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Abstract—This paper presents methods solving MS–RCPSP as
a main task–resource–time assignment optimization problem. In
the paper there are presented four variants of Evolutionary Algo-
rithm applied to MS–RCPSP problem: concerning prioritization
the tasks (or resources), combined task–resources prioritizing
approach and co–evolution based approach that effectively solves
problem dividing it to two subproblems. All approaches are
examined using benchmark MS–RCPSP iMOPSE dataset and
results show that the problem decomposition is effective. All
experiments are described, statistically verified and summarized.
Conclusions and promising areas of future work are presented.

I. INTRODUCTION

M
ANY practical problems can be effectively solved by

(meta)heuristics. Particularly, the problems that are

NP–hard, over-constrained, combinatorial and have huge so-

lution landscape. Scheduling belongs to this group of prob-

lems, which is applied in the real-world, where the problem

exists with rare and/or expensive resources. In this situation,

the project manager role is to find such resource usage to

realize set of tasks in the most effective way. Mainly, it is a

quite casual definition of Project Scheduling Problem (PSP),

where effectiveness measure is the project realization time.

The PSP is too general and in real-world usage is extended

to Resource Project Scheduling Problem, where generally

speaking, resources are not only limited but also not every

resource can be applied to each task. In practical application,

such problem specialization goes further, e.g. in IT industry

to realize product/service several various types of resources

must cooperate to build high-quality software. Such (human)

resources differ in skills and levels (e.g. “Java programmer –

advanced”, “software architect – basic”) and can be employed

in various roles that need particular skills. Of course, resources

differ also in salaries, which makes the optimization problem

focused on time and/or cost. This way Multi–Skill Resource–

Constrained Project Scheduling Problem (MS–RCPSP) can be

described.

The MS–RCPSP problem is presented in literature

(e.g.[3][12][8]) as extension of RCPSP [4]. It is NP–hard

[2] and there is no effective algorithm to solve it. Thus,

several types of (meta)heuristic methods can be effectively

applied. There can be found applications of (MS–)RCPSP

in literature based on: heuristics [3][12], tabu search [11],

evolutionary algorithms (EA) with specialized operators [10],

(hybridized) ant colony optimization [9], teaching–learning-

based optimization algorithm [13], differential evolution [14],

hybridized differential evolution [6] and many others.

The MS–RCPSP problem is connected to resource–task–

time assignment. Many approaches deal with it using reduced

solution space by problem modification. E.g. in hybridized

differential evolution [6] metaheuristic DE operates on search

space that prioritizes resource and task sequencing is solved by

greedy–based method. Such approach is effective, but greedy

usage may cause that method to get stuck in local optima.

This is not the only way of problem decomposition. Some

methods employ a natural co–evolution mechanism which

can be applied in RCPSP problems too, e.g.[15]. This paper

concerns co–evolutionary algorithms that eliminate greedy us-

age. In proposed method MS–RCPSP problem is decomposed

into two subproblems: effective (1) task prioritizing and (2)

resource prioritizing to build a final feasible schedule.

The main motivation of this paper is to examine the ef-

fectiveness of co–evolution usage. To do that several EA–

based approaches are tested and compared. One approach uses

genome, which proposes only resources’ priorities (EA_R)

that are converted by greedy to build schedule. Other refer-

ence approach (EA_T) proposes tasks’ priorities and anal-

ogously greedy–like algorithm converts into schedules. To

eliminate the greedy usage, an approach is introduced with

connected genome that proposes resources’ and tasks’ prior-

ities (EA_RT). All provided methods use the same problem

solution landscape: representation, selection, genetic operators

and fitness function. Finally, using co-evolution EA (Co_RT)

two problem are separated (resource– and task– priorities) into

two separate populations, and the only connection is kept by

selection to build final schedule to get the fitness function

value.

