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Abstract—Dividing a dataset into disjoint groups of homo-
geneous structure, known as data clustering, constitutes an
important problem of data analysis. It can be solved with broad
range of methods employing statistical approaches or heuristic
procedures. The latter often include mechanisms known from
nature as they are known to serve as useful components of
effective optimizers. The paper investigates the possibility of using
novel nature-inspired technique – Grasshopper Optimization
Algorithm (GOA) – to generate accurate data clusterings. As
a quality measure of produced solutions internal clustering
validation measure of Calinski-Harabasz index is being employed.
This paper provides description of proposed algorithm along with
its experimental evaluation for a set of benchmark instances.
Over a course of our study it was established that clustering based
on GOA is characterized by high accuracy – when compared with
standard K-means procedure.

I. INTRODUCTION

R
ECENT years brought significant advances in the field

of nature-inspired optimization. Several new algorithms

have been proposed – aimed at tackling both continuous,

combinatorial and multiobjective optimization problems. To

illustrate this fact: Evolutionary Computation Bestiary website

lists over 120 optimization techniques, with almost 30 of

them being developed during last three years (that is between

2015 and 2017) [1]. The emergence of diverse techniques

mimicking natural phenomena brought attention – due to

their efficiency – but also criticism arguing that relying on

metaphors is potentially leading the area of metaheuristics

away from scientific rigor [2]. Most of studied algorithms

however offer high performance on known set of benchmark

instances – which makes investigating their performance in

real-world optimization tasks worthwhile.

Grasshopper Optimization Algorithm (GOA) is an optimiza-

tion technique introduced by Saremi, Mirjalili and Lewis in

2017 [3]. It includes both social interaction between ordinary

agents (grasshoppers) and the attraction of the best individ-

ual. Initial experiments performed by authors demonstrated

promising exploration abilities of the GOA – and they will be

further examined in the course of our study.

The goal of this contribution is to evaluate clustering method

which uses GOA as the optimization strategy – aimed at

minimizing the value of Calinski-Harabasz index [4] – one

of internal clustering validity measures.

Cluster analysis constitutes a data mining problem of

identifying homogeneous groups in data. Clustering can be

perceived as combinatorial optimization problem – which is

known to be NP-hard [5]. It is the reason why diverse heuristic

approaches have been already used to tackle it [6], [7]. As

a point of reference classic K-means [8] algorithm can be

named. It is founded on minimizing the within-cluster sum

of squares (WCSS) and its main drawback is a convergence

to a local minimum of WCSS value – without a guarantee

of obtaining the global one. That is why more up-to-date

approaches are based on using metaheuristic techniques to

solve clustering problem in the alternative way. Previous work

in this area involve the use of – for instance – Flower

Pollination Algorithm [9] and Krill Herd Algorithm [10]. The

importance of clustering manifests itself through a variety of

disciplines where its instances appear, e.g. in agriculture [11],

automatic control [12], marketing [13] or text mining [14].

The paper is organized as follows. First, in the next Section,

the general description of data clustering is given along with

its formulation within the field of optimization. It is followed

by the brief introduction to the Grasshopper Optimization

Algorithm which is the most important component of the

technique described in this paper. Section 3 explains the

details of the clustering approach and subsequent part of

the paper covers the results of numerical experiments along

with comparative analysis. Finally general remarks regarding

algorithms’s features and planned further studies are under

consideration.
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II. METHODOLOGICAL BACKGROUND

A. Data Clustering and Its Formulation in the Optimization

Domain

Let us to denote Y as a data matrix of M × N dimen-

sionality. Its N columns represent features describing objects.

They in turn correspond to matrix rows, referred to as dataset

elements or cases. The goal of clustering is to assign dataset

elements y1, ..., yM to clusters CL1, CL2, ..., CLC .

