
Use Case Driven Modularization as a Basis for

Test Driven Modularization

Michal Bystrický and Valentino Vranić
Institute of Informatics, Information Systems and Software Engineering

Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava

Ilkovičova 2, Bratislava, Slovakia

Email: {michal.bystricky,vranic}@stuba.sk

Abstract—While in waterfall-like processes changes are ex-
pected to happen mostly after the main development has finished,
agile approaches have incorporated response to changes into
the main development itself, which raises the importance of
the ability to respond to changes effectively to a sine qua non.
Changes are specified from the perspective of how users actually
use systems, i.e., usage scenarios, which does not correspond to a
common object-oriented code modularization. In their complete
form, usage scenarios can be directly observed in user acceptance
tests. Unit tests reveal parts of usage scenarios, too. Logically,
tests follow the modularization of the code they are related to.
Thus, in common object-oriented code, user acceptance tests,
which play a very important role in any kind of software devel-
opment process and which follow the procedural modularization,
would be scattered and, consequently, hard to maintain. In this
paper, we propose a new approach capable of achieving test
driven modularization, i.e., organizing code according to tests.
Besides pure test driven modularization, which can be based
on user acceptance tests, unit tests, or both, the approach also
enables combining use case and test driven modularization.

Keywords: modularization, use case, user acceptance test,

unit test, test driven development, Cucumber

I. INTRODUCTION

W
HILE in waterfall-like processes changes are expected

to happen mostly after the main development has

finished, agile approaches have incorporated response to

changes into the main development itself, which raises the

importance of the ability to respond to changes effectively to a

sine qua non. Changes are specified from the perspective of how

users actually use systems, i.e., usage scenarios, which does not

correspond to a common object-oriented code modularization.

In their complete form, usage scenarios can be directly

observed in user acceptance tests. Unit tests reveal parts of

usage scenarios, too. Test driven development [18] and its

red-green-refactor loop makes tests very close to code, but the

developers have to switch between tests and code hundreds

of times to make their test “green.” Although a test itself

is contained within a small number of mock modules, the

tested code remains spread throughout many modules, which

significantly increases tracing.

Logically, tests follow the modularization of the code they

are related to. Thus, in common object-oriented code, user

acceptance tests, which play a very important role in any kind of

software development process and which follow the procedural

modularization, would be scattered and, consequently, hard to

maintain. This is of particular importance, since it is known that

user acceptance tests immensely improve code comprehension,

as can be seen in the Cucumber approach [7].

User acceptance tests are highly related to use cases [22],

and there are several approaches capable of preserving use

cases in code, such as DCI (Data, Context and Interaction) [4],

aspect-oriented software development with use cases [12],

and our own approach of inter-language use case driven

modularization [1]. However, all these approaches fail to

fully support expressing user acceptance tests because user

acceptance tests are actually based on user interfaces, and good

use cases are kept independent of user interface details.

Use case driven modularization and mechanisms that are

used to achieve it remain a good basis for establishing a new

kind of modularization—test driven modularization—which

we propose in this paper. Keeping user interface code coupled

with the corresponding application logic code is essential for

this kind of modularization. Modern user interfaces tend to

be written in dedicated languages and this is where inter-

language use case driven modularization, which enables mixing

fragments of code written in different programming languages

in so-called virtual files with their continuous merging into

compilable and executable units [1], provides the necessary

capabilities missing in other approaches to preserving use cases

in code.

The rest of the paper is organized as follows. Section II

explains briefly how inter-language use case driven modular-

ization is implemented. Section III proposes the new approach

that enables test driven modularization. Section IV compares

our approach to related work. Section V concludes the paper.

