
Formalization of the Algebra of

Nominative Data in Mizar

Artur Korniłowicz

Institute of Informatics, University of Białystok,

Ciołkowskiego 1M, 15-245 Białystok, Poland

Email: arturk@math.uwb.edu.pl

Andrii Kryvolap, Mykola Nikitchenko, Ievgen Ivanov

Taras Shevchenko National University of Kyiv,

64/13, Volodymyrska Street, 01601 Kyiv, Ukraine,

Email: krivolapa@gmail.com, nikitchenko@unicyb.kiev.ua,

ivanov.eugen@gmail.com

Abstract—In the paper we describe a formalization of the
notion of a nominative data with simple names and complex
values in the Mizar proof assistant. Such data can be considered
as a partial variable assignment which allows arbitrarily deep
nesting and can be useful for formalizing semantics of programs
that operate in real time environment and/or process complex
data structures and for reasoning about the behavior of such
programs.

I. INTRODUCTION

T
HE importance of the problem of elaborating the the-

ory of programming and connecting it with software

development practice was recognized by many researchers. In

particular, it was mentioned as one of the grand challenges in

computing by T. Hoare in his influential talk “The Verifying

Compiler: a Grand Challenge for computing research of the

21st century” [1] with the implication that an important step

towards solution of this challenge is development of a ver-

ifying compiler that should have a high impact on software

quality and reliability. More generally, one may argue that

development of practical tools and methods of automatic

static analysis of a program (e.g. model checking, verifica-

tion against a formal specification using logical methods and

theorem provers, etc.) that can make sure that it has the desired

runtime properties before the program is run is an important

research topic.

However, nowadays software is used in many application

domains and the traditional idea of proving properties of the

input-output relation associated with a program is not always

sufficient.

For example, practically relevant safety properties of soft-

ware in a real-time embedded system [2], [3] (that is a part

of a larger hardware-software system which interacts with the

physical environment using sensors and actuators) or a cyber-

physical system [2], [3], [4] (e.g. that consist of networks of

computing devices that interact with physical environment)

normally can be expressed not in the form of a property of

a program or its input-output relation itself, but in terms of

admissible behaviors of a larger software-hardware system and

an environment to which it belongs.

The way of proving such properties depends on the chosen

mathematical model of the hardware and the environment and

it is important to note that such a proof is practically relevant

only under the assumption that the model relative to which

safety is proven adequately represents the behavior of the

real system and its environment, and the environment usually

includes unknown and/or random elements, and the scope of

the model usually is limited.

As a toy example, suppose that a program P can control the

behavior of a physical system S by assigning and modifying

the value of a certain parameter p. The behavior of S is

described by a differential equation d
dt
x(t) = f(p, t, x(t)),

where f is some fixed real-valued function. Assume that:

– p is updated by P at discrete time moments t = t1, t2, . . .
determined by P , between which p remains constant (so

on each bounded closed time interval p can be considered

a piecewise constant function);

– P controls S in the open-loop fashion, i.e. P has no or

does not use feedback from S.

Then one may formalize the above mentioned equation

as a switched system [5] where p is a switching signal (if

P uses some feedback from S it may be considered as

a kind of a hybrid dynamical system [6]) and assume that

its solutions t 7→ x(t) defined on intervals of the form [0, T),
T ∈ (0,+∞) ∪ {+∞} describe all possible evolutions of the

state of the system in continuous time which start at the initial

time moment t = 0.

Suppose that we want to check that the composite (“cyber-

physical”) system consisting of S together with the program

P and a computing device which executes it, which we will

denote as “S +P ”, has the following property which we will

call “NONNEG”: if x(0) ≥ 0, then x(t) ≥ 0 for all real

t ≥ 0 for any solution x which is defined at t = 0 and cannot

be continuously extended forward in time (i.e. the value x
that describes some characteristic of the system S does not

fall below 0, if it starts at or above 0).

In order to check, if it holds for a particular f and P , it is

necessary to formulate precisely the semantics of P .

For example, suppose that f has a simple polynomial form

f(u, v, w) = uw2, so that the equation has the form d
dt
x(t) =

p(t)x2(t), and the program P is given in the source code form

in some imperative programming language with C-like syntax

as in Algorithm I (where L1–L6 are labels).

A common way of giving an operational semantics [7] to

programs in languages of this type is to define the notion of

a program state that includes the information about its current

point of execution and the current content of its variables, and

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 237–244

DOI: 10.15439/2017F301

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 237

Algorithm 1 Example

L1 : i = 0 ;

L2 : f o r (; i <10; i ++) { / / i = 0 , 1 , . . . , 9

L3 : p = i ; / / a s s i g n p t h e v a l u e o f i

L4 : s l e e p (1) ; / / w a i t f o r 1 second

L5 : }

L6 :

define a state transition system that describes the possible paths

of evolution (“runs”) of the program state during execution.

Then reasoning about the relation between the program states

at different program execution points can be done using e.g.

the Floyd-Hoare logic [8], [9], [10].

The content of variables in a program state is usually

formalized as a function mapping names of program variables

to their values (variable assignment). The commonly used

notation for such an assignment has the form [var1 7→
value1, var2 7→ value2, . . .], where vari are variables and

valuei are the values that the variables have. In P we can

consider i a normal read/write variable the value of which is

stored in the memory or a CPU register. The variable p and the

assignment to it can have different interpretations (e.g. normal

memory location, a write-only register/hardware port, etc.).

