
Formalization of Pell’s Equation in the Mizar

System

Marcin Acewicz

University of Białystok,

Ciolkowskiego 1M, 15-245 Bialystok, Poland

Email: acewiczmarcin@gmail.com

Karol Pąk
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Abstract—We present a case study on a formalization of a
textbook theorem that is listed as #39 at Freek Wiedijk’s list of
“Top 100 mathematical theorems”. We focus on the formalization
of the theorem that Pell’s equation x2

−Dy2 = 1 has infinitely
many solutions in positive integers for a given non square natural
number D. We present also a formalization of the theorem that
based on the least fundamental solution of the equation we can
simply calculate algebraically each remaining solution.

I. INTRODUCTION

T
HE work under the rigorous control of proof-assistants

on a high formal level of trust eliminates all gaps which

sometimes occur in informal proofs, especially in large ones.

Any attempt to analyze the details of such formal certification

is difficult in principle, however there are some exceptions.

There are proof scripts whose authors put an extra effort to

improve their readability [1], [2].

A. Paper Content and Contributions

We present our experience with the formalization of theo-

rems related to the solvability of Pell’s equation in the Mizar

system[3], where we tried to obtain readable formalization.

We focus on the approach represented in the textbook [4]. We

show that the effort associated with this formalization is non-

trivial, since we have to add to informal proofs all technical

details that have been originally omitted.

Note that each fragment of the Mizar proof scripts con-

tained in this paper comes from [5] available in the Mizar

distribution.

II. PELL’S EQUATION

Pell’s equation (called alternatively the Fermat equation) is

a special case of the quadratic Diophantine equation having

the form x2−Dy2 = 1, with D be a nonzero integer number.

Generally, it is assumed that D is not a square since otherwise

the equation can be solved using the difference of squares

x2 − Dy2 = (x + dy)(x − dy) = 1. However in the context

of Pell’s equation, only non zero pairs of integers are being

considered as solutions, excluding the trivial cases x = 1,

y = 0 and x = −1, y = 0.

The solution of Pell’s equation has been applied in many

branches of mathematics. As the most basic we indicate here
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that based on solutions for a given non square natural D,

we obtain a rational approximation for
√
D. There is also a

correspondence between the solvability of Pell’s equation and

a special case of Dirichlet’s unit theorem. It is also important

to note that the Stormer’s theorem applies Pell’s equation to

find pairs of consecutive smooth numbers.

From our point of view, the most significant application

of Pell’s equation was done by Yuri Matiyasevich to prove

the undecidability of Hilbert’s 10th problem. He analyzes a

particular case x2 − (a2 − 1)y2 = 1, where a is a natural

number. He showed that solutions of such equation may

grow exponentially and it was suffices to show that every

computably enumerable set is diophantine. The solvability

of this case and only such a case of Pell’s equation has

been already formalized in HOL Light [6] and Metamath [7].

However, in the case we can skip a complicated construction

of a non trivial solution that is used for the general case, since

pair 〈a, 1〉 is a solution.

A. Formalization in the Mizar System

In our formalization, we show that there exists a solution

of Pell’s equation for the general case, based on the approach

used in the textbook [4] that is is very detailed. Nevertheless,

fitting this approach to the limitations of a proof-checker sys-

tem forced us to rebuild significantly the informal reasoning.

In several situations we have to use an equivalent approach,

to allow the use of already formalized facts in the Mizar

Mathematical Library. Finally, we have to extract fragments

of proofs as lemmas to highlight the main ideas of main

theorems.

III. FORMALIZATION DETAILS

In this section, we show the details of our formalization.

We focus on two main theorems that determine the cardinality

of the set that contains each solution of Pell’s equation and

dependencies between individual solutions. We show also the

details of an important lemma that is used in the proof of the

first theorem.