II. INTER-LANGUAGE USE CASE DRIVEN

MODULARIZATION

Several approaches capable of organizing code according

to use cases are available. However, since each language is

intended for its specific use, an approach suitable for test

driven modularization has to support mixing different languages

in program modules. Literal inter-language use case driven

modularization [1] enables exactly this. In this approach, code

for a use case is located in a use case module, which is simply

a file: a use case file. On top of the use case file there is a

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 693–696

DOI: 10.15439/2017F343

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 693

use case in its text form, a use case text, written in form of a

comment. Under the use case text is a class which represents

the use case, and its methods represent the use case steps.

A framework executes the methods representing the use case

steps based on the use case text. The mapping between the

text of the steps and the corresponding methods is maintained

with a naming convention: method names are actually derived

from the use case step text by turning it into the camel case

format.

The use of different languages is enabled by so-called

virtual files. Virtual files are defined using particular comment

conventions directly within the methods that implement use

case steps. All virtual files are extracted out of use case files,

merged, and saved by a preprocessor, which also resolves

possible virtual file duplicities and gathers the code from partial

virtual files that contain partial namespaces or classes. The

preprocessor saves the files containing the merged code, which

are actual files, to their virtual file paths as indicated in the

corresponding virtual files. Subsequently, the merged code can

be executed, which may require a compilation depending on

the programming language.

Additions and alterations of virtual files in use case files

are propagated to the merged code and to other use case files

by the preprocessor. Accordingly, deletions and alterations in

the merged code are propagated to use case files, too. Since

there is no way of knowing to which use case are additions to

the merged code related, these additions are not propagated to

virtual files in use case files. All changes to use case files and

merged code, including the direct changes by developers, are

displayed to developers and logged. This process of change

propagation is actually synchronization, as will be referred to

further.

III. INCLUDING TESTS IN USE CASES

Test driven modularization aims at organizing code according

to tests keeping their representation in code. For this, the

synchronization mechanism from inter-language use case

driven modularization was employed accompanied by the new

mechanism of use case coverage calculation that we propose

here.

Via test driven modularization, our approach provides yet

another view on software under development. This view may be

combined with literal inter-language use case driven modular-

ization, but what is always available is the modularization of the

merged files (recall Section II). Developers can switch between

these modularizations and get the perspective that suits best

their current needs. Of course, all three modularizations have

to be maintained. However, the tools capable of synchronizing

changes can automate this process.

Section III-A explains the details of writing tests within

use case modules. To enable keeping track of how well

tests cover use cases, the approach embraces a continuous

calculation of this value, which is described in Section III-B.

Writing user acceptance tests is described in Section III-C.

Test representation is described in Section III-D. Section III-E

provides a brief information on the experience we have in

applying our approach.

A. Tests in Use Case Modules

In literal inter-language use case driven modularization, use

case steps appear in the classes representing use cases as

comments along with the related code. but comments are hard

to write and maintain and development environments do not

support code completion and syntax highlighting for code

inside of comments. To address this problem, we propose to

use the Markdown format in use case files. Consider the Add

Product into Cart use case:
Use case Add Product into Cart

Main scenario

1. User selects to add a product into cart

2. System saves the product into cart

3. System notifies user about updating shopping cart

4. Include "Show Cart"

Code

view/product-detail.html

‘‘‘html

<h3>{%=o.product.name%}</h3>

<p>{%#o.product.description%}</p>

<div>{%=o.product.price%}</div>

Add into cart

‘‘‘

model/Cart.js

‘‘‘js

({ add: function (id) {...} })

‘‘‘

controller/public.js

‘‘‘js

(function () {

this.addIntoCart

= function (event) {

require({

Cart: "model/Cart.js"

...

‘‘‘

Tests

tests/features/cart.feature

‘‘‘feature

Feature: Shopping cart

Scenario:

Adding products into cart

Given I am on the test page

When I click on "Add into cart"

Then I should see "Test pro."

And I should see "120 EUR"

...

‘‘‘

tests/unit/cart.js

‘‘‘js

...

Cart.empty();

assert(

Cart.getAll().length === 0,

"The empty cart should have

zero items");

Cart.add("1");

assert(

Cart.getAll().length === 1,

"...");

‘‘‘

As can be seen, the actual use case implementation follows

the use case text. This part constitutes a separate section

in Markdown. It consists of virtual files (recall Section II)

with virtual file paths represented by second level Markdown

headers.