Using the labels L1–L6 to identify program execution

points, and variable assignments to represent the content of

variables, a program state can be formalized as a pair “(label,

variable assignment)”, and a possible run of P can have the

form of a sequence such as:

(L1, [i 7→ 0, p 7→ 0]), (L2, [i 7→ 0, p 7→ 0]),
(L3, [i 7→ 0, p 7→ 0]), (L4, [i 7→ 0, p 7→ 0]),
(L5, [i 7→ 0, p 7→ 0]), (L2, [i 7→ 0, p 7→ 0]),
(L3, [i 7→ 1, p 7→ 0]), (L4, [i 7→ 1, p 7→ 1]), . . .

Obviously, in our case NONNEG cannot be checked by

looking at such runs of P alone, instead the behavior of S and

the timing of interaction between P and S should be taken

into account. In particular, runs of P should be augmented

with timing information to obtain a switching signal p that

determines the behavior of S and ultimately allows one to

check if NONNEG holds for S + P .

A convenient way to add timing information and the behav-

ior of S to runs of P is to extend the program state, or, more

specifically, extend the variable assignment with variables that

represent time (t) and the state of S (x), although, or course,

they differ in nature from i and p. Ignoring the execution time

of instructions other than “sleep(1)”, this extended idealized

run of S + P can have the form:

(L1, [i 7→ 0, p 7→ 0, t 7→ 0, x 7→ x0]),
(L2, [i 7→ 0, p 7→ 0, t 7→ 0, x 7→ x0]),
(L3, [i 7→ 0, p 7→ 0, t 7→ 0, x 7→ x0]),
(L4, [i 7→ 0, p 7→ 0, t 7→ 0, x 7→ x0]),
(L5, [i 7→ 0, p 7→ 0, t 7→ 1, x 7→ x1]),
(L2, [i 7→ 0, p 7→ 0, t 7→ 1, x 7→ x1]),
(L3, [i 7→ 1, p 7→ 0, t 7→ 1, x 7→ x1]),
(L4, [i 7→ 1, p 7→ 1, t 7→ 1, x 7→ x1]), . . .

where xi = x(i) for a solution x of the switched system
d
dt
x(t) = p(t)x2(t), x(0) = x0, where

p(t) =

{

i, t ∈ [i, i+ 1), i ∈ {0, 1, . . . , 9},

9, t ≥ 10.

Note that if x0 6= 0, this solution x dominates the solution

y of the initial value problem d
dt
y(t) = y2(t), y(1) = x0 for

t ≥ 1, which is y(t) = 1/(1+x−1

0 − t) and which has a finite

time blow-up at t = 1+x−1

0 (i.e. limt→1+x
−1

0
−
x(t) = ∞), so

x is undefined (and cannot be continuously extended) past the

time 1+x−1

0 . The physical meaning of this situation is model-

and application-specific, e.g. it may represent a physical event

after which the current model cannot represent adequately S,

or may be a modeling artifact. Some results and discussion of

the physical meaning of finite time blow-up situations can be

found e.g. in [11], [12], [13], [14].

In any case, such situations cannot be ignored during model

analysis and property checking and has to be represented in

a run of S + P . E.g., although if x0 ≥ 0, then x(t) ≥ 0 on

the maximal interval of its existence, which is bounded from

above, NONNEG does not hold since it requires x(t) ≥ 0
to hold for all real t ≥ 0 for such an x.

Although the model of S may lose its meaning after t =
1 + x−1

0 , depending on the model and application, the run

of a program P may still have sense past this time moment

(e.g. if S represents a physical system remotely controlled by

a computer running P , a finite time blow-up indicates a critical

failure in S, then P may continue running after this event).

Naturally, the situation can be represented by partial vari-

able assignments in the extended run of S + P , e.g.:

(L1, [i 7→ 0, p 7→ 1, t 7→ 2]),
means that x is genuinely undefined, but other variables are

defined, meaningful and have assigned values at time t = 2.

Basically, a partial variable assignment d is a set of pairs of

names and values, where names are chosen from some fixed

set V , but not all elements of V may appear in d as names

(e.g. V = {i, p, t, x}, d = [i 7→ 0, p 7→ 1, t 7→ 2]). Such

assignments are also called nominative sets [15].

In contrast, a variable assignment can be called total, if all

elements of V appear in it as names (e.g. V = {i, p, t, x},

d = [i 7→ 0, p 7→ 1, t 7→ 2, x 7→ 3]).
Obviously, total variable assignments can be formalized

mathematically as total functions on V and partial assignments

(nominative sets) can be formalized as partial functions on V .

Reasoning about total variable assignments is well sup-

ported in tools that aid formal specification and verification

of software, e.g. proof assistants [16] such as Isabelle, Coq,

PVS, etc. In particular, Isabelle/HOL “record” data types are

convenient for introducing total assignments with a predefined

set of names. Otherwise, they may be formalized as functions

on a type of names.

On the other hand, partial variable assignments are usually

implemented manually on top of total assignments using

option types (data types that add a special “none”/undefined

value to an existing type), and a built-in library of basic

238 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

operations on them that reflect program operations is generally

not available. Another issue is that built-in or library data types

that represent partial variable assignments with (arbitrarily

deep) nesting such as

[local_vars 7→ [i 7→ 1, j 7→ 0],
IO_interface 7→ [p 7→ 1],
global_time 7→ 1,
systemS_state 7→ [x 7→ 1],
anotherSystemState 7→ [

subsystem1 7→ [y 7→ 1, z 7→ 1],
subsystem2 7→ [y 7→ 1, z 7→ 1]]]

are also not available (i.e. partial variable assignments where

the values of some variables themselves can be partial variable

assignments). However, such assignments can be very useful

to reflect the typical way in which data is grouped in programs

and formalize programs that operate on complex data struc-

tures, e.g. such partial assignments naturally formalize data

encoded in the popular JSON (JavaScript Object Notation)

data format widely used in web applications.