The rest of the paper is organized as follows. In section

II the MS–RCPSP problem brief statement with constraints

and requirements is described. The description of proposed

EA–based approaches are given in section III, where details

of examined methods are provided, especially details that are

connected with adaptation of EA to MS–RCPSP problem. Sec-

tion IV-B presents experimental procedure, parameters tunning

method, used dataset and finally gained results summarized

and concluded (see IV-C). Last section V concludes the article

and presents potential directions for future work.
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II. FORMULATION OF MS–RCPSP

In classical RCPSP problem, there is defined a task–

resource–timeslot assignment. Some constraints must be sat-

isfied to get a feasible schedule. Every task is no–preemptive

and can be described by duration, start and finish time. Tasks

are related by precedence relation, defining which tasks need

to be completed before others can be started. A set of discrete

time (timestamps) and resource in RCPSP is used. Only

one resource can be assigned to a given task. Additionally,

the resource cannot be assigned to more than one task in

overlapping period – dedicated resources [1] have been used.

The MS–RCPSP introduces some practical extensions, e.g.

adds the skills domain and the resource salary (as an hourly

wage) paid for performed work, while resources represent

human resource and are varied by salary. Each task requires

a subset of skills and not every resource can be applied to

its realization. In provided MS–RCPSP model every resource

possesses a subset of skills from the skill pool (e.g. analyst,

architect, developer, tester, etc.) defined in a project. Each

resource’ skill is given with familiarity level – it means that

the resource R is capable of performing the task T only if

R disposes skill required by T , at the same or higher level.

The sample of capabilities of performing tasks by resources

as skill matrix is shown in the Fig. 1.

Fig. 1: Example of skill matrix [9]

In the skill matrix presented in Fig. 1, skills required by

task to be performed have been written over task definition.

Skills owned by resources have been written next to resource

definition. For example, resource R1 has access to skills Q1
and Q2 with familiarity level 3 and 2 respectively. It means

that R1 is capable of performing tasks T 1, T 3 and T 4 as

skills required for them are no higher level than the ones

owned by R1. On presented example, R1 cannot be assigned

to T 2 because R1 does not posses required skill Q2. However,

resource R2 can be assigned to task T 2 (has required Q3
skill) and analogously resource R3 is a proper one for task

T 4. Finally, resource R4 can perform tasks T 1, T 2 and T 3.

Another situation occurs in case R3, if it possesses skill Q2 but

cannot be assigned to T 1 and T 3 because these tasks require

Q2 at higher familiarity level than this resource disposes.

The goal of RCPSP is to find such task–resource assign-

ments to make the final feasible schedule as short as possible.

The combinatorial nature of the RCPSP makes it NP–hard [2]

problem. Analogously, the solution of MS–RCPSP is a feasible

schedule – the one in which resource units and precedence

constraints are preserved. Moreover, skills domain extends the

schedule feasibility for MS–RCPSP from the classical RCPSP

definition – only resources capable of performing given tasks

can be assigned to them.

The MS–RCPSP as an optimization problem can be ana-

lyzed as two separate goals: (1) optimization of final schedule

duration and (2) optimization of final schedule cost. More

formal definition of MS–RCPSP as optimization problem has

been presented in II-A – and is based on work [6][9]. The

MS–RCPSP has been defined in cooperation with international

corporation (Volvo Group IT). Next section describes MS–

RCPSP more formally – is based on [8][9][6].

A. MS–RCPSP definition

The feasible Project schedule (PS) consists of J = 1, ..., n
tasks and K = 1, ...,m resources. A non pre–emptive duration

dj , start time Sj and finish time Fj is defined for each task.

Set of predecessors of given task j are defined as Pj . Each

resource is defined by its hourly rate salary sk and owned

skills Qk = 1, ..., r, while a pool of owned skills is a subset

of all skills defined in project Qk ∈ Q. Value lq denotes the

level of given skill, while hq describes its type and qj is a

skill required by j to be performed. Therefore, by Jk subset

of tasks that can be performed by k − th resource is defined.