The tests for the use case, placed into a separate, test section
of the use case file, follow the code section. The test section con-

sists of virtual files, thus the same synchronization mechanisms

apply to tests as in the code section. The example contains

two tests: the Adding Products into Cart user acceptance test

written in the Cucumber’s Gherkin language [7] and the Cart

unit test.

For the merged files, we used common object-oriented

modularization with the Model-View-Controller architectural

pattern, but any other kind of modularization, such as functional

or procedural, can be used as well. Use case driven or test

driven modularization can be built upon any kind of underlying

modularization.

If a test from the test section is moved to the top of a use case

file, the preprocessor treats virtual files in this section as use

694 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

cases in the use case section in use case driven modularization,

where each line of the test is treated as a use case step in the

main flow.

B. Use Case Coverage

Each use case should be covered by the corresponding code.

This can be measured as a percentage of the words from the

use case found in the declarations residing in its code. Also,

each use case should be covered by the corresponding tests.

In the same way, the coverage of use cases by the tests can

be measured as a percentage of the words from the use case

found in the declarations residing in its tests.

With each change in use case files, the preprocessor recalcu-

lates and displays in its console output the coverage for each

use case step along with the words that are missing in the

code and in the tests. The missing words are the words present

in use cases, but not covered by code or tests. Conjunctions,

prepositions, and articles can be ignored, which can be specified

in the ignored words file.

Missing words can also be pseudo-covered by code if they

are included in comments inside of four asterisk symbols

(denoting the bold font in Markdown). In the same way, they

can be pseudo-covered by tests, too. Consider this virtual file

as an example:

view/bank-transfer.html

‘‘‘html

<!-- **provide bank transfer instructions** -->

<p>Please send the payment to the address below.</p>

‘‘‘

Although the “provides” word is missing in the corresponding

use case step, the preprocessor captures its form “provide”

introduced in the comment and considers it as being covered

by code. Here, the difference algorithm [15] is used. The

similarity of 70% or higher is considered to indicate the words

are the same.

By presenting the percentage of how well use cases are

covered in both code and tests encourages developers to work

on increasing it, which is achieved by a better test and use

case driven modularization.

Conveniently, the links between use cases and code—i.e.,

between a use use case step and a line of code or a line of

test—can be visualized by using our tool (see the relationship

walkthrough video at https://youtu.be/N1hbu3K0yp4).

C. Writing User Acceptance Tests

As can be seen from the Add Product into Cart use case

example introduced at the beginning of this section, user

acceptance tests closely follow use cases, which makes them

appropriate for use case driven modularization. User acceptance

tests can also be written in the form of use cases to ensure they

cover the corresponding use cases fully. The main steps of a

user acceptance test would then actually be the same as the

steps of a use case. Each such step is followed by a sequence of

actual test steps that specify the corresponding testing actions.

This is the first step of the test from our Add Product into Cart

use case example: “User selects to add a product into cart” is

followed by the following actual test steps:

When I click on "Add into cart"

Then I should see "Test product"

The test steps are then expressed by code. Here is the code for

the use case step:

this.When(/^user selects to add a product

into cart$/, function () {

this.clickOn("Add into cart");

this.shouldSee("Test product");

D. Writing Unit Tests

Unit tests follow the modularization of object-oriented code

which is different than use case driven modularization. However,

unit tests are capable of testing use case steps at least partially.

Consider the following example of the test for the “System

saves the product into cart” step of the Add Product into Cart

use case:

function testSaveProductIntoCart() {

product = {...}

assert(Cart.save(product) === true,

"System should save the product into cart");

A use case step can be implemented as an exception, too. For

this, the Cart . save () call in the testSaveProductIntoCart ()

function should be wrapped into a try-catch block. If the call

fails, an assert function will raise an exception with the “System

should save the product into cart” message from the use case

step. Notice that all the words are the same as in the use case

step except for “should,” which is characteristic for tests.