In this paper we propose a library (written in the Mizar

proof assistant [17], [18]) that provides a formalization of

nominative sets and operations on them. The Mizar system has

its own proof verifier1 used to verify the logical correctness

of proofs written in the Mizar language2. The system contains

a very rich library (based on an axiomatic set theory [29]) of

formalized mathematical theories called Mizar Mathematical

Library (MML).3,4 It has also a library support for the notion

of a partial function without using option types. It is then well-

suited for formalizing the mentioned partial variable assign-

ments with nesting, and, more generally, has a potential for

developing formalizations of models of real-time and cyber-

physical systems and logics for reasoning about them.

We hope that it will be useful for formalizing models of

hardware-software systems and applying logical methods to

verification such systems. In this direction we developed an

extension of the Floyd-Hoare logic [10] that takes advantage of

partial variable assignments and also supports partially defined

pre- and post-condition predicates. More information about it

can be found in [10].

In our library we use the theory of nominative data [15],

[37], [38] from the composition-nominative approach [37] to

program semantics: partial variable assignments are formalized

1Research on using specialized external systems to increase computational
power of the Mizar system is also conducted [19], [20], [21].

2The Mizar language is a declarative language designed to write math-
ematical documents. It contains rules for writing traditional mathematical
items (e.g. definitions, theorems, proof steps, etc.). It also provides syntactic
constructions to launch specialized algorithms (e.g. term identifications, term
reductions [22], flexary connectives [23], definitional expansions [24]) which
increase the computational power of the verifier (e.g. equational calculus [25],
[26], properties of functors and predicates [27], [28]).

3MML contains developments on various domains of mathematics, includ-
ing set theory, calculus, topology, lattice theory [30], group theory, category
theory, algebra [31], rough sets [32], and others.

4Because of the size, the MML is also a subject of research on optimization
of its structure, including the improvement of legibility of proofs [33], [34],
[35] and removing duplications of theorems and definitions [36].

as so-called nominative data with simple (unstructured) names

and complex (structured) values. They are also called Type SC

(simple names, complex values) nominative data, or nomina-

tive data of the type TNDSC [15]. They have hierarchical

structure and can be considered as labeled oriented trees with

arcs labeled with names.

The set of nominative data over a given set of (simple/basic)

names V and set of atomic (basic) values A is denoted as

ND(V,A) and is defined as follows [15]:

ND(V,A) =
⋃

k≥0
NDk(V,A),

where

ND0(V,A) = A ∪ {∅},

NDk+1(V,A) = A ∪
(

V
n

−→NDk(V,A)
)

, k ≥ 0.

where for any set X , V
n

−→X denotes the set of all partial

functions from V to X , the domain of which is a finite set,

and ∅ is the empty set which is considered to be the empty

nominative data and alternatively denoted as []. The elements

of V
n

−→X are also called nominative data with simple names

and simple values, or Type SS nominative data over a set of

names V and a set of values X .

If v1, v2, . . . , vn ∈ V are pairwise different (simple) names,

and a1, a2, . . . , an are elements of ND(V,A), then [v1 7→
d1, v2 7→ d2, . . . , vn 7→ dn] denotes the unique nominative

data d ∈ ND(V,A) such that the domain of d (the set on

which d, as a function, is defined) is {v1, v2, . . . , vn} and

d(vi) = ai for i = 1, 2, . . . , n.

For example, if a, b, c are distinct names (arbitrary objects),

then [a 7→ [a 7→ 1, b 7→ []], c 7→ 2] ∈ ND({a, b, c}, {1, 2}).
The elements of A are called atomic nominative data,

while the elements of ND(V,A)\A are called non-atomic

nominative data.

The basic operations on Type SC nominative data are:

• Naming – creating a nominative data of the form [v 7→ d]
from a given nominative data d and a name v (this

is denoted as ⇒ v(d)), or a nominative data of the

form [v1 7→ [v1 7→ [v2 7→ . . . [vn 7→ d] . . .] from

a given nominative data d and a finite sequence of names

v1, v2, . . . , vn (this is denoted as ⇒ v1v2 . . . vn(d)). For

example, if v3, v4 are different names, then

⇒ v1v2([v3 7→ 1, v4 7→ 2]) = [v1 7→ [v2 7→ [v3 7→
1, v4 7→ 2]]].

• Denaming – obtaining the value corresponding to a given

name v or a sequence of names v1, v2, . . . , vn in a given

non-atomic nominative data d (i.e. d /∈ A; if d ∈ A,

denaming is undefined on d). I.e., if d = [u1 7→ a1, u2 7→
a2, . . . , um 7→ am] and v = ui for some i, then ai is

the result of denaming the name v in d (it is denoted as

v ⇒ (d), so ui ⇒ (d) = ai; it is assumed that v ⇒ (d) is

undefined, if v is not among u1, . . . , um). For a sequence

of names v1, . . . , vn, denaming of a nominative data d
is denoted as v1v2 . . . vn ⇒a (d) and has the following

ARTUR KORNIŁOWICZ ET AL.: FORMALIZATION OF THE ALGEBRA OF NOMINATIVE DATA IN MIZAR 239

meaning: v1v2 . . . vn ⇒a (d) = vn ⇒ (. . . (v2 ⇒
(v1 ⇒ (d)) . . .), (it is assumed that v1v2 . . . vn ⇒a (d)
is undefined, if vk ⇒ (. . . (v2 ⇒ (v1 ⇒ (d)) . . .) is

undefined for some k ≤ n). For example, if u,w are

different names, then

v ⇒ ([v 7→ [w 7→ 1], w 7→ 2]) = [w 7→ 1],
vw ⇒a ([v 7→ [w 7→ 1], w 7→ 2]) = 1,

u ⇒ ([w 7→ 1]) is undefined.