A. Basic lemma

The informal approach that is considered in the textbook

[4] and is used to provide existence of at least one solution of

Pell’s equation is based on the following lemma:
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Lemma 3.1: If a natural number D is not the square of

a natural number, then there exist infinitely many different

pairs of integers x, y satisfying the inequalities y 6= 0 and

|x2 −Dy2| < 2
√
D + 1.

which we formalized as follows:

theorem Th9:

D is non square implies {[x,y] where x, y is Integer:

y<>0 & |.x^2-D*y^2.|<2*sqrt D +1 &

0<x-y*sqrt D} is infinite

It is important to note that in our reformulation we proved a

slightly stronger theorem, where the pairs in the considered

set satisfy an additional condition 0<x-y*sqrt D. The

condition can easily be deduced from the information collected

in original informal proof of Lemma 3.1 and significantly

facilitates application of the lemma in the main theorem. We

distinguished three main stages in the proof of Lemma 3.1.

The first stage can be described as a remark that for each

natural number n greater than 1 there exists a pair of integers

x, y such that 0 < x − y
√
D < 1

n
with 0 < |y| ≤ n. We

extract this stage as a theorem:

theorem Th6:

D is non square & n > implies ex x,y be Integer st

y<>0 & |.y.|<=n & 0<x-y*sqrt D<1/n

where the main idea of the proof can be described in the

following way.

Let us consider a finite sequence F : {1, 2, . . . , n+ 1} 7→ R

associate to any natural number 1 ≤ i ≤ n + 1 the floor

[(i − 1)
√
D + 1]. We have 0 < F (i) − (i − 1)

√
D ≤ 1 for

every 1 ≤ i ≤ n+ 1. Moreover,
√
D is an irrational number,

hence F (i) − (i − 1)
√
D 6= F (j) − (j − 1)

√
D for every

1 ≤ i < j ≤ n + 1. Then applying the pigeonhole principle

(commonly called Dirichlet’s box principle) it can be seen that

there exist natural numbers i, j such that i 6= j and |(F (i) −
(i − 1)

√
D) − (F (j) − (j − 1)

√
D)| < 1

n
, where as items

we take the numbers F (i)− (i− 1)
√
D and as containers we

take intervals:
]

0, 1
n

]

,
]

1
n
, 2
n

]

, . . . ,
]

n−1
n

, 1
]

. Now the proof of

Th6 is straightforward if we take x := j−i, y := F (j)−F (i)
or x := i− j, y := F (i)− F (j).

To improve the main idea of Th6 we formulate two theo-

rems: the existence of such finite sequence F and a dedicated

case of the pigeonhole principle:

theorem Th4:

ex F be FinSequence of NAT st len F=n+1 &

(for k st k in dom F holds F.k=[\ (k-1)*sqrt D/]+1) &

(D is non square implies F is one-to-one)

theorem Th5:

for a,b be Real, F be FinSequence of REAL st

n>1 & len F=n+1 & (for k st k in dom F holds a<F.k<=b)

holds

ex i,j be Nat st i in dom F & j in dom F & i<>j &

F.i<=F.j & F.j-F.i<(b-a)/n

Note that we present theorems as well as the majority of

theorems in the paper without proofs which can be found in

the proof script PELLS_EQ.miz.

The second stage can be formulated as an observation that

there exists a pair of integers that fulfills property formulated

in Lemma 3.1. However, the justification of its existence is

“informally” repeated in the last stage as the sentence In virtue

of what we have proved before there exists at least one pair of

integers x, y satisfying [ . . . ]. Therefore, to avoid repetition,

we formulate a theorem that based on the assumption as well

as the properties of the pair x, y formulated in Th6 we can

prove an additional property:

theorem Th7:

D is non square & n<>0 & |.y.|<=n & 0<x-y*sqrt D <1/n

implies |.x^2-D*y^2.|<=2*sqrt D+1/(n^2)

Then justification of this stage is a simple consequence of

theorems labeled by Th6, Th7.