E. Experience with the Approach

Being encouraged by the positive results of two studies

of our approach to use case driven modularization, one of

which embraced our own e-shop application with its seven

use cases (including the use case presented in Section III-A),

while the other one consisted of remodularizing the well-known

OpenCart e-commerce platform into 55 use cases,1 so far, we

successfully applied our approach to test driven modularization

to our own e-shop application. We implemented a combined use

case driven and test driven modularization version and a pure

test driven modularization version (based on user acceptance

tests).2

IV. RELATED WORK

DCI [4], [19], aspect-oriented software development with use

cases [11], [12], InFlow [2], and behavioral programming [8]

preserve use cases in code. Each approach enforces a specific

use case representation in code, e.g., DCI does this via roles,

while aspect-oriented software development with use cases

employs aspects. In our approach, use case representation

can be freely chosen while the approach still achieves use

case representation in code. Approaches to generating object-

oriented code from use cases [6], [23] do not actually represent

use cases in code.

1See github.com/useion/opencart.
2See youtu.be/zK8QKsIOkOg and github.com/useion/useion-e-shop (the test

modules can be found in the context/behavioral folder). More information is
available at useion.com.

MICHAL BYSTRICKÝ, VALENTINO VRANIĆ: USE CASE DRIVEN MODULARIZATION AS A BASIS FOR TEST DRIVEN MODULARIZATION 695

Software artifacts were combined previously in literate

programming [14], too. Literate programming brings code

into documentation, but not tests into code. The code is

extracted and combined by the noweb tool [13], which is

basically a preprocessor or code generator [5]. This is similar

to our approach and literate programming is even capable of

expressing use case modules as our approach. However, without

synchronization, code duplication would occur, which would

be unbearable.

Code defragmentation can be achieved also by applying

Object Teams [10], subject-oriented programming [17], and

symmetric aspect-oriented composition [3], [9], but none of

these approaches achieves this at the level of multiple languages,

as we do.

Different structuring of code provides different views on

software. Although dynamic structuring has been reported [16],

[21], it was not achieved at the file system level, but using

a particular editor. Our approach provides use case and test

views, which are synchronized at the file system level and can

be used simultaneously.

The Cucumber project [7] enables test execution based on

the text specification written in Gherkin, but each step has to

be expressed in code. This is similar to our approach where

code can be structured according to the text specification of

use cases while each their step has to be expressed in code.

While in our approach a web based interface is used to

display the links between use cases or user acceptance tests and

code, exposing them directly in the development environment

using, for example, information tags [20] could help in making

developers pay more attention to use case coverage.

V. CONCLUSIONS

In this paper, we propose a new approach capable of

achieving test driven modularization. It enables organizing

code according to tests. The approach employs inter-language

use case driven modularization, which provides a good basis

for keeping code modularized according to user acceptance

tests and enables mixing different kinds of languages, which is

particularly useful when dedicated languages are used for user

interface development. Besides pure test driven modularization,

which can be based on user acceptance tests, unit tests, or both,

the approach also enables combining use case and test driven

modularization.

ACKNOWLEDGMENTS

The work reported here was supported by the Scientific

Grant Agency of Slovak Republic (VEGA) under the grant No.

VG 1/0752/14. This contribution/publication is also a partial

result of the Research & Development Operational Programme

for the project Research of Methods for Acquisition, Analysis

and Personalized Conveying of Information and Knowledge,

ITMS 26240220039, co-funded by the ERDF. Michal Bystrický

was supported by the STU Grant scheme for Support of Young

Researchers.

REFERENCES

[1] M. Bystrický and V. Vranić. Literal inter-language use case driven
modularization. In Proceedings of LaMOD’16: Language Modularity
À La Mode, workshop, Modularity 2016, Málaga, Spain, 2016. ACM.
doi.org/10.1145/2892664.2893465.