• (Global) overlapping is an operation with two arguments

– non-atomic nominative data d1, d2 which means joining

d1 and d2 and resolving name conflicts in the favor of

the second argument d2. It is denoted as d1∇d2 or as

d1∇ad2. So, if d1 = [u1 7→ a1, . . . , un 7→ an] and d2 =
[v1 7→ b1, . . . , vm 7→ bm] and uj1 , uj2 , . . . , ujk is the

list of all elements of the set {u1, . . . , un}\{v1, . . . , vm},

then d1∇d2 = [uj1 7→ aj1 , . . . , ujk 7→ ajk , v1 7→
b1, . . . , vm 7→ bm]. For example, if v1, v2, v3, v4 are

pairwise different names, then

[v1 7→ 1, v2 7→ 2]∇[v2 7→ 3, v4 7→ 4] = [v1 7→ 1, v2 7→
3, v4 7→ 4],

• Local overlapping is an operation with two arguments –

nominative data d1, d2 and a name parameter u, which

means the global overlapping of d1 and ⇒ u(d2). It

is denoted as d1∇
u
ad2, so d1∇

u
ad2 = d1∇[u 7→ d2].

For example, if v1, v2, v3, v4 are names and v1, v2 are

different, then

[v1 7→ 1]∇v2v3

a [v4 7→ 2] = [v1 7→ 1, v2 7→ [v3 7→ [v4 7→
2]]].

The set ND(V,A) together with the operations of naming,

denaming, and local overlapping is called the algebra of

nominative data of the type TNDSC [15, Definition 5].

II. DEFINITION OF NOMINATIVE DATA IN MIZAR

We implemented our library in the form of a Mizar paper

entitled NOMIN_1.MIZ [39], in which we formalized the

carrier set and the operations of the algebra of nominative

data of the type TNDSC .

Below we describe the main definitions and results available

in this Mizar paper. Because of space limitations we omit the

text of full formal proofs of the theorems and correctness

conditions of definitions stated below and certain technical

lemmas that are used only in these proofs, but note that these

formal proofs were checked for correctness with the help of

the Mizar system.5

We formally defined a nominative set (NominativeSet) over

an arbitrary set of names V and an arbitrary set of atomic

values A as a partial function (PartFunc [41]) from V to A
as follows:

definition

let V,A be set;

mode NominativeSet of V,A is PartFunc of V,A;

end;

5The details on syntax and semantics of the Mizar language can be found
in [40].

We defined the notion of a Type SS nominative data

(TypeSSNominativeData) as a nominative set with the finite

graph:

registration

let V,A be set;

cluster finite for NominativeSet of V,A;

end;

definition

let V,A be set;

mode TypeSSNominativeData of V,A

is finite NominativeSet of V,A;

end;

We defined the set NDSS(V,A) of all Type SS nominative

data as follows:

definition

let V,A be set;

func NDSS(V,A) -> set equals

the set of all D

where D is TypeSSNominativeData of V,A;

end;

and proved that it is nonempty for all sets V and A:

registration

let V,A be set;

cluster NDSS(V,A) -> non empty;

end;

The following definitions introduce the notion of a type

SC nominative (TypeSCNominativeData), including nonatomic

nominative data (NonatomicND).

definition

let V,A be set;

let S be FinSequence;

pred S IsNDRankSeq V,A means

S.1 = NDSS(V,A) &

for n being Nat st n in dom S & n+1 in dom S

holds S.(n+1) = NDSS(V,A \/ S.n);

end;

definition

let V,A be set;

mode NonatomicND of V,A -> Function means

ex S being FinSequence st S IsNDRankSeq V,A &

it in Union S;

end;

definition

let V,A be set;

mode TypeSCNominativeData of V,A -> set means

it in A or it is NonatomicND of V,A;

end;

definition

let V,A be set;

let D be TypeSCNominativeData of V,A;

attr D is atomicND means

D in A;

attr D is non-atomicND means

D is NonatomicND of V,A;

end;

registration

let V be set; let A be non empty set;

cluster atomicND

240 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

for TypeSCNominativeData of V,A;

end;

registration

let V,A be set;

cluster non-atomicND

for TypeSCNominativeData of V,A;

end;

where FinSequence denotes a finite sequence [42], . (dot)

denotes a function application [43], dom is the domain of the

function [44], and Union denotes the union of the codomain

of the function [45].

Then, we proved several theorems suitable for defining new

IsNDRankSeq sequences:

theorem

for S being FinSequence st S IsNDRankSeq V,A

for n being Nat st n in dom S holds

S|n IsNDRankSeq V,A;

theorem

for S being FinSequence st S IsNDRankSeq V,A

holds

S ^ <*NDSS(V,A\/S.len S)*> IsNDRankSeq V,A;

theorem

for F being FinSequence st F IsNDRankSeq V,A

ex S being FinSequence st len S = 1 + len F

& S IsNDRankSeq V,A &

for n being Nat st n in dom S holds

S.n = NDSS(V,A \/ (<*A*>^F).n);

and two simple examples of such sequences:

theorem

<*NDSS(V,A)*> IsNDRankSeq V,A;

theorem

<*NDSS(V,A),NDSS(V,A \/ NDSS(V,A))*>

IsNDRankSeq V,A;

where len is the length of the finite sequence [42], <* *>

constructs finite sequences [42], ˆ denotes the concatenation of

two finite sequences [42], and | is the restriction of a function

to a set [44].

