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Abstract—Neuro-endoscopy is a challenging minimally invasive
neurosurgery that requires surgical skills to be acquired using
training methods different from the existing apprenticeship
model. There are various training systems developed for im-
parting fundamental technical skills in laparoscopy where as
limited systems for neuro-endoscopy. Neuro-Endo-Trainer was
a box-trainer developed for endo-nasal transsphenoidal surgical
skills training with video based offline evaluation system. The
objective of the current study was to develop a modified version
(Neuro-Endo-Trainer-Online Assessment System (NET-OAS)) by
providing a stand-alone system with online evaluation and real-
time feedback. The validation study on a group of 15 novice
participants shows the improvement in the technical skills for
handling the neuro-endoscope and the tool while performing pick
and place activity.

Index Terms—Neuro-endoscopy; Vision based surgical skills
assessment; surgical skills training; Neuro endo trainer; online
evaluation

I. INTRODUCTION

M
INIMALLY invasive neurosurgical procedures have

gained the popularity in recent years due to the reduc-

tion in postoperative recovery time, morbidity, hospitalization

time and cost of patient care [1]. It provides the neurosurgeon

with a better visualization method of the complex surgical

site with reduced damage to the intricate anatomy of the

brain. Neuro-endoscopy is a minimally invasive neurosurgical

procedure that uses an endoscope image projected on the 2-

dimensional display to access the interior deep structures. The

margin of error is minimal and the existing apprenticeship

based method of training is not suitable. It requires training

for eye-hand coordination, depth perception, and bimanual

dexterity. The simulation-based training outside the operating

room is getting wide acceptance due to the provision of

repeated practice, objective evaluation, real-time feedback and

staged development of skills without the supervision of an

expert surgeon [2].

Simulation-based training in neuro-endoscopy varies from

low-fidelity natural simulations, box trainers, part-task trainers,

to intermediate-fidelity synthetic simulators, virtual reality

simulators and high-fidelity cadavers and animal models. The

box-trainers or part-task trainers are designed to impart train-

ing for fundamental technical skills of instrument handling and

eye-hand coordination. The synthetic simulators and virtual

reality trainers provide training for anatomy and procedures

but give limited haptic feedback. The high-fidelity simulations

on cadavers and animals provide training for anatomy and

procedures along with haptic feedback and realism [3]–[7].

The evaluation of the surgical activity on the various sim-

ulation systems is platform-specific. The assessment methods

can be based on direct observation, error metric of the task,

sensor-based evaluation of the motion and video-based eval-

uation of the activity or combination of these. The validation

studies on Neurosurgery Education and Training School-Skills

Assessment Scale (NETS-SAS) identifies the independent

parameters of neurosurgery skills as hand-eye coordination,

instrument-tissue manipulation, dexterity, flow of procedure

and effectualness [8]. These parameters can be analyzed by the

video-based evaluation systems that monitor the activity and

movement of the surgeon’s hands or tools. The video recording

of the activity also provides an opportunity to validate the

evaluation using subjective methods.

The video based automatic assessment system can be of

two types; offline evaluation and online evaluation. Offline

evaluation systems acquire the activity video at reasonable

rate and stores the video stream for further analysis. The

online evaluation system uses the frame-by-frame analysis,

that simultaneously evaluate the activity and also stores it for

future reference.

Neuro-Endo-Trainer was a box trainer developed for pro-

viding skills training for endo-nasal transsphenoidal surgery

(ENTS). It was a pick-and-place task trainer that provides the

training for basic fundamental skills using standard variable

angled neuro-endoscopes [8]. The evaluation method includes

video-based offline evaluation using an auxiliary camera

mounted at the top of the box [9]. The existing method of

training on Neuro-Endo-Trainer involves the pick and place of

one of the six rings in a predefined pattern under the assistance

of technical personnel. The activity performed is sub-divided

into sub-activity based on the state of the tool and the rings.

The sub-activity can be “stationary”, “picking” or “mov-

ing”. The state machine is determined using video processing

that includes the tooltip tracking, background segmentation,

and ring segmentation. The definition of state machine with
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the heuristics determined from the video, causes uncertainty

and requires a robust task definition system. Therefore, the

hardware of the Neuro-Endo-Trainer was augmented with

automatic LED-based task definition to determine the state

machine. We have developed a stand-alone training system

with Neuro-Endo-Trainer to provide online assessment and

real-time feedback and defined it as Neuro-Endo-Trainer-

Online Assessment System (NET-OAS). Our online automatic

assessment system analyzes the activity frame-by-frame and

categorizes it as a sub-activity. The relevant parameters of

skills training are identified by statistical analysis of the sub-

activity. It provides a warning to the trainee neurosurgeon

when they make mistakes and provide a detailed synopsis

at the end of the activity. The aim of the current study is

to validate the developed NET-OAS to establish the level of

skills acquisition after staged practice.