Analogously, Kj is a subset of resources that can perform task

j. Duration of a project schedule is denoted as τ . The cost of

performing j task by k resource is denoted as ckj = dj ∗ sk,

where sk describes the salary of resource k assigned to j.

For simplicity, we have modified the cost of the task’s

performance from ckj to cj , because only one resource can be

assigned to given task in the duration of the project. Hence,

there is no need to distinguish various costs for the same task.

Moreover, we have introduced variable that defines whether k

is assigned to j in given time t: U t
j,k ∈ {0; 1}. If U t

j,k = 1, k

is assigned to j in t. Analogously, k is not assigned to j in t

if U t
j,k = 0.

Resource assigned to task j is denoted as kj . Furthermore,

every resource is denoted by its start time Tk - the time when

it starts working on the project.

Feasible project schedule (PS) belongs to the set of all

feasible and non–feasible solutions (violating precedence-,

resource- and skills- constraints) : PS ∈ PSall.

Formally, the problem could be regarded as optimization

(minimization) problem and stated as follows:

min f(PS) = min [fτ (PS), fC(PS)] (1)

The Eq. 1 describes the duration fτ (PS) and cost optimiza-

tion fC(PS) respectively, where the time component fτ (PS)
is calculated as follows:

fτ (PS) =
τ

τmax

(2)

Where: τmax – maximal (pessimistic) possible duration of the

schedule PS, computed as the sum of all tasks’ duration. It
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occurs when all tasks are performed sequentially in the project

- one after another. Disregarding how many and how flexible

resources are.

and the cost component fc(PS) is defined as follows:

fc(PS) =

∑J

i=1
cj

cmax − cmin

(3)

where: cmin – minimal schedule cost – a total cost of all

tasks assigned to the cheapest resource, cmax – maximal

schedule cost – a total cost of all tasks assigned to the most

expensive resource. Note that cmax and cmin do not respect

skill constraints. It means that cmin value could be reached

also for non–feasible solution, analogously to cmax.

To get feasible schedule some constrains must be provided,

as follows:

∀k∈Ksk ≥ 0, ∀k∈KQk 6= ∅ (4)

∀j∈JFj ≥ 0; ∀j∈Jdj ≥ 0 (5)

∀j∈J,j 6=1,i∈Pj
Fi ≤ Fj − dj (6)

∀i∈Jk ∃q∈Qk hq = hqi ∧ lq ≥ lqi (7)

∀k∈K∀t∈τ

n∑

i=1

U t
i,k ≤ 1 (8)

∀j∈J∃!t∈τ,!k∈KU t
j,k = 1 (9)

The first constraint (see Eq. 4) preserves the positive values

of resource salaries and ensures that every resource has no-

empty set of skills. Eq. 5 states that every task has positive

finish date and duration, while Eq. 6 shows the precedence

constrains rule. Next two equations: Eq. 7 introduces skill con-

straints and transforms RCPSP into MS–RCPSP. Constraint

given in Eq. 8 describes that resource can be assigned to no

more than one task at given time during the project. The last

constraint (see Eq. 9) says that each task must be performed

in schedule PS by one resource assignment.

The proposed MS–RCPSP allows to define problem as

multiobjective [5] (see Eq. 1): duration– and cost– oriented

one. One criteria has to trade off certain other criteria because

cheaper schedule is mostly longer in realization. Such problem

can be solved as a weighted linear combination, as follows:

Evaluation function is formulated as follows:

min f(PS) = wτfτ (PS) + (1 − wτ )fc(PS) (10)

where: wτ – it is weight of duration component and has

non–negative values: wτ ∈ [0; 1]. Such definition makes

possible to choose which objective is more important in given

optimization process. It is made by setting weights both for

the duration (ωτ ) and cost (1 − ωτ ) aspect. It means that

setting the weight of duration aspect to 1.0 automatically sets

the weight of cost to 0.0 and vice versa. Specifically, both

weights can be set to 0.5. In that case, both objectives would

be equally important in the optimization process. We proposed

three baseline weight configurations: duration optimization

(DO, ωτ = 1) [7], [6], balanced optimization (BO, ωτ = 0.5)

and cost optimization (CO, ωτ = 0) [8]. As CO is rather a

trivial task that can be solved by greedy–based approach, BO

can be analyzed as cost/duration middle ground. In this paper

we focus only on the DO – it means that we minimize only

schedule makespan. MS–RCPSP reduced to duration–oriented

optimization can be considered as a variation of widely

studied parallel machine scheduling problem with minimum

makespan objective.