Below we state several examples of the sets and types of

nominative data introduced above:

theorem

v in V & a in A implies v.-->a in NDSS(V,A);

theorem

v in V & a in A implies

v.-->a is NonatomicND of V,A;

theorem

v in V & v1 in V & a1 in A implies

v.-->(v1.-->a1) in NDSS(V,A \/ NDSS(V,A));

theorem

v in V & v1 in V & a1 in A implies

v.-->(v1.-->a1) is NonatomicND of V,A;

theorem

v in V & v1 in V & a in A & a1 in A implies

(v,v1)-->(a,a1) in NDSS(V,A);

theorem

v in V & v1 in V & a in A & a1 in A implies

(v,v1)-->(a,a1) is NonatomicND of V,A;

where v, v1, a, a1 are arbitrary objects, v.-->a is

a one element function {[v, a]} [46], and (u,v)-->(a,b)

is a two element function {[u, a], [v, b]} [47].

III. OPERATIONS ON NOMINATIVE DATA

We defined the denaming operation on nonatomic nomina-

tive data of Type SC for a single name (v ⇒ (d)) as follows:

definition

let V,A be set

let v be object;

let D be NonatomicND of V,A

such that v in dom D;

func denaming(v,D) ->

TypeSCNominativeData of V,A equals

D.v;

end;

We defined the naming operation on nonatomic nominative

data of Type SC for a single name (⇒ v(d)) as follows:

definition

let V,A be set;

let v,D be object;

assume D is TypeSCNominativeData of V,A;

assume v in V;

func naming(V,A,v,D) -> NonatomicND of V,A

equals

v .--> D;

end;

We defined the naming operation on nonatomic nominative

data of Type SC for a sequence of names (⇒ v1v2 . . . vn(d))
as follows:

definition

let V,A be set;

let a be object;

let f be V-valued FinSequence;

assume len f > 0;

func namingSeq(V,A,f,a) -> FinSequence means

len it = len f &

t.1 = naming(V,A,f.len f,a) &

for n being Nat st 1 <= n < len it holds

it.(n+1) = naming(V,A,f.(len f-n),it.n);

end;

definition

let V,A be set;

let f be V-valued FinSequence;

let a be object;

func naming(V,A,f,a) -> set equals

namingSeq(V,A,f,a).len(namingSeq(V,A,f,a));

end;

where V-valued states that the range of a relation is included

in V [44].

Below we state several basic properties of the introduced

operations:

theorem

for f being V-valued FinSequence holds

1 <= n <= len f implies

namingSeq(V,A,f,a).n is NonatomicND of V,A;

theorem

ARTUR KORNIŁOWICZ ET AL.: FORMALIZATION OF THE ALGEBRA OF NOMINATIVE DATA IN MIZAR 241

for f being V-valued FinSequence st len f > 0

holds naming(V,A,f,a) is NonatomicND of V,A;

theorem

for V being non empty set

for v being Element of V holds

naming(V,A,<*v*>,a) = naming(V,A,v,a);

theorem

for V being non empty set

for v1,v2 being Element of V st

for D being TypeSCNominativeData of V,A

holds

naming(V,A,<*v1,v2*>,D) = v1.-->(v2.-->D);

The following theorem shows that denaming applied to the

result of naming applied to a data d results in d, if denaming

and naming concern the same name v:

theorem

for D being TypeSCNominativeData of V,A holds

v in V implies

denaming(v,naming(V,A,v,D)) = D;

The following theorem states an identity for naming applied

to the result of denaming:

theorem

v in dom D implies

naming(V,A,v,denaming(v,D)) = v .--> D.v;

We defined the global overlapping on nominative data of

Type SC as follows:

definition

let V,A be set;

let d1,d2 be object such that

d1 is TypeSCNominativeData of V,A and

d2 is TypeSCNominativeData of V,A;

func global_overlapping(V,A,d1,d2)

-> TypeSCNominativeData of V,A means

ex f1,f2 being Function st f1 = d1 & f2 = d2

& it = f2 \/ (f1|(dom(f1)\dom(f2)))

if not d1 in A & not d2 in A

otherwise

it = the TypeSCNominativeData of V,A;

end;

We defined the local overlapping with single name param-

eter v on nominative data of Type SC as follows:

definition

let V,A be set;

let d1,d2,v be object;

func local_overlapping(V,A,d1,d2,v)

-> TypeSCNominativeData of V,A equals

global_overlapping(V,A,d1,naming(V,A,v,d2));

end;

Below we state several basic properties of the global over-

lapping:

theorem

for d1,d2 being NonatomicND of V,A

st not d1 in A & not d2 in A holds

global_overlapping(V,A,d1,d2)

= d2 \/ (d1|(dom(d1)\dom(d2)));

theorem

for d1,d2 being NonatomicND of V,A

st not d1 in A & not d2 in A

& dom d1 c= dom d2

holds global_overlapping(V,A,d1,d2) = d2;

theorem

v in V &

not v.-->a1 in A & not v.-->a2 in A &

a1 is TypeSCNominativeData of V,A &

a2 is TypeSCNominativeData of V,A

implies

global_overlapping(V,A,v.-->a1,v.-->a2)

= v.-->a2;

Below we introduce the set ND(V,A) of all nominative

data of Type SC over a set of names V and a set of values A.