II. BACKGROUND

The low fidelity box-trainers are widely available for la-

paroscopic skills training [10], [11] whereas they are limited

for neuro-endoscopy. The evaluation system for these trainers

can be based on subjective or objective measures. The objec-

tive evaluation includes Likert-scale based direct observation,

sensor-based evaluation and computerized video analysis. The

webcam based endoscopic endonasal trainer developed by

Hirayama et al. studied the effectualness of the training by

evaluating the performance on LapSim simulator before and

after the training [3]. Neuro-Endo-Trainer SkullBase-Task-

GraspPickPlace developed by Raman et.al was validated using

subjective evaluation on different target groups [8].

The video-based evaluation of the surgical activity includes

the tracking of the tooltip or tracking the surgeon’s hands.

There are evaluation systems that use statistical color based

image segmentation and tool tracking to identify the tool posi-

tion and orientation [12], [13]. The automated skills evaluation

method in minimally invasive laparoscopic surgeries were

done by segmenting the task into sub-tasks (Therbligs) and

their kinematic analysis [14]. The feature based tool tracking

combined with region-based level set segmentation was used

to obtain 3D pose estimation of the instruments and to evaluate

the psychomotor skills [15]. There are methods that capture

the activity of the subject and track the hand movements us-

ing multiple camera feeds [16]. Neuro-Endo-Activity-Tracker

provided a video-based automatic evaluation using Gaussian

Mixture based background subtraction and tracking of the

tooltip using Tracking-Learning-Detection algorithm [9].

III. METHODOLOGY

NET-OAS consists of low-cost endoscopic system of USB

based endoscopic camera that captures the video at 25

fps, variable-angled scopes (00, 300, 450), LED-based light

source, Neuro-Endo-Trainer SkullBase-Task-GraspPickPlace

box-trainer mounted with GigE based auxiliary camera, and

online evaluation software.

Fig. 1. A. Neuro-Endo-Trainer SkullBase-Task-GraspPickPlace box-trainer
mounted with GigE based auxiliary camera, B. Transparent front-part of the
peg plate, C. USB camera with endoscope coupler, D. Peg plate with LED

A. NET-OAS hardware design

The online evaluation system consists of a LED-based task

indication method which helps the user to place the ring on the

illuminated peg without the assistance of any technician. The

peg was illuminated to provide the indication for placement

of the ring. The peg plate was printed in two parts: front

part of the peg was printed using transparent material by

Stereolithography (SLA) technique and back part of the plate

was printed using fused deposition modeling (FDA) technique

and then both parts were joined using a strong adhesive. The

LED array was connected to control circuit using a multiplexer

(CD74HC4067). The control circuit consists of ATMEGA328

8 bit micro-controller for the processing, MCP23017 I/O port

expander for I/O expansion, 16x2 LCD for display, keypad

to provide input, servo motor to control the peg plate and

FT232RL serial communication chip to communicate with

the PC using serial communication protocol. There are two

cameras in the setup; Low-cost USB based endoscopic camera

for the visualization of the site that captures feed at 25fps and

GigE based auxiliary camera (Basler ACE) capturing at 50 fps

for the online evaluation and real-time feedback. The hardware

components of NET-OAS is shown in Fig. 1.

B. NET-OAS software design

The software system of NET-OAS uses a multi-threaded

program that processes the two camera streams independently,

which maintains the real-time requirement of the system. The

complete flow diagram of the NET-OAS is shown in Fig.2

and its user interface is shown in Fig.3. It shows endoscopic

and auxiliary streams, options to add the user to the database,

configure serial port parameters, select the level of training and

option to perform calibration if required. When the user hit the

Run button, a new window opens the endoscopic stream with

screen display of real-time feedback. After the completion of

the activity, the results are shown to the user.
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Fig. 2. Flow Diagram of NET-OAS

Fig. 3. User interface of NET-OAS

The main components of the software system are as follows:

1) Calibration setup: One-time calibration involves peg-

segmentation, ring segmentation, and tooltip bounding box

Fig. 4. Bounding box of pegs

selection and storing the parameters in the calibration file.

The small_bbox[] contains the rectangular location of small

bounding boxes, big_bbox[] contains the location of big

bounding boxes as shown in Fig.4. These arrays are used to

determine the state machine explained in Algorithm 1. When

the software starts, it loads the parameters from the calibration

file otherwise prompt the user to perform the calibration.