As MS–RCPSP is combinatorial NP–hard problem the es-

timation of the total solution space (feasible and non–feasible

solutions included) size (SS) can be estimated as follows:

SS(n,m) = n! ∗mn (11)

Computing factorial of tasks number provides the number

of combinations of ordering tasks within the timeline. It is

easy to notice that such estimation allows setting any order,

skipping precedence constraints. The second element of Eq.

11 provides the number of resource–to–task assignments, in-

cluding situation that the same resource is assigned to all tasks

and no skill constraints are preserved (non–feasible solution).

To show the size of solution space, let’s consider the ’simple’

project schedule with 100 tasks and 20 resources – it gives

SS(100, 20) = 1.19 ∗ 10288 all possible solutions.

III. PROPOSED EA–BASED APPROACHES

In this section four EA–based approaches to MS–RCPSP

have been presented. Approaches differ in genome interpreta-

tion and schedule (as phenotype) build method. Methods of

initialization, representation, crossover, mutation, fitness func-

tion, selection are common for all. In each approach to MS–

RCPSP sequential representation (vector) of the genome has

been implemented. Such representation is similar to classical

TSP (Travelling Salesman Problem), e.g. vector <3,2,1,4> can

be represented as the priority for resource or tasks (depends on

approach). Such representation allows us to use TSP standard

operators: swap as mutation and one–point crossover. More-

over, we use tournament selection and random initialization.

The fitness function is the crucial procedure – e.g. if EA

gives an individual priorities for resources, tasks sequence

should be proposed by procedure – a schedule builder is used

to generate the final schedule. If EA individual gives priorities

for tasks and resources the Schedule Generator Scheme (SGS

– details in III-A) works. In approach EA_T (or EA_R) where

resources (tasks) priorities should be proposed, greedy–based

algorithm is used selecting first fit element. Mostly, four EA

approaches differ in the genome interpretation and schedule

build method as follows:

In the EA_R the individual consists of priority for each re-

source. To evaluate genome SGS builds schedule using greedy

approach. Another approach, in EA_T the individual consists

of priority for each task. In evaluation procedure the greedy

builds schedule. The approach that links such two methods is

EA_RT – an individual comprises two parts: priority resource

vector and task priority vector. To keep priorities the final

schedule is generated by SGS procedure.
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Fig. 2: Evolutionary Algorithms for MS–RCPSP: EA_T,

EA_R and CO_RT.

Such approach (EA_RT) makes that genome “doubled“

in size (consists of priorities for tasks and resources), the

solution landscape is enlarged and fitness function values

may differ significantly for ”similar“ genomes. Thus, the

Co_RT approach links ”good“ sequence of tasks priorities

to resources using natural co-evolution mechanism: in one

population evolution processes resources’ priorities, the second

one consists of priorities for tasks. Schematically Co_RT

method is presented on Fig. 2. There, two populations are

linked by fitness function: to build final schedule, priorities

for tasks and resources are needed to run SGS procedure.

For every individual, several complementary individuals are

selected (it is Co_RT parameter) from the other population to

build schedule – the best-gained value of the fitness function

is given. Additionally, to keep Co_RT more stable for every

individual schedule is built using complementary component

(resource/tasks sequences) from the best last generation solu-

tion.