The justification of the third stage can be considered as

a complete proof of Lemma 3.1 that refers to the earlier

stages. Note that the justification has the form of an indirect

proof, where the whole thesis of Lemma 3.1 is taken as an

indirect assumption. A formal justification of the stage can be

described as follows.

Let as define a set S of pairs considered in the Lemma 3.1

and suppose contrary to our claim that S is finite. Let us

consider a function f : S 7→ R that assigns x − y
√
D for

each pair 〈x, y〉 ∈ S. We have that the range of f , denoted by

R is finite since S is finite by the assumption and nonempty by

Th8. Consequently, the infimum of R is a member of R and is

positive as each element of R. Further, there exists a natural

number n such that 1
n

is less than the infinium of R. Then

from Th6 and Th7 there exists a pair of integers x, y such

that y 6= 0, |x2 −Dy2| < 2
√
D + 1, and 0 < x− y

√
D < 1

n
.

But the number x− y
√
D is a member of R and is less than

the infimum, which is impossible.

This finishes the justification of the third stage and conse-

quently, the justification of Lemma 3.1.

B. Solvability of Pell’s equation

The first main theorem that we take into consideration in

our formalization is originally formulated as follows:

Theorem 3.1: If a natural number D is not the square of a

natural number, then the equation x2−Dy2 = 1 has infinitely

many solutions in natural numbers x, y.

Since the theorem is one of the main results in our formal-
ization, we have put an additional effort to obtain a readable
formulation

theorem Th14:

for D be non square Nat holds

the set of all ab where ab is positive Pell’s_solution of D

is infinite

The informal justification can naturally be divided into two

main stages. The first one states that Pell’s equation has a

solution in positive natural numbers and the second one that

based on a given solution x, y we can construct another

solution x′, y′ where x′ > x, y′ > y.

The first part of the first stage can be described as a theorem:
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theorem Th10:

D is non square implies ex k,a,b,c,d be Integer st 0 <> k &

a^2-D*b^2 = k = c^2-D*d^2 &

a,c are_congruent_mod k & b,d are_congruent_mod k &

(|.a.|<>|.c.| or |.b.|<>|.d.|)

The proof of the theorem follows the idea of the textbook

and includes constructions of successive infinite subsets of the

set that is indicated in Lemma .3.1. Denote by S indicated

there set. Note that for each pair x, y that belongs to S the

expression |x2 − Dy2| can have a finite number of nonzero

natural values bounded by 2
√
D+1. Consequently, there exists

an infinite subset Z of S for which x2−Dy2 is equal to a fixed

number k. Further, for each pair of Z we can assign a pair of

remainders obtained by dividing by k. Note that there exist at

most k2 possible pairs of remainders. Therefore, there exists

an infinite subset R of Z for which the pair of remainders is

equal to a fixed one. Moreover we can choose two pairs a,

b and c, d that belong to R that fulfil |a| 6= |c| or |b| 6= |d|,
since both equations can only occur in 4 cases.

To imitate the selection processes of an infinite subset,

we use theorem from Mizar Mathematical Library labeled by

CARD_2:101 in the Mizar article [8].

theorem :: CARD_2:101

for F be Function st dom F is infinite & rng F is finite

ex x st x in rng F & F"{x} is infinite;

It is important to note that we have to construct all necessary

functions and justify their basic properties to use this theorem.

In consequence, our formal justification of Th10 has almost

100 steps and is 5.19 times longer than the corresponding part

of the informal one, if we compare the number of characters.

Note that the proportion, called de Bruijn factor, calculated

for whole our formalization is 3.62. However, the proportion

is not so weak for each fragment of our formalization.

Let us focus on the reasoning contained in the remaining

part of the first stage that can be summarized as

theorem Th11:

D is non square implies ex x,y be Nat st x^2-D*y^2=1 & y<>0

The formal proof of this fact is comparable with the infor-

mal one. Therefore we will not focus on its details. However,

in this case, we obtain de Bruijn factor equals 0.97.