[2] M. Bystrický and V. Vranić. Preserving use case flows in
source code: Approach, context, and challenges. Computer Science
and Information Systems Journal (ComSIS), 14(2):423–445, 2017.
doi.org/10.2298/CSIS151101005B.

[3] J. Bálik and V. Vranić. Symmetric aspect-orientation: Some practi-
cal consequences. In Proceedings of NEMARA 2012: International
Workshop on Next Generation Modularity Approaches for Requirements
and Architecture, at AOSD 2012, Potsdam, Germany, 2012. ACM.
doi.org/10.1145/2162004.2162007.

[4] J. Coplien and G. Bjørnvig. Lean Architecture for Agile Software
Development. Wiley, 2010.

[5] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[6] J. Franců and P. Hnětynka. Automated code generation from system
requirements in natural language. e-Informatica Software Engineering
Journal, 3(1):72–88, 2009.

[7] S. Garg. Cucumber Cookbook. Packt Publishing, 2015.

[8] D. Harel, A. Marron, and G. Weiss. Behavioral program-
ming. Communications of the ACM, 55(7):90–100, July 2012.
doi.org/10.1145/2209249.2209270.

[9] W. H. Harrison, H. L. Ossher, and P. L. Tarr. Asymmetrically vs.
symmetrically organized paradigms for software composition. Technical
Report RC22685, IBM Research, 2002.

[10] S. Herrmann. A precise model for contextual roles: The programming
language ObjectTeams/Java. Applied Ontology, 2(2):181–207, 2007.

[11] I. Jacobson. Use cases and aspects – working seamlessly together. Journal
of Object Technology, 2(4), 2003. doi.org/10.5381/jot.2003.2.4.c1.

[12] I. Jacobson and P.-W. Ng. Aspect-Oriented Software Development with
Use Cases. Addison-Wesley, 2004.

[13] A. Johnson and B. Johnson. Literate programming using (noweb). Linux
Journal, 1997(42es), 1997.

[14] D. E. Knuth. Literate programming. The Computer Journal, 27(2):97–
111, 1984.

[15] E. W. Myers. An o(nd) difference algorithm and its variations.
Algorithmica, 1:251–266, 1986.

[16] M. Nosál’. Sieve source code editor. https://github.com/MilanNosal/
sieve-source-code-editor, 2015.

[17] H. Ossher, W. Harrison, F. Budinsky, and I. Simmonds. Subject-oriented
programming: Supporting decentralized development of objects. In
Proceedings of 7th IBM Conference on Object-Oriented Technology,
1994.

[18] M. Rahman and J. Gao. A reusable automated acceptance testing
architecture for microservices in behavior-driven development. In 2015
IEEE Symposium on Service-Oriented System Engineering, SOSE 2015,
2015. doi.org/10.1109/SOSE.2015.55.

[19] T. Reenskaug and J. O. Coplien. The DCI architecture: A new vision of
object-oriented programming. Artima Developer, 2009.

[20] K. Rástočný and M. Bieliková. Empirical metadata maintenance in
source code development process. In 4th Eastern European Regional
Conference on the Engineering of Computer Based Systems, 2015.
doi.org/10.1109/ECBS-EERC.2015.13.

[21] M. Sulír and M. Nosál’. Sharing developers’ mental models through
source code annotations. In Proceedings of 2015 Federated Conference
on Computer Science and Information Systems, FedCSIS 2015, Łódź,
Poland, 2015. IEEE. doi.org/10.15439/2015F301.

[22] P. Zielczynski. Traceability from use cases to test cases, 2006. IBM
developerWorks, https://www.ibm.com/developerworks/rational/library/
04/r-3217/.

[23] M. Śmiałek, N. Jarzębowski, and W. Nowakowski. Translation of use
case scenarios to Java code. Computer Science, 13(4):35–52, 2012.
doi.org/10.7494/csci.2012.13.4.35.

696 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