This is the carrier of the algebra of nominative data.

definition

let V,A be set;

func ND(V,A) -> set equals

the set of all D

where D is TypeSCNominativeData of V,A;

end;

registration

let V,A be set;

cluster ND(V,A) -> non empty;

end;

ND(V,A) can be also expressed as the union of the range

of the function FNDSC(V,A) defined as:

definition

let V,A be set;

func FNDSC(V,A) -> Function means

dom it = NAT & it.0 = A &

for n being Nat holds

it.(n+1) = NDSS(V,A \/ it.n);

end;

Finally, we defined the operations of the algebra of nomi-

native data as functions on ND(V,A) as follows:

definition

let V,A be set;

let v be object;

func denaming(V,A,v)

-> PartFunc of ND(V,A),ND(V,A) means

dom it = ND(V,A) \ A &

for D being NonatomicND of V,A st not D in A

holds it.D = denaming(v,D);

end;

definition

let V,A be set;

let v be object;

func naming(V,A,v)

-> Function of ND(V,A),ND(V,A) means

for D being TypeSCNominativeData of V,A holds

it.D = naming(V,A,v,D);

end;

definition

let V,A be set;

let v be object;

func local_overlapping(V,A,v)

-> PartFunc of [:ND(V,A),ND(V,A):],ND(V,A)

means

dom it = [: ND(V,A) \ A , ND(V,A) \ A :] &

242 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

for d1,d2 being NonatomicND of V,A

st not d1 in A & not d2 in A holds

it. [d1,d2] = local_overlapping(V,A,d1,d2,v);

end;

where [:A,B:] is the Cartesian product of sets A and B [48].

IV. CONCLUSION

We have proposed a library of Mizar definitions of the

carrier set and the operations of the algebra of nominative data

of the type TNDSC (nominative data with simple names and

complex values) which are essentially partial variable assign-

ments that allow arbitrarily deep nesting. We have also formal-

ized theorems that describe basic properties of nominative data

and operations on them in Mizar. The obtained results can be

useful for formalizing semantics of programs that operate in

real time environment and/or process complex data structures

and for reasoning about the behavior of such programs. We

plan to formalize an extension of the Floyd-Hoare logic [10]

in Mizar that allows reasoning about programs by taking

advantage of the formalized notion of a nominative data in

further papers. We plan to continue the work described in

this paper as follows: 1) To introduce notions of predicates

and functions on nominative data in Mizar – predicates on

nominative data will be used to represent the semantics of

pre- and postconditions and functions on nominative data

can serve as semantic models of programs. 2) To define

operations on partial functions and predicates on nominative

data which represent semantics of common programming

language constructs such as sequential execution, branching,

cycle, etc. Sets of predicates and functions on nominative data

together with such operations form a program algebra. 3) To

define a special Floyd-Hoare composition using the introduced

notions of predicates and functions (programs) on nominative

data. 4) To formulate inference rules for the Floyd-Hoare

logic for programs on nominative data with partial pre- and

postconditions and prove soundness of this inference system

in Mizar.

REFERENCES

[1] T. Hoare. (2004) The verifying compiler: A grand challenge for com-
puting research. Gresham College, 18/03/2004, Barnard’s Inn Hall.
http://www.cs.ox.ac.uk/files/6187/Grand.pdf.

[2] J. Shi, J. Wan, H. Yan, and H. Suo, “A survey of cyber-physical systems,”
in Wireless Communications and Signal Processing (WCSP). IEEE,
2011, pp. 1–6.

[3] E. Lee and S. Seshia, Introduction to embedded systems: A cyber-

physical systems approach. Lulu.com, 2013.

[4] J. Sifakis, “Rigorous design of cyber-physical systems,” in Embedded

Computer Systems (SAMOS), 2012 International Conference on. IEEE,
2012, pp. 319–319.

[5] D. Liberzon, Switching in Systems and Control (Systems & Control:

Foundations & Applications). Birkhauser Boston Inc., 2003.

[6] R. Goebel, R. G. Sanfelice, and A. Teel, “Hybrid dynamical systems,”
Control Systems, IEEE, vol. 29, no. 2, pp. 28–93, 2009.

[7] H. Nielson and F. Nielson, Semantics with applications – a formal

introduction, ser. Wiley professional computing. Wiley, 1992.

[8] R. Floyd, “Assigning meanings to programs,” Mathematical aspects of

computer science, vol. 19, no. 19–32, 1967.

[9] C. Hoare, “An axiomatic basis for computer programming,” Commun.

ACM, vol. 12, no. 10, pp. 576–580, 1969.

[10] A. Korniłowicz, A. Kryvolap, M. Nikitchenko, and I. Ivanov, “An
approach to formalization of an extension of Floyd-Hoare logic,” in
Proceedings of the 13th International Conference on ICT in Education,

Research and Industrial Applications: Integration, Harmonization

and Knowledge Transfer (ICTERI 2017), May 15–18, 2017, Kyiv,

Ukraine, 2017., ser. CEUR Workshop Proceedings, V. Ermolayev,
N. Bassiliades, H.-G. Fill, V. Yakovyna, H. C. Mayr, V. Kharchenko,
V. Peschanenko, M. Shyshkina, M. Nikitchenko, and A. Spivakovsky,
Eds., vol. 1844. CEUR-WS.org, 2017, pp. 504–523. [Online].
Available: http://ceur-ws.org/Vol-1844/10000504.pdf

[11] J. Ball, “Finite time blow-up in nonlinear problems,” Nonlinear Evolu-

tion Equations, pp. 189–205, 1978.