A. Schedule Generator Scheme

To evaluate an individual in EA approaches a procedure that

converts genotype to schedule Schedule Generator Scheme

(SGS) is needed. Such procedure must deal with three types

of individuals, that includes (1) only task priority (EA_T) (2)

only resources priority (EA_R) and (3) both tasks priority

and resource priority (in EA_RT and CO_RT). In Pseudocode

1 such procedure has been presented schematically. As an

argument, it takes priorities (task and/or resources) and returns

final schedule which can be then evaluated. If SGS has not

been provided T _pri (task priorities sequence), it gets default

sequence that is copied from instance definition. In the case

of empty resource priorities (R_pri) EA algorithm generates

randomly default sequence that is used in the evolution pro-

cess.

Listing 1: Pseudocode of Schedule Generator Scheme (SGS).

Sch ed u le SGS_procedure ( T_pr i , R_ p r i )

T_seq := Tasks

R_seq := R e s o u r c e s

whi le T_seq != n u l l

i f ( T _ p r i != n u l l )

Task := max ( T_seq . CanBeDone ( ) , P r i o r i t y )

e l s e Task := T_seq . CanBeDone ( ) . f i r s t ( )

i f ( R_ p r i != n u l l )

R := max ( R_seq . g e t C a p a b l e ( ) , P r i o r i t y )

e l s e R : = R_seq . f i r s t C a p a b l e ( )

TimeStamp := R . end ( )

Sch ed u le . a s s i g n ( Task , R , Timestamp )

R . end := t a s k . s t a r t + t a s k . d u r a t i o n

T_seq = T_seq / Task

end / / w h i l e

re turn s c h e d u l e .

The SGS procedure keeps the task sequence from T _pri if

it is possible. However, to satisfy the tasks precedence con-

straints, in each case the CanBeDone() method is executed.

The same situation occurs in resource selection procedure –

it is selected resource that is capable of given task realization

and has the highest priority. If SGS doesn’t have prioritized

resources/tasks it works like greedy–like algorithm - takes

first–fit element.

IV. EXPERIMENTS AND RESULTS

This section describes experiments that have been done to

empirically verify several research questions:

Q1. Does the Greedy algorithm guided by metaheuristic has

a tendency to stuck in local optima?

Q2. Is the priority–based sequence vector representation ef-

fective?

Q3. Which priority–based approach using greedy–based SGS

(EA_T or EA_R), is more effective?

Q4. How effective is combined approach EA_RT that elimi-

nates greedy but enlarges the solution landscape?

Q5. How effective, in comparison to above methods, is co–

evolutionary approach that eliminates Greedy usage and

keeps standard size of solution landscape?

Above research questions should be answered empirically

using the experimental procedure.

A. Experiments’ procedure

In experiments iMOPSE benchmark dataset [8] is used – a

part of iMOPSE project 1. Dataset published on the Internet

consists of 36 MS–RCPSP iMOPSE instances that differ in

number of tasks, resources, skills and relations. The iMOPSE

dataset is a part of iMOPSE library supported by instance

1iMOPSE project homepage: http://imopse.ii.pwr.wroc.pl/ . The best sched-
ules generated by EA_R, EA_T, EA_RT and Co_RT have been published
there.
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generator, validator, visualization tools and provided use–cases

with published java codes (more in [5]).

For empirical comparison of methods results, each method

has been tunned (see configurations in Tab. I). However,

for each method, the number of births has been reduced to

20,000. It is worth noticing that the Co_RT method uses

multiple candidate resource–task assignment (cand_assign

value usually equals to 3) to get better fitness functions. Such

method can be treated as some local search procedure that

causes Baldwin Effect. However, it doesn’t cause strict new

solution generation and has no influence on genes. That’s why

the number of births in Co_RT is reduced to 20,000 but taking

into account number of fitness function calculation such value

is bigger than the limit.

Each experiment has been repeated 30 times, and results are

averaged, and standard deviation value is given. Comparison of

gained results has been statistically examined using Wilcoxon

signed–rank test.