As in the case of theorem Th9, a fragment of the original

proof of Theorem 3.1 that corresponds to the second stage

is used directly as a the proof of Th14. However, to be

able to formulate Th14, we have to introduce two necessary

definitions in our formalization.

First we define a solution of a given Pell’s equation as each

pair it of integers

definition

let D be Nat;

mode Pell’s_solution of D -> Element of [:INT,INT:]

means (it‘1)^2 - D * (it‘2)^2 = 1

where it‘1 denotes the first coordinate of it and it‘2 denotes

the second ones.

Next, we define the concept of positive solutions of Pell’s

equation. A pair of real numbers is positive if both

coordinates are positive and we formalize the adjective as

follows:

definition

let D1,D2 be real-membered non empty set;

let p be Element of [:D1,D2:];

attr p is positive means :Def2:

p‘1 is positive & p‘2 is positive;

end;

Furthermore, to use the type positive Pell’s_-

solution of D in the formulation of Th14, it is necessary to

show non-emptiness for this type that is that exists at least one

object of a given type. Obviously, we can justify this condition

based on Th11 if D is a positive integer that is not a perfect

square. We express this observation in the Mizar system as

follows:

registration

let D be non square Nat;

cluster positive for Pell’s_solution of D;

Based on this approach, we can start to prove Th14 based

on the reasoning in the second stage. The main idea of the

reasoning is expressed by the sentence:

If the equality x2 −Dy2 = 1 holds for natural numbers x,

y then, clearly, (2x2 − 1)2 −D(2xy)2 = 1 with 2xy > y.

Obviously, its shows in a simple way that we can increase

any number of times the second coordinate of a solution,

generating in consequence infinitely many pairwise different

solutions in natural numbers. Such kind of demonstration

that a given set has infinite cardinality is typical in informal

practice. However, a formalization could not strictly reflect it

and we reflect the idea as follows:

Let P denotes the set of all pairs that correspond to

positive solutions of x2 − Dy2 = 1. Suppose, contrary

to our claim, that P is finite. By Th11 the set P is also

non empty. Consequently, the set of the second coordinates

of each pair that belongs to P , denoted by P2 is also non

empty and finite. Further, the supremum of P2 is a member

of P2. Then there exists a positive pair of integers x,

y such that x2 − Dy2 = 1 and y is the supremum of

P2. It is clear that 〈2x2 − 1, 2xy〉 is a member of P since

(2x2 − 1)2 −D(2xy)2 = 1. But then 2xy is a member of P2

that is greater than the supremum of P2, which is impossible.

C. The shape of all solutions of Pell’s equation

The second main theorem that we take into consideration

in our formalization is originally formulated as follows:

Theorem 3.2: If t0, u0 is the least solution of the equation

x2 −Dy2 = 1 in natural numbers, then in order that a pair

of natural numbers t, u be a solution of this equation it is

necessary and sufficient for the equality t + u
√
D = (t0 +

u0

√
D)n to hold for a natural number n.

It is worth pointing out that the sentence the least solution

in the context of a pair is quite confusing and requires an

explanation. Note that in this context a pair of natural numbers

x0, y0 is the least solution that satisfies x2 − Dy2 = 1 if

and only if for each pair of natural numbers x1, y1 that also

MARCIN ACEWICZ, KAROL PĄK: FORMALIZATION OF PELL’S EQUATIONS 225



satisfies the equation holds x0 ≤ x1 and y0 ≤ y1. Obviously,

the order that is used here is partial and the least element does

not have to exist. However, it has been shown that the order

is total on the set of solutions in natural numbers for a given

Pell’s equation. Therefore, imitating the original approach we

prove the following two theorems:

theorem Th18:

D is non square implies

(p is positive iff p‘1+p‘2*sqrt D>1)

theorem Th19:

1<p1‘1+p1‘2*sqrt D<p2‘1+p2‘2*sqrt D

& D is non square

implies p1‘1<p2‘1& p1‘2<p2‘2

where variables p1, p2 are Pell’s_solution of D.