2) State machine estimation: The activity on the NET-

OAS in a particular frame can be any of the following
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Algorithm 1 Determine the state machine

Read the calibration file; Initialize small_bbox[], big_bbox[],
thresh_stationary, thresh_picking, thresh_moving

old_id← −1; current_id← −1;

index_set← true; status← “stationary′′;
function GET-STATE(image)

if index_set then

index_set← false

for k = 0; k < 12; k++ do

seg_image← ringSegmentation(image);
sum_pixels← seg_image[small_bbox[k]];
if sum_pixels ≤ thresh_picking then

old_index← k + 1;

break;

end if

end for

end if

current_index← random(1− 12);
litLED(current_index)
seg_image← ringSegmentation(image);
s_old_small← seg_image[small_bbox[old_id]];
s_old_big ← seg_image[small_bbox[old_id]];
s_current_small ←

seg_image[small_bbox[current_id]];
if status == “stationary′′ then

if s_old_small ≥ thresh_stationary then

status← “stationary′′;
else

status← “picking′′;
end if

else if status == “picking′′ then

if s_old_big ≥ thresh_picking then

status← “picking′′;
else

status← “moving′′;

end if

else if status == “moving′′ then

if s_current_small ≥ thresh_moving then

status← “stationary′′;
old_id← current_id;

current_id← random(1− 12);
litLED(current_id)

else

status← “moving′′;

end if

end if

return status

end function

Fig. 5. State-machine

sub-activity: “stationary”, “picking” or “moving”. The state

machine is initialized with the “stationary” state and the

states are updated according to the movement of the ring. The

“stationary” state is defined when the ring is stationary and the

tool is present/absent. The “picking” state is defined when the

tool is near the peg trying to grab the ring till the ring moves

out of the peg. The “moving” state is defined when the ring

has moved out of the peg until it is placed on the illuminated

destination peg. Once the ring has been placed on the peg,

the ring segmentation output in the bounding box changes

and another peg is illuminated randomly. The state machine is

unidirectional and cyclic as shown in Fig.5. The algorithm for

state machine estimation is explained in Algorithm 1. Function

ringSegmentation(image) perform the ring segmentation

on the input frame and litLED(int number) function illu-

minate the corresponding peg given in its argument.

3) Tracking Algorithm: Tracking-Learning-Detection

(TLD) algorithm is used to track the tooltip. TLD initializes

from the bounding box and tracking model, retrieved from

the calibration file. It is a robust tracking algorithm which

tracks the tooltip under blurred conditions and various

transformations. The tracking is based on median flow tracker

which track the tooltip frame-to-frame and measure the

tracking error using efficiency of backtracking. The detection

thread is a 3-stage sliding window cascaded classifier,

which consists of variance filter, random forest, and nearest

neighbor classifier. At the end of the 3rd stage, it provides

a set of windows that localizes the appearance of the tool

tip. It predicts the next location of the tool tip having the

minimum error in tracking or detection stage. The remaining

set of appearances is fed to the negative class for better

generalization of the tool tip model. Tracking of the tool

using TLD algorithm is shown in Fig.6 A. [17].

4) Ring Drop Detection: The dropping of the ring is

determined in the “moving” state if distance between

the tool tip bounding box (determined by TLD) and the

ringSegmentation(image) is more than a predefined thresh-

old. Fig.6 B shows the image of the ring drop condition.
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Fig. 6. Auxiliary camera frame analysis showing: A. Tracking of the tool
using TLD algorithm, B. Ring drop determined by the distance between tool-
tip and ring segmentation. C. No Hitting D. Hitting determined by counting
the subwindows having significant number of contours, E. No- Tugging F.
Tugging determined by eccentricity analysis of the ring contour

5) Hitting Detection: The hitting of the peg board happens

due to poor depth perception of the user. The hitting is detected

using image analysis of the successive frames. The difference

image is divided into 10x10 grids and hitting is recorded

by identifying the number of grids that shows significant

movement. The hitting threshold is set experimentally and the

Fig.6 C shows the case of no hitting and Fig.6 D shows a

hitting instance output.

6) Tugging detection: The tugging is detected by analyzing

the deformation of the ring in the “stationary” and “picking”

state. The ring is segmented based on the hue value obtained

from the calibration file. Due to the overlapping of the tool

or peg, ringSegmentation(image) results in two or more

contours. The contour with maximum size and the nearest

contours are determined and combined. The

eccentricity =
µ2,0 +µ0,2 +

√

(µ2,0−µ0,2 )2 + 4(µ1,1 )2

µ2,0 +µ0,2−
√

(µ2,0−µ0,2 )2 + 4(µ1,1 )2

value of the combined contour is sufficient to determine the

deformation of the ring in case of tugging. The eccentricity

threshold corresponding to tugging is set experimentally.