B. Experiments results

Each method is ran 30 times to generate solutions for

given problem instances. Data in Tab. II presents results

of several proposed methods: EA_R, EA_T, EA_RT and

Co_RT. As reference method hybrid Differential Evolu-

tion and Greedy (DEGR) [6] is given in two configura-

tions: using DEGR(pop_size=200, generations=500) and

DEGR(pop_size=200, generations=10,000). The first con-

figuration satisfies the condition of 20,000 births, but in

publication [6] the second is given as the best found.

Data presented in Tab. II shows that the best examined

method is Co_RT because sum of all generated (average)

schedules equals to 11,639 (sum of std_dev=43.35). However,

the second place took method EA_T where all averaged sched-

ules least 11,681 (sum of std_dev=45.52). It means that the

Co_RT gives solutions 0.35% better than EA_T – this slight

improvement is statistically significant: the Wilcoxon signed–

rank test proves it (W0.05=443 > Wc=208). It is worth to

mention that Co_RT outperforms other methods giving in four

cases the best-found solutions for instances: 200_40_45_9,

200_40_133_15, 200_10_135_9_D6 and 200_40_90_9. For

these instances, we investigated the evolution process. For

instance 200_40_133_15 (see Fig.3) the evolution process

searches effectively for EA_T and CO_RT, but gets stuck

very fast for EA_T. The similar situation is in instances

200_10_135_9_D6 (see Fig.4), where CO_RT outperforms

other approaches giving solution very fast, EA_T and EA_RT

need more time to reach a similar solution. The case of

200_40_45_9 (see Fig.5) instance shows that CO_RT works

the most effectively and other methods cannot compete. Quite

similar situation occurs on Fig.6 (instance 200_40_90_9),

where CO_RT outperforms other methods, but EA_T gives

near solutions.

Using DEGR method in configuration

DEGR(pop_size=200, generations=500) is not

competitive to Co_RT, therefore we selected as reference

DEGR(pop_size=200, generations=10,000) configuration

that gives better results. It can be noticed that in seven

instances DEGR gives better solution than Co_RT and in 9

other cases solutions are similar. But summarized duration

of (average) schedules last 11,971 (sum of std_dev=183.15)

which means that CO_RT gives 2.78% of improvement and

Wilcoxon signed–rank test results verified positively such

difference (W0.05=477 > Wc=208). Moreover, the std_dev

values show that Co_RT is more stable method than DEGR

– DEGR std_dev=183.15 versus CO_RT std_dev=43.35.

Results presented in Tab. II show that the worst results

are given by EA_R, where genome proposes priorities for

resources and tasks are selected by greedy–like method. The

chromosome extension by task priorities (EA_RT) makes

that method return shorter schedules by 8.9% than EA_R.

However, the standard deviation values are higher – EA_R

std_dev=36.98 versus EA_RT std_dev=84.76.

All the best-found schedules generated by EA_R, EA_T,

EA_RT and Co_RT have been published on iMOPSE project

homepage.

C. Summary

Results of experiments presented in Tab. II showed that the

best-examined method is Co_RT giving several of the best-

found solutions. But the results of other methods are very

valuable because they help to answer research questions asked

at the beginning of this section.

The first question (Q1) cannot be answered easily because

results of two approaches that use greedy (EA_T and EA_R)

compared to EA_RT results shows that task priorities are

more important and greedy gives effective solutions that can

compete with Co_RT results. However, EA_R is less effective

than EA_T, which answers another research (Q3) question.

Another question (Q2) concerns how effective is the

priority–based sequence vector representation. All proposed

approaches that use it are compared to DEGR vector with

float values representation. Presented results show that such

sequence representation is easy in implementation and can

compete with more complex used in DEGR.

The answer to question (Q4) only apparently is simple,

because EA_T gives better solutions than EA_RT. However,

provided limit of births (20,000) reduces EA_RT ”space“

for evolution process. A quite large standard deviation

(std_dev=84.76) value confirms this fact. For EA_T such

value equals to std_dev=45.52.