Additionally, we define a function that associates the least

positive solution of the equation x2 −Dy2 = 1 with non

square natural number D as:

definition

let D be non square Nat;

func min_Pell’s_solution_of D ->

positive Pell’s_solution of D means :Def3:

for p be positive Pell’s_solution of D holds

it‘1 <= p‘1 & it‘2 <= p‘2;

where based on the registration that there exists a positive

Pell’s_solution of D as well as theorems Th18, Th19

we prove that such solution exists and is unique.

Using the introduced functor, we can formulate Theorem 3.2

as follows:

theorem Th21:

for D be non square Nat

for p be Element of [:INT,INT:] holds

p is positive Pell’s_solution of D

iff ex n be Nat st p‘1 + p‘2 * sqrt D =

((min_Pell’s_solution_of D)‘1 +

(min_Pell’s_solution_of D)‘2*sqrt D)|^n

The formulation of Th21 naturally suggests the division of

its proof into two parts that justify the necessary and sufficient

conditions, respectively. Moreover, the least solution of Pell’s

equation that is used in the sufficient condition can be simply

replaced by any other solution, keepping the correctness of the

justification. Therefore, we extract the condition as a theorem:

theorem Th20:

for D be non square Nat, a,b be Integer, n be Nat

p be positive Pell’s_solution of D

n>0 & a+b*sqrt D=(p‘1+ p‘2*sqrt D)|^n

holds [a,b] is positive Pell’s_solution of D

Note that the proof is immediate if we observe that based

on the equality a+ b
√
D = (c+ d

√
D)n we can provide that

a− b
√
D = (c− d

√
D)n and consequently a2 −Db2 = (c2 −

Dd2)n under the condition that a, b, c, d are integer numbers

and D is non square natural number (for more detail see the

justification of theorem Th17 in our formalization).

Next, let us focus on the necessary condition, where the

originally formulated justification is indirect. A formal justi-

fication of the condition is available in our formalization and

can be described as follows.

Denote by 〈x, y〉 the least positive solution of a given

Pell’s equation, and suppose that 〈t, u〉 is a positive solu-

tion of the equation where t+ u
√
D 6= (x− y

√
D)n for each

natural number n. Then there exists n (e.g.
[

log10(x+y
√
D)

log10(t+u
√
D)

]

)

such that

(t+ u
√
D)n < x+ y

√
D < (t+ u

√
D)n+1. (1)

Obviously, there exists a pair of natural numbers tn, un

such that tn + un

√
D = (t + u

√
D)n. By Th17 we have

that 〈tn, un〉 is a positive solution. Combining this with

inequalities (1) multiplied by tn + un

√
D we obtain that

1 < (x+ y
√
D) · (tn − un

√
D) =

(xtn −Dyun) +
√
D(ytn − xun) < t+ u

√
D. (2)

Moreover, it is easy to check that xtn−Dyun, ytn−xun > 0
and (xtn − Dyun)

2 − D(ytn − xun)
2 = 1, hence 〈xtn −

Dyun, ytn − xun〉 is a positive solution of considered

equation. Then, combining Th19 with (2) we obtain that

xtn − Dyun < x and ytn − xun < y, which contradicts

that 〈x, y〉 is the least.

This contradiction finally ends a formal justification of

Theorem Th21.

IV. CONCLUSIONS

Our formalization has so far focused on Pell’s equation,

their solvability as well as the cardinality and shape of all

possible solutions. Now we are working on the first stage of

Matiyasevich’s theorm.

We show that we can express Pell’s equation and prove their

properties in the Mizar environment obtaining a human read-

able formalization. Our effort allowed us to formulate great

majority of theorems that precisely describe selected stages of

informal deductions. Moreover, our work has provided many

additional pieces of information that have been used implicitly

in the textbook. Finally, the formalization can also be used as

a basic course of formalization for inexperienced Mizar users.
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