Clustering remains an unsupervised learning procedure,

frequently with known number of clusters C being the only

information available. Cluster validation constitutes a task of

assessing if obtained solution reflects the structure of the data

and natural groups which can be identified within its records

[15]. So called external validation consists of using correct

cluster labels and comparing them directly with the results

of clustering whereas internal validation uses only partitioned

data. Calinski-Harabasz index is representative technique of

the latter. It can be written as:

ICH =
N − C

C − 1

∑C

i=1
d(ui, U)

∑C

i=1

∑

xj∈CLi
d(xj , ui)

(1)

wheras ui ∈ RN for non-empty cluster CLi corresponds to

cluster center defined by:

ui =
1

Mi

∑

yj∈CLi

yj , i = 1, ..., C (2)

with Mi being cardinality of cluster i and – likewise – U

corresponds to the center of gravity of the dataset:

U =
1

M

M
∑

j=1

yj . (3)

Clustering solutions which describe the dataset structure

will result in high value of ICH index. The choice of this

index was motivated by our successful experiments on other

heuristic algorithms using ICH value [10] as a key component.

Also recent studies on clustering indices demonstrate its sound

potential to validate clustering solutions [16].

B. Grasshopper Optimization Algorithm

GOA represents a population-based metaheuristic which is

aimed at solving continuous optimization problems, that is

finding argument (solution) x∗ which minimizes cost function

f : S → R. It can be formally written as:

x∗ = argmin
x∈S

f(x), (4)

with S ⊂ RD. Population based heuristic algorithms solve

(4) using a swarm of P individual agents, in iteration k

of the algorithm represented by a set {xp}
P
p=1

, with xp =
[xp1, xp2, ...xpD]. The important concept for the construction

of this class of procedures is also a measure of closeness

between two swarm members p1 and p2, denoted here by

Euclidean distance dist(xp1
, xp2

). The best solution found

by the swarm within k-iterations is stored as x∗(k). It is

also assumed here that search space S is bounded and this

type of constraints is represented by the values of the lower

LB1, LB2, ..., LBD and upper bound UB1, UB2, ..., UBD.

Effectively it means that:

LBd ≤ xpd(k) ≤ UBd (5)

for all k = 1, 2, ..., p = 1, 2, ..., P and d = 1, 2, ..., D.

Grasshopper Optimization Algorithm claims to be inspired

by the social behavior of grasshoppers – insects of Orthoptera

order (suborder Caelifera) [3]. Each member of the swarm

constitutes a single insect located in search space S and mov-

ing within its bounds. The algorithm is reported to implement

two components of grasshoppers movement strategies. First

it is the interaction of grasshoppers which demonstrates itself

through slow movements (while in larvae stage) and dynamic

motion (while in insect form). The second corresponds to the

tendency to move towards the source of food. What is more

deceleration of grasshoppers approaching food and eventually

consuming is also taken into account.

The movement of individual p in iteration k (index k was

omitted for the sake of readability) can be written using the

following equation:

xpd = c





P
∑

q=1,q 6=p

c
UBd − LBd

2
s(|xqd − xpd|)

xqd − xpd

dist(xq, xp)

)

+ x∗
d

(6)

with d = 1, 2, ..., D. Parameter c is decreased according to the

formula:

c = cmax − k
cmax − cmin

K
(7)

with maximum and minimum values – cmax, cmin respectively

– and K representing maximum number of iterations serving

as algorithm’s termination criterion. First occurrence of c in

(6) reduces the movements of grasshoppers around the target –

balancing between exploration and exploitation of the swarm

around the target. It is analogous to the inertia weight present

in the Particle Swarm Optimization Algorithm. Component

cUBd−LBd

2
, as noted in [3], linearly decreases the space that

the grasshoppers should explore and exploit. Finally function

s defines the strength of social forces, and was established by

creators of the algorithm as:

s(r) = fe
−r
l − e−r (8)

with l = 1.5 and f = 0.5.

To sum up GOA written using pseudocode and symbols

introduced in the paper and taking into account all important

elements – like initialization or calculation of the best solution

– is presented as Algorithm 1.