The last question is the most important aspect of the

paper. Is co–evolutionary (Co_RT) approach to MS–RCPSP

effective? This question (Q5) is answered positively, and

several arguments are presented in this section. Co_RT not

only outperforms other tested methods but also gives the best-

known solutions for four instances.

V. CONCLUSIONS AND FUTURE WORK

This paper concerns if Co–evolutionary algorithms are

effective for solving combinatorial NP–hard problems,

MS–RCPSP. Gained results showed that problem de-

composition to resource and task assignment using co-

evolutionary mechanism is a powerful idea. As reference,
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TABLE I: Methods’ configurations

pop_size generations Pm Px selection cand_assign

EA_R, EA_T 660 300 0.02 0.8 tournament 10% -
EA_RT 660 300 0.005 0.2 tournament 10% -
Co_RT 500 200 0.02 0.8 tournament 10% 3

Fig. 3: Example of evolution process for MS–RCPSP: EA_T, EA_R, EA_RT and CO_RT.

Fig. 4: Example of evolution process for MS–RCPSP: EA_T, EA_R, EA_RT and CO_RT.

results of evolutionary algorithms using the same repre-

sentation have been compared. Moreover, the reference

method DEGR [6] results also confirm the dominance of

Co_RT.
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Fig. 5: Example of evolution process for MS–RCPSP: EA_T, EA_R, EA_RT and CO_RT.

Fig. 6: Example of evolution process for MS–RCPSP: EA_T, EA_R, EA_RT and CO_RT.

In the paper, several research questions have been answered,

but there are still many open issues. Proposed approaches use

simple representation that is not specialized to MS–RCPSP –

e.g. how effective can be the approach that uses specialized

crossover/mutation operator? In co-evolution, we can see the

large potential, and future work should be connected with it:

more experiments with parametrization of Co_RT (without

20,000 births limit), various selection method and scalability.

Moreover, the very promising direction is effective clone

reduction method, a flexible size of population and adaptation

mechanism. And the last but not least, as MS–RCPSP problem

is bi-objective, we want to extend proposed co-evolutionary

approach to multicriteria optimization.
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TABLE II: Comparison results of evolutionary approaches: EA_R, EA_T, EA_RT, Co_RT and reference DEGR [6]

instance EA_R EA_T EA_RT Co_RT DEGR gen=500 DEGR gen=10,000
avg std_dev avg std_dev avg std_dev avg std_dev avg std_dev avg std_dev