[12] Y. Zhou, Z. Yang, H. Zhang, and Y. Wang, “Theoretical analysis for
blow-up behaviors of differential equations with piecewise constant
arguments,” Appl. Math. Comput., vol. 274, no. C, pp. 353–361, Feb.
2016. [Online]. Available: http://dx.doi.org/10.1016/j.amc.2015.10.080

[13] H. A. Levine, “The role of critical exponents in blowup theorems,” Siam

Review, vol. 32, no. 2, pp. 262–288, 1990.

[14] A. Goriely, Integrability and nonintegrability of dynamical systems.
World Scientific Publishing Company, 2001, vol. 19.

[15] V. Skobelev, M. Nikitchenko, and I. Ivanov, “On algebraic properties
of nominative data and functions,” in Information and Communication

Technologies in Education, Research, and Industrial Applications, ser.
Communications in Computer and Information Science, V. Ermolayev,
H. Mayr, M. Nikitchenko, A. Spivakovsky, and G. Zholtkevych, Eds.
Springer International Publishing, 2014, vol. 469, pp. 117–138.

[16] F. Wiedijk, “The seventeen provers of the world. Foreword by Dana
S. Scott.” ser. Lecture Notes in Artificial Intelligence, F. Wiedijk, Ed.
Springer-Verlag Berlin Heidelberg, 2006, vol. 3600.

[17] A. Grabowski, A. Korniłowicz, and A. Naumowicz, “Four decades
of Mizar,” Journal of Automated Reasoning, vol. 55, no. 3, pp.
191–198, October 2015. [Online]. Available: http://dx.doi.org/10.1007/
s10817-015-9345-1

[18] G. Bancerek, C. Byliński, A. Grabowski, A. Korniłowicz, R. Ma-
tuszewski, A. Naumowicz, K. Pa̧k, and J. Urban, “Mizar: State-of-the-art
and beyond,” ser. Lecture Notes in Computer Science. Springer, 2015,
vol. 9150, pp. 261–279.

[19] A. Naumowicz, “Interfacing external CA systems for Gröbner bases
computation in Mizar proof checking,” International Journal of

Computer Mathematics, vol. 87, no. 1, pp. 1–11, January 2010.
[Online]. Available: http://dx.doi.org/10.1080/00207160701864459

[20] ——, “SAT-enhanced Mizar proof checking,” in Intelligent Computer

Mathematics – International Conference, CICM 2014, Coimbra,

Portugal, July 7–11, 2014. Proceedings, ser. Lecture Notes in Computer
Science, S. M. Watt, J. H. Davenport, A. P. Sexton, P. Sojka, and
J. Urban, Eds., vol. 8543. Springer, 2014, pp. 449–452. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-08434-3_37

[21] ——, “Automating Boolean set operations in Mizar proof checking
with the aid of an external SAT solver,” Journal of Automated

Reasoning, vol. 55, no. 3, pp. 285–294, October 2015. [Online].
Available: http://dx.doi.org/10.1007/s10817-015-9332-6

[22] A. Korniłowicz, “On rewriting rules in Mizar,” Journal of Automated

Reasoning, vol. 50, no. 2, pp. 203–210, February 2013. [Online].
Available: http://dx.doi.org/10.1007/s10817-012-9261-6

[23] ——, “Flexary connectives in Mizar,” Computer Languages, Systems &

Structures, vol. 44, pp. 238–250, December 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.cl.2015.07.002

[24] ——, “Definitional expansions in Mizar,” Journal of Automated

Reasoning, vol. 55, no. 3, pp. 257–268, October 2015. [Online].
Available: http://dx.doi.org/10.1007/s10817-015-9331-7

[25] G. Nelson and D. C. Oppen, “Fast decision procedures based on
congruence closure,” J. ACM, vol. 27, pp. 356–364, April 1980.
[Online]. Available: http://doi.acm.org/10.1145/322186.322198

[26] A. Grabowski, A. Korniłowicz, and C. Schwarzweller, “Equality in
computer proof-assistants,” in Proceedings of the 2015 Federated

Conference on Computer Science and Information Systems, ser. Annals
of Computer Science and Information Systems, M. Ganzha, L. A.
Maciaszek, and M. Paprzycki, Eds., vol. 5. IEEE, 2015, pp. 45–54.
[Online]. Available: http://dx.doi.org/10.15439/2015F229

[27] A. Naumowicz and C. Byliński, “Improving Mizar texts with properties
and requirements,” in Mathematical Knowledge Management, Third

International Conference, MKM 2004 Proceedings, ser. MKM’04,
Lecture Notes in Computer Science, A. Asperti, G. Bancerek, and

ARTUR KORNIŁOWICZ ET AL.: FORMALIZATION OF THE ALGEBRA OF NOMINATIVE DATA IN MIZAR 243

A. Trybulec, Eds., vol. 3119, 2004, pp. 290–301. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-27818-4_21

[28] A. Korniłowicz, “Enhancement of Mizar texts with transitivity property
of predicates,” in Intelligent Computer Mathematics – 9th International

Conference, CICM 2016, Bialystok, Poland, July 25–29, 2016,

Proceedings, ser. Lecture Notes in Computer Science, M. Kohlhase,
M. Johansson, B. R. Miller, L. de Moura, and F. W. Tompa,
Eds., vol. 9791. Springer, 2016, pp. 157–162. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-42547-4_12

[29] A. Trybulec, “Tarski Grothendieck set theory,” Formalized Mathematics,
vol. 1, no. 1, pp. 9–11, 1990. [Online]. Available: http://fm.mizar.org/
1990-1/pdf1-1/tarski.pdf