III. GOA-BASED CLUSTERING TECHNIQUE

Using any heuristic optimization algorithm requires choos-

ing proper solution representation. In the case of clustering it

is natural to represent solution as a vector of cluster centers

xp = [u1, u2, ..., uC ]. Consequently the dimensionality D used
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Algorithm 1 Grasshopper Optimization Algorithm

1: k ← 1, f(x∗(0)) ← ∞ {initialization}

2: for p = 1 to P do

3: xp(k) ← Generate_Solution(LB,UB)

4: end for

5: {find best}

6: for p = 1 to P do

7: f(xp(k)) ← Evaluate_quality(xp(k))
8: if f(xp(k)) < f(x∗(k − 1)) then

9: x∗(k) ← xp(k)
10: else

11: x∗(k) ← x∗(k − 1)
12: end if

13: end for

14: repeat

15: c ← Update_c(cmax, cmin, k,Kmax)

16: for p = 1 to P do

17: {move according to formula (6)}

18: xp(k) ← Move_Grasshopper(c, UB,LB, x∗(k))
19: {correct if out of bounds}

20: xp(k) ← Correct_Solution(xp(k), UB,LB)

21: f(xp(k)) ← Evaluate_quality(xp(k))
22: if f(xp(k)) < f(x∗k) then

23: x∗(k) ← xp(k), f(x
∗k) ← f(xp(k))

24: end if

25: end for

26: for p = 1 to P do

27: f(xp(k + 1)) ← f(xpk), xp(k + 1) ← xp(k)
28: end for

29: f(x∗(k + 1)) ← f(x∗k), x∗(k + 1) ← x∗(k)
30: k ← k + 1
31: until k < K

32: return f(x∗(k)), x∗(k)

in the description of GOA, in the case of data clustering

problem, is equal to C ∗N .

Another important aspect is choosing proper tool of assess-

ing the quality of generated solutions. Here an idea already

presented in [9] is implemented. After assigning each data

element yi to the closest cluster center the solution xp (repre-

senting those centers) is evaluated according to the formula:

f(xp) =
1

ICH,p

+#CLi,p=∅, i=1,...,C . (9)

It is equivalent to adding to the inverse value of Calinski-

Harabasz index – calculated for solution p – the number

of empty clusters identified in xp clustering solution written

above as #CLi,p=∅, i=1,...,C . The idea behind appending the

second component in (9) is penalizing solutions which do not

include desirable number of clusters.

IV. EXPERIMENTAL EVALUATION

Evaluating clustering algorithms is in essence a difficult task

due to unsupervised character of this problem. It is usually ap-

proached by performing cluster analysis on the labeled dataset

containing the information about assignment of data elements

to classes. Subsequently, clustering solution understood as a

set of cluster indexes provided for all data points should be

compared with a set of class labels. Such a comparison can be

done with the use of Rand index [17], external validation index

which measures similarity between cluster analysis solutions.

It is characterized by a value between 0 and 1. Low value of R

suggests that the two clusterings are different and 1 indicates

that they represent exactly the same solution – even when the

formal indexes of clusters are mixed.

As a point of reference for evaluating performance of

clustering methods classic K-means algorithm is being used.

It is also the case of this contribution. For the experiments

we used a set of benchmark datasets – based on real-world

examples taken from the UCI Machine Learning Repository

[18]. In the same time a set of standard synthetic clustering

benchmark instances known as S-sets was used [19].

TABLE I: Characteristics of investigated datasets

Dataset M N C Dataset M N C

glass 214 9 6 yeast 1484 8 10
wine 178 13 3 s1 5000 2 15
iris 150 4 3 s2 5000 2 15

seeds 210 7 3 s3 5000 2 15
heart 270 13 2 s4 5000 2 15

Table I provides the description of the datasets used in the

numerical experiments. It contains properties like dataset size

M , dimensionality N and the number of classes C – used as

desired number of clusters for the grouping algorithms.