7) Tracking data analysis: Tracking data analysis is done

to identify motion smoothness and sudden jerk of the tool

tip motion in the “moving” state. Smoothness of the path

is measured by taking the standard deviation of the first

TABLE I
SELECTED FEATURES FOR NET-OAS

Measure from NETS-SAS Selected objective measure for

NET-OAS

Grasping
Average time taken to grasp

Number of tugging events

Eye-hand coordination
Number of hitting events

Intensity with which hitting hap-
pened

Dexterity

Time taken for moving ring from
one peg to another

Average number of moves

Smoothness of the path

Arc length of the path

Instrument tissue manipulation Number of times curvature value
exceeded threshold

Effectualness Number of times ring dropped

derivative of the tracking data, Arc length of the path is

measured by counting number of pixels of the tracking data in

the “moving” state. Curvature at each point of tracking data

is computed using

κ =
|(∂x

∂t
∗ ∂2y

∂t2
)− (∂y

∂t
∗ ∂2x

∂t2
)|

(∂x
∂t

2

+ ∂y
∂t

2

)
3

2

8) Real time feedback: At each frame, the algorithm iden-

tifies the current state and provide real time feedback for

hitting, tugging and ring drop. Motion smoothness feedback is

provided after processing frames of last 1 second. The output

is displayed on the endoscopic screen to warn the user. This

helps the user to learn and correct the mistakes accordingly.

9) Feature Extraction and final synopsis: The activity data

structure stores the current sub-activity (“stationary”, “pick-

ing” or “moving”) and its related parameters as shown in

Table 1. At the end of the activity, the data is processed to

give the final synopsis to the user.

IV. EXPERIMENTATION AND RESULTS

A group of 15 novices participated in the study of validation

of NET-OAS, who were students from a technical university

without any medical training. The demo video demonstrating

the good and bad endoscopy practice on Neuro-Endo-Trainer

was shown before the practice session. There was a pre-

test followed by two sessions and a post-test. The pre-test

and post-test included the most difficult task level of 450

scope with right tilt plate. Each activity was programmed

to be of 3 minutes duration. The first session consisted of

practice using 00 and 300 scopes and with straight, left and

right tilts of the plate. The second session was conducted

three days later and consisted of practice using 300 and 450

scopes and with straight, left and right tilts of the plate. Fig.

7 shows the graph of objective measure for NET-OAS w.r.t

training session. The noticeable changes were the increased
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Fig. 7. Validation study results: Horizontal axes is the training session, blue
marker shows the data point and red line shows the trend-line: A. Average
time of grasping the ring, B. Average number of hitting, C. Average hitting
intensity D. Average time to move a ring, E. Total number of rings placed F.
Average smoothness of the tool tip in “moving” state, G. Average Arc length
of the tool tip in “moving” state, H. Number of times curvature exceeded the
threshold value or sudden jerk.

average number of moves and average smoothness of the path.

There were decreased number and hitting instances, grasping

time, average arc length and sudden jerk motion. The self-

assessment feedback obtained from the user also shows that

the training session on the NET-OAS made them acquainted

with the system.

1) Machine learning for validation study: For the valida-

tion study, activity data obtained from 15 novices (pre-test,

post-test, 1st trial of session 1 and last trial of session 2) was

considered. Pre-test data was considered as ‘class novice’ and

post-test data was considered as ‘class-improved’. The SVM

classifier was trained with 11-dimensional feature vector of

these classes. For testing, 1st trial of session 1 was considered

as ‘class novice’ and the last trial of session 2 was considered

as ‘class improved’. The SVM classifier on the testing data

classifies feature set of the 1st trial as ’class novice’ and the

last trial of session 2 as ’class improved’ with the accuracy of

88%.

The practice session example on the NET-OAS and the real-

Fig. 8. Training on the NET-OAS

Fig. 9. Real-time feedback to trainee A) Hitting B) Tugging C) Motion
smoothness D) Ring Drop

time feedback provided to the trainee while performing the

activity is as shown in Fig. 8 and Fig. 9 respectively.

V. DISCUSSION

The improvements of NET-OAS as compared to the earlier

version include: a complete standalone system, automatic task

definition using LED array and serial communication with the

hardware, tugging detection algorithm, and ring drop detec-

tion. The study used the auxiliary camera for the evaluation

of the activity and has not used the endoscopic feed for

evaluation.

The main objective of the study was to validate the NET-

OAS on completely novice participants to identify whether

there is any improvement in skills acquisition. The results

show that after stipulated training on the NET-OAS, the par-

ticipant improved his/her skills on manipulating the endoscope

and tool irrespective of their background. The study can

be extended to the intermediate trainee neurosurgeons and

experts.
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