[30] A. Grabowski, “Mechanizing complemented lattices within Mizar
type system,” Journal of Automated Reasoning, vol. 55, no. 3, pp.
211–221, October 2015. [Online]. Available: http://dx.doi.org/10.1007/
s10817-015-9333-5

[31] A. Grabowski, A. Korniłowicz, and C. Schwarzweller, “On algebraic
hierarchies in mathematical repository of Mizar,” in Proceedings

of the 2016 Federated Conference on Computer Science and

Information Systems, ser. Annals of Computer Science and Information
Systems, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds.,
vol. 8. IEEE, 2016, pp. 363–371. [Online]. Available: http:
//dx.doi.org/10.15439/2016F520

[32] A. Grabowski and M. Jastrzębska, “Rough set theory from a math-
assistant perspective,” in Rough Sets and Intelligent Systems Paradigms,

International Conference, RSEISP 2007, Warsaw, Poland, June 28–

30, 2007, Proceedings, ser. Lecture Notes in Computer Science,
M. Kryszkiewicz, J. F. Peters, H. Rybinski, and A. Skowron,
Eds., vol. 4585. Springer, 2007, pp. 152–161. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-73451-2_17

[33] K. Pąk, “Improving legibility of natural deduction proofs is not trivial,”
Logical Methods in Computer Science, vol. 10, no. 3, pp. 1–30, 2014.
[Online]. Available: http://dx.doi.org/10.2168/LMCS-10(3:23)2014

[34] ——, “Automated improving of proof legibility in the Mizar system,”
in Intelligent Computer Mathematics – International Conference, CICM

2014, Coimbra, Portugal, July 7–11, 2014. Proceedings, ser. Lecture
Notes in Computer Science, S. M. Watt, J. H. Davenport, A. P. Sexton,
P. Sojka, and J. Urban, Eds., vol. 8543. Springer, 2014, pp. 373–387.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-08434-3_27

[35] ——, “Improving legibility of formal proofs based on the close
reference principle is NP-hard,” Journal of Automated Reasoning,
vol. 55, no. 3, pp. 295–306, October 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10817-015-9337-1

[36] A. Grabowski and C. Schwarzweller, “On duplication in mathematical
repositories,” in Intelligent Computer Mathematics, 10th International

Conference, AISC 2010, 17th Symposium, Calculemus 2010, and

9th International Conference, MKM 2010, Paris, France, July 5–

10, 2010. Proceedings, 2010, pp. 300–314. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14128-7_26

[37] N. S. Nikitchenko, “A composition nominative approach to program
semantics,” IT-TR 1998-020, Technical University of Denmark, Tech.
Rep., 1998.

[38] M. Nikitchenko and S. Shkilniak, Mathematical logic and theory of

algorithms. Publishing house of Taras Shevchenko National University
of Kyiv, Ukraine (in Ukrainian), 2008.

[39] I. Ivanov, M. Nikitchenko, A. Kryvolap, and A. Korniłowicz,
“Simple named-complex valued nominative data – definition and basic
operations,” Formalized Mathematics, vol. 25, no. 3, 2017. [Online].
Available: http://dx.doi.org/10.1515/forma-2017-0020

[40] A. Grabowski, A. Korniłowicz, and A. Naumowicz, “Mizar in a nut-
shell,” Journal of Formalized Reasoning, Special Issue: User Tutorials

I, vol. 3, no. 2, pp. 153–245, December 2010.
[41] C. Byliński, “Partial functions,” Formalized Mathematics, vol. 1, no. 2,

pp. 357–367, 1990. [Online]. Available: http://fm.mizar.org/1990-1/
pdf1-2/partfun1.pdf

[42] G. Bancerek and K. Hryniewiecki, “Segments of natural numbers and
finite sequences,” Formalized Mathematics, vol. 1, no. 1, pp. 107–114,
1990. [Online]. Available: http://fm.mizar.org/1990-1/pdf1-1/finseq_1.
pdf

[43] C. Byliński, “Functions and their basic properties,” Formalized

Mathematics, vol. 1, no. 1, pp. 55–65, 1990. [Online]. Available:
http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf

[44] E. Woronowicz, “Relations and their basic properties,” Formalized
Mathematics, vol. 1, no. 1, pp. 73–83, 1990. [Online]. Available:
http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf

[45] G. Bancerek, “König’s theorem,” Formalized Mathematics, vol. 1,
no. 3, pp. 589–593, 1990. [Online]. Available: http://fm.mizar.org/
1990-1/pdf1-3/card_3.pdf

[46] A. Trybulec, “Binary operations applied to functions,” Formalized

Mathematics, vol. 1, no. 2, pp. 329–334, 1990. [Online]. Available:
http://fm.mizar.org/1990-1/pdf1-2/funcop_1.pdf

[47] C. Byliński, “The modification of a function by a function
and the iteration of the composition of a function,” Formalized

Mathematics, vol. 1, no. 3, pp. 521–527, 1990. [Online]. Available:
http://fm.mizar.org/1990-1/pdf1-3/funct_4.pdf

[48] ——, “Some basic properties of sets,” Formalized Mathematics, vol. 1,
no. 1, pp. 47–53, 1990. [Online]. Available: http://fm.mizar.org/1990-1/
pdf1-1/zfmisc_1.pdf

[49] S. M. Watt, J. H. Davenport, A. P. Sexton, P. Sojka, and J. Urban, Eds.,
Intelligent Computer Mathematics – International Conference, CICM

2014, Coimbra, Portugal, July 7–11, 2014. Proceedings, ser. Lecture
Notes in Computer Science, vol. 8543. Springer, 2014. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-08434-3

244 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

