated efficiency facet of this metric is overall global
productivity of the team.

Processing interval is calculated as a subtraction of a
timestamp when the feature is fully implemented and uploaded
to a repository (Tship) and a timestamp when the feature is
accepted for implementation (Tacc). This metric mirrors the
efficiency of the implementation process as one can monitor
the technological or functional cumbersomeness of a certain
feature and team’s capability to tackle encountered problems.

The calculation of Processing Interval: Lead-time per fea-

ture, PI is given by:

PI = Tship − Tacc,

where: Tship: timestamp when the feature is fully imple-
mented and uploaded to a repository, Tacc: timestamp when
the feature is accepted for implementation.

A related metric was tracked at Timberline Inc. [29] – Work

In Progress (WIP) – defined as a sum of function points of
features that are currently under development. As observed
in the study, large amounts of work in progress can translate
into many unidentified defects, which would be discovered
eventually. It can also mitigate a potential risk of another
harmful phenomenon: cherry-picking features that are most
interesting to the team or perceived as the simplest ones.

The calculation of Work In Progress, WIP is given by:

WIP =
∑n

i=1
Fpi,

where: Fpi: function points of a task currently in progress.

ANETA PONISZEWSKA-MARANDA, RAFAŁ WŁODARSKI: MEASURING DIMENSIONS OF SOFTWARE ENGINEERING PROJECTS 1209



V. SOCIAL FACTORS AND STAKEHOLDERS’ SATISFACTION

In their study, Hoegl and Gemuenden [19] express three
principle factors that influence the success of innovative
projects: team performance, teamwork quality, personal suc-
cess.

Teamwork quality is a measure of conditions of collabo-
ration in teams; according to Hoegl and Gemuenden [19] it
consists of six facets: communication, coordination, balance
of member contributions, mutual support, effort and cohesion.

Team cohesion is defined as the "shared bond that drives
team members to stay together and to want to work together"
[22]. As stated in [20] cohesion is highly correlated with
project success, critical for team effectiveness [21], and leads
to increased communication and knowledge sharing [22].

A final dimension of project success is satisfaction and
personal accomplishment of its participants. Although it might
not be apparent to students, it is their learning outcomes
and improved skills that are of paramount importance in
that subject matter. Employers emphasize that both technical
and soft skills are essentials for implementation of successful
software projects. A study by Begel et al. [34] on struggles
of new college graduates in their first development job at
Microsoft finds that they have difficulties in communication,
collaboration and cognition areas; Brechner [35] suggests they
should participate in dedicated courses in Design Analysis and
Quality Code as part of their education.

VI. CONCLUSIONS AND FUTURE WORK

This paper provides professors and faculty members a
framework for evaluation of Software Engineering projects’
success. Its different dimensions are elicited and further di-
vided into sub facets so that they can be addressed with a
specific metric or measure. Exploring assessment criteria used
for IT deliverables in commercial setting helps professional-
ize computer engineers’ university education and more aptly
prepare the graduates to join today’s workforce.

Future work will consist of application of the framework to
University courses so that students’ perception can be taken
into consideration and possibly some of the measures adjusted.
By employing the proposed evaluation scheme, roadblocks
can be identified along with supporting tools to minimize the
potential overhead.

REFERENCES

[1] G. Pierson, "C. Undergraduate Studies: Yale College", Yale Book of
Numbers. Historical Statistics of the College and University 1701-1976,
New Haven: Yale Office of Institutional Research, 1983

[2] N. Postman, "Technopoly The Surrender of Culture to Technology",
New York: Alfred A. Knopf, 1992

[3] P. Ralph, and P. Kelly, "The Dimensions of Software Engineering
Success", 2014

[4] E. Kupiainen and M. V. MaÌĹntylaÌĹ and J. Itkonen, "Using metrics
in Agile and Lean Software Development âĂŞ A systematic literature
review of industrial studies", 2015

[5] M. Unterkalmsteiner and T. Gorschek and A. K. M. Moinul Islam,
"Evaluation and Measurement of Software Process Improvement – A
Systematic Literature Review", 2011

[6] D. Dalcher and O. Benediktsson and H. Thorbergsson, "Development
Life Cycle Management: A Multiproject Experiment", 2005

[7] D. Dalcher, "Life Cycle Design and Management", 2002
[8] F. Macias and M. Holcombe and M. Gheorghe, "A Formal Experiment

Comparing Extreme Programming with Traditional Software Construc-
tion, 2003

[9] B. Bruegge and S. Krusche and L. Alperowitz, "Software Engineering
Project Courses with Industrial Clients", 2015