To evaluate clustering methods they were run 30 times with

mean and standard deviation values of Rand index – R and

σ(R) – being recorded. For GOA-based algorithm a population

of P = 20 swarm members was used. Algorithm terminates

when C ∗N ∗ 1000 cost function evaluations were performed.

It is a standard strategy for evaluating metaheuristics – making

the length of search process dependent on data dimensionality.

First default values of all GOA parameters were used, with

c = 0.00001. It means that c quickly approaches values close

to zero. Summary of obtained results for this case is provided

in Table II. It is easy to observe that GOA-based clustering

outperforms K-means on the majority of the datasets – it is

also less prone to getting stuck in local minima (it is indicated

by the fact that it is less stable in terms of performance). We

studied also the effect of using alternative values for parameter

cmin (using cmax = 1 seems natural for the construction

of normalized "schedule"). Table III provides the results of

these experiments. First, we have used fixed values for cmin

– higher than the one suggested by creators of the algorithm.

This approach brings clearly very positive results. For most of

datasets the performance of clustering algorithm has improved

(as indicated by bold font). Especially the value cmin = 0.001
seems to be functioning very well.

We have also studied the possibility of using random values

of c in the interval [0, 1]. It is a common strategy of "embed-
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TABLE II: K-means vs GOA-based clustering (with default

parameter values)

K-means clustering GOA clustering
(default cmin = 0.00001)

R σ(R) R σ(R)

glass 0.619 0.061 0.643 0.035

wine 0.711 0.014 0.730 0.000
iris 0.882 0.029 0.892 0.008

seeds 0.877 0.027 0.883 0.004
heart 0.522 0.000 0.523 0.000
yeast 0.686 0.033 0.676 0.034

s1 0.980 0.009 0.990 0.006
s2 0.974 0.010 0.984 0.006
s3 0.954 0.006 0.960 0.005
s4 0.944 0.006 0.951 0.003

TABLE III: Impact of parameter c on the performance of

GOA-based clustering

chaotic c cmin = 0.001 cmin = 0.1

R σ(R) R σ(R) R σ(R)

glass 0.630 0.034 0.652 0.033 0.651 0.034

wine 0.730 0.000 0.730 0.000 0.730 0.000

iris 0.894 0.016 0.895 0.008 0.891 0.009
seeds 0.881 0.005 0.881 0.005 0.882 0.004
heart 0.522 0.000 0.523 0.000 0.523 0.000

yeast 0.669 0.036 0.690 0.029 0.690 0.025

s1 0.987 0.006 0.991 0.005 0.991 0.006

s2 0.982 0.005 0.985 0.005 0.986 0.005

s3 0.957 0.005 0.960 0.004 0.961 0.004

s4 0.949 0.003 0.951 0.003 0.951 0.003

ding" chaotic behavior into metaheuristic – which should result

in enriching the search behavior [20]. In this case this approach

does not work well. A decrease in the algorithm performance

was predominantly observed. Still, such a "chaotic-enhanced"

GOA-based clustering algorithm outperforms K-means in the

most of investigated data mining cases.

V. CONCLUSION

The paper proposes new clustering approach based on

recently introduced Grasshopper Optimization Algorithm. Be-

sides the description of the method the results of its experi-

mental evaluation were also discussed. It was established that

GOA-based approach offers high performance with respect

to the standard K-means algorithm, both in terms of average

quality of solutions and their stability. We also examined the

impact of important algorithm’s parameter – namely value of

c. Possibility of using both fixed values for the lower bound

of c (alternative to the default cmin = 0.00001) as well as

random strategy (which proved to be mostly unsuccessful)

were inspected.

Further studies within the scope of this paper should in-

clude more detailed analysis of the impact of population

size and coefficient c on the quality of obtained solutions.

The importance of the first aspect stems from the fact that

the algorithm is characterized by quadratic time complexity

with regards to the population size. It essentially means that
choosing proper, compact P value is important for the success

of GOA-based optimization. Choosing the right scheme of c

alteration seems also of great importance. Therefore the idea

of using alternative function to the standard linearly decreasing

one should be explored.
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