100_5_20_9_D3 437.00 0.00 387.13 0.34 388.37 1.82 387.07 0.25 398.70 5.77 393.20 0.92
100_5_22_15 515.00 0.00 484.57 0.50 484.63 0.48 484.63 0.48 486.80 2.10 484.50 0.53
100_5_46_15 616.00 0.00 529.80 2.14 531.97 3.05 529.7 1.71 534.10 3.57 529.00 0.00
100_5_48_9 538.00 0.00 491.17 0.90 491.60 2.12 491.00 0.68 492.80 2.15 490.10 0.32
100_5_64_15 550.00 0.00 482.80 1.62 484.27 2.46 482.50 1.48 487.60 2.84 483.00 0.82
100_10_26_15 264.43 1.67 235.07 0.77 236.13 1.80 235.07 0.96 244.80 5.37 235.00 1.05
100_10_27_9_D2 265.00 2.00 211.07 1.69 216.73 2.42 209.87 1.52 238.80 4.32 220.30 2.50
100_10_47_9 272.57 0.88 254.43 1.05 260.73 2.72 254.90 0.91 259.30 2.11 256.40 0.70
100_10_48_15 261.53 0.67 246.57 1.31 251.63 2.75 247.00 1.46 251.70 3.20 245.00 0.67
100_10_64_9 274.33 1.64 244.97 1.45 255.37 4.20 246.00 2.03 256.30 2.50 245.80 1.32
100_5_64_9 532.00 0.00 476.63 1.02 477.93 3.16 477.03 1.52 477.40 0.97 474.90 0.32
100_20_46_15 197.00 0.00 161.00 0.00 161.00 0.00 161.00 0.00 165.30 3.43 164.00 0.00
100_20_47_9 149.30 1.07 126.63 1.20 133.07 1.79 126.30 0.94 141.50 4.01 127.50 3.31
200_40_45_9 185.63 0.80 137.53 0.76 140.43 0.96 136.20* 1.05 177.90 5.45 182.50 17.83
200_40_133_15 150.93 0.93 145.07 1.57 148.13 2.32 141.77* 1.20 166.90 7.28 151.40 8.26
100_10_65_15 263.60 1.23 247.77 1.52 256.50 4.99 248.50 1.95 252.90 2.64 245.30 1.16
100_20_22_15 149.90 1.42 128.13 0.67 131.03 1.47 128.43 0.99 141.40 4.20 130.70 0.67
100_20_23_9_D1 199.00 1.86 172.00 0.00 172.00 0.00 172.00 0.00 172.00 0.00 172.00 0.00
100_20_65_9 142.43 1.61 125.97 1.14 135.37 2.74 125.77 1.02 145.30 2.21 129.10 2.73
100_20_65_15 233.93 1.44 205.00 0.00 205.00 0.00 205.00 0.00 240.00 0.00 240.00 0.00
200_10_50_9 494.10 0.65 486.57 0.56 488.37 1.38 486.80 0.79 497.30 2.83 487.80 1.62
200_10_50_15 506.37 0.84 487.13 0.62 489.53 1.38 487.23 1.20 492.70 3.09 487.90 0.74
200_10_84_9 535.00 1.10 509.60 1.28 514.20 2.41 509.70 1.27 520.60 2.55 509.30 2.11
200_10_85_15 498.53 1.48 481.13 2.32 484.90 3.08 479.47 2.81 484.30 3.43 478.00 1.56
200_10_128_15 488.00 0.00 472.50 3.03 479.90 5.87 471.40 2.82 466.10 2.23 463.10* 0.88
200_10_135_9_D6 860.53 7.43 553.00 10.37 549.70 17.66 535.57* 6.11 829.20 40.51 694.80 67.90
200_20_54_15 274.03 1.14 261.90 1.40 265.20 1.38 261.50 1.28 276.80 4.80 261.00 1.89
200_20_55_9 264.73 0.81 248.30 0.64 250.73 1.29 247.87 0.85 270.40 3.17 257.80 10.37
200_20_97_9 268.23 0.92 246.90 1.42 251.07 2.34 245.93 1.48 267.80 8.99 247.60 8.93
200_20_97_15 336.00 0.00 336.00 0.00 336.00 0.00 336.00 0.00 336.00 0.00 336.00 0.00
200_20_145_15 264.83 1.19 248.30 1.68 253.80 3.25 247.37 2.07 256.10 4.18 238.50 0.71
200_20_150_9_D5 900.00 0.00 900.00 0.00 900.00 0.00 900.00 0.00 926.80 24.12 906.90 11.82
200_40_45_15 217.07 1.67 159.00 0.00 159.00 0.00 159.00 0.00 164.00 0.00 164.00 0.00
200_40_90_9 153.90 1.16 138.30 0.97 142.37 1.96 135.00* 1.39 173.40 8.14 181.30 22.07
200_40_91_15 157.93 1.39 136.20 1.60 139.70 1.51 133.77 1.12 160.60 6.42 144.80 9.44
200_40_130_9_D4 513.00 0.00 513.00 0.00 513.00 0.00 513.00 0.00 513.00 0.00 513.00 0.00

sum 12929 36.98 11671 45.52 11779 84.76 11639 43.35 12366 178.58 11971 183.15

avg 359.16 1.03 324.20 1.26 327.20 2.35 323.31 1.20 343.52 4.96 332.54 5.09
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"Hybrid Differential Evolution and Greedy (DEGR) for Solving Multi–
Skill Resource–Constrained Project Scheduling Problem", in review

process, Applied Soft Computing Journal.
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