[10] Z. Naboulsi, "Code Metrics – Cyclomatic Complexity", MSDN Ultimate
Visual Studio Tips and Tricks Blog, https://blogs.msdn.microsoft.com/
zainnab/2011/05/17/code-metrics-cyclomatic-complexity, 2017

[11] McCabe Associates, "Integrated Quality" as part of CS699 Professional
Seminar in Computer Science, 1999

[12] B. Kitchenham and S. L. Pfleeger, "Software Quality: The Elusive
Target’, IEEE Software, 1996

[13] L. Rosenberg and T. Hammer, "Software metrics and reliability", NASA
GSFC, 1998

[14] L. Rosenberg and T. Hammer, "Metrics for Quality Assurance and Risk
Assessment", Proceedings of 11th International Software Quality Week,
USA, 1998

[15] C. F. Kemerer and S. R. Chidamber, "A Metrics Suite for Object
Oriented Design", IEEE Transactions on Software Engineering 1994

[16] Java Code Geeks, "Java Tools: Source Code Optimization
and Analysis", https://www.javacodegeeks.com/2011/07/
java-tools-source-code-optimization-and.html, 2017

[17] G. Booch, "Object Oriented Design: With Applications", 1991
[18] M. Olszewska and J. Heidenberg and M. Weijola, "Quantitatively

measuring a large-scale agile transformation", Journal of Systems and
Software, 2016

[19] M. Hoegl and H. G. Gemuenden, "Teamwork Quality and the Success
of Innovative Projects: A Theoretical Concept and Empirical Evidence",
Organization Science, vol. 12, 2001

[20] A. Carron and L. Brawley, "Cohesion: Conceptual and Measurement
Issues", Small Group Research 31, 2000

[21] E. Salas and R. Grossman, "Measuring Team Cohesion: Observations
from the Science", Human Factors, vol. 57, 2015

[22] M. Casey-Campbell and M. L. Martens, "Sticking it all together: A
critical assessment of the group cohesion-performance literature", 2008

[23] C. A. Wellington and T. Briggs, "Comparison of Student Experiences
with Plan-Driven and Agile Methodologies", 35th ASEE/IEEE Frontiers
in Education Conference, 2015

[24] A. V. Carron, L. R. Brawley, "G.E.Q. The Group Environment Ques-
tionnaire Test Manual", Fitness Information Technology, Inc., 2002

[25] F. van Boxmeer, C. Verwijs, "A direct measure of Morale in the Nether-
lands Armed Forces Morale Survey: ’theoretical puzzle, empirical testing
and validation", Presented at Internation Military Testing Association
Symposium (IMTA), 2007

[26] C. Verwijs, "Agile Teams: Don’t use happiness metrics, measure Team
Morale", Agilistic blog, retrieved 05.2017

[27] M. Unterkalmsteiner and T. Gorschek, "Evaluation and Measurement
of Software Process Improvement – A Systematic Literature Review",
IEEE Transactions on Software Engineering, 2012

[28] S. Ilieva and P. Ivanov and E. Stefanova, "Analyses of an agile method-
ology implementation", Proceedings of 30th EUROMICRO Conference,
2004

[29] P. Abrahamsson, "Extreme Programming: First Results from a Con-
trolled Case Study", Proceedings of 29th EUROMICRO Conference,
2003

[30] P. Middleton and P. S. Taylor, "Lean principles and techniques for
improving the quality and productivity of software development projects:
a case study", International Journal of Productivity and Quality Man-
agement, 2007

[31] M. Ochodek and J. Nawrocki, "Simplifying effort estimation based on
Use Case Points", Information and Software Technology, 2011

[32] R. Chillarege and I. S. Bhandari, "Orthogonal defect classification-a
concept for in-process measurements", IEEE Transactions on Software
Engineering, 1992

[33] M. Butcher and H. Munro, "Improving Software Testing via ODC: Three
Case Studies", IBM Systems Journal, 2002

[34] A. Begel and B. Simon, "Struggles of New College Graduates in their
First Software Development Job", Proceedings of 39th SIGCSE, 2008

[35] E. Brechner, "Things They Would Not Teach Me of in College: What
Microsoft Developers Learn Later",2003

[36] M. Weuisfeld, "The Importance of Object-Oriented Programming in the
Era of Mobile Development", InformtIT, Pearson, http://www.informit.
com/articles/article.aspx?p=2036576, 2013, retrieved 05.2017

1210 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


