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Abstract—The C++ Standard Template Library (STL) is the
flagship example for libraries based on the generic programming
paradigm. The usage of this library is intended to minimize
classical C/C++ errors, but does not warrant bug-free programs.
Furthermore, many new kinds of errors may arise from the
inaccurate use of the generic programming paradigm, like
dereferencing invalid iterators or misunderstanding remove-like
algorithms.

Unfortunately, the C++ Standard does not define which stan-
dard header includes another standard headers. It is easy to
write code that works perfectly on an implementation but fails to
compile with another implementation of STL. These unportable
codes should be result in compilation error with every STL
implementation. However, in this case the compiler does not warn
us that this code is erroneous.

In this paper we present our tool that is based on the Clang.
This tool is able to detect the missing include directives that
are patched by the STL implementation’s internal structure. It
also reports the unnecessary include directives to avoid extra
compilation time. The background of our tool is discovered and
we briefly present the underlying data structures and algorithms.
We analyse how these problems occur in open source libraries
and programs. Which environment proves oneself to be lazy or
strict? How the developers take advantage of this portability
issue?

I. INTRODUCTION

NOWADAYS, the C++ language is very popular in edu-

cational and industrial environments as well. It provides

a wide range of programming language elements, from the

low level bit manipulation and pointer usage, which mainly

come from C language to the high level, modern program-

ming paradigms, such as function overloading, exceptions and

templates. Runtime efficiency is important in C++, with the

guiding principle being “do not pay for what you do not use”.

Efficiency can be very important in industrial environment.

On the other hand, the C++ language is continuously

evolving, new standards come with a bunch of new features,

for instance the variadic templates which appeared in C++11.

These new features keep C++ popular. Actually, there are

millions of lines C++ code and new lines are created day by

day, that someone has to maintain later. Thus, the detection of

bugs has become very important. The earlier the bug is found,

the lesser the cost. There are analysis tools on the market

that can catch bugs in the source code. Some of them find

Supported by the NKP-17-4 New National Excellence Program of the
Ministry of Human Capacities

problematic code snippets during the compilation stage, others

can do it at runtime.

In this paper we describe an issue related to C++ Standard

Template Library (STL). This issue may cause portability

problems because of the underlying STL implementation’s

undefined include dependency. We present our tool that can

analyse the source code and find these kind of bugs. The tool

is based on Clang compiler infrastructure [1].

This paper is structured as follows. The paper begins with

an introduction to STL and static analysis in section II. We

present the related problems in details in section III. After we

describe our tool that is based on Clang in section IV. Our tool

has been evaluated on open source projects, so the collected

result can be seen in section V. Finally, this paper concludes.

II. PREQUISITES

A. Standard Template Library

The Standard Template Library (STL), is a standard C++

library of container classes, algorithms, iterators, and functors

[2]. STL provides many of the basic algorithms and data

structures of computer science. The STL is a generic library,

meaning that its components are heavily parametrized: almost

every component in the STL is a template that cannot be

compiled in advance. Therefore all definitions of the STL

components should be written in the header files [3].

The STL includes container classes: classes whose pur-

pose is to contain other objects. The library includes the

classes vector, list, deque, set, multiset, map,

multimap. Each of these structures is a template, and can

be instantiated to contain many types of object.

The STL also includes a large collection of algorithms

that manipulate the data stored in containers (for instance,

for_each, copy, find_if, etc.). Algorithms are global

function templates, not member functions. Every algorithms

operate on a range of elements, rather than on a container.

Algorithms are decoupled from the STL container classes. This

means that algorithms can be used with vectors, but also work

with lists, and even with elements of C arrays, etc.

Iterators make connection between the algorithms and con-

tainers, which are generalization of pointers. Their public

interface originates from pointer-arithmetic. Iterator is the

mechanism that makes it possible to decouple algorithms from

containers: algorithms are templates, and are parametrized by
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the type of iterator, therefore they are not restricted to a single

type of container.

Finally, the STL includes a large collection of function

objects, also known as functors. Just as iterators are gener-

alization of pointers, function objects are generalization of

functions: a function object is anything that you can call using

the ordinary function call syntax supported by operator().

Function objects are an important part of generic programming

because they allow abstraction not only over the types of

objects, but also over the operations that are being performed.

The complexity of the library is greatly reduced because of

this layout. As a result of this layout we can extend the library

with new containers and algorithms simultaneously. This is a

very important feature because object-oriented libraries do not

support this kind of extension [4].

The STL that is specified in the C++ standard does not

belong to a specific implementation. Many STL implementa-

tions are available and these are not the same. Extensions and

different approaches appear in the STL implementations.

The usage of C++ STL highly reduces the classical pro-

gramming errors, like memory leaks and invalid pointer deref-

erences but misunderstanding generic programming paradigm

can lead to new kinds of errors, for example, iterator invalida-

tion or improper use of algorithms (unique, remove) [5].

The include dependencies in the STL are not well-defined and

many dependencies belong to the implementation of STL that

can be a main reason of a subtly portability issue [6].

B. Static analysis

Static analysis is a kind of software analysis. Its idea is

analyzing the software without execution, it can target the

source code or byte code as well. The main advantage of

this method is that the code is not executed. In general,

finding bugs in an earlier stage of software development highly

could reduce the cost of the software [7]. The tools are

not perfect, they could not find all bugs and sometimes go

wrong. However, these tools are beneficial ones [8]. Using

these kind of tools during the development can be effective in

many respects, for example these tools can provide a kind of

automatic checking of the source code.

Of course, the static analysis technique used to affects what

kinds of problems can be detected. However, the language

also affects the efficiency of the analysis. There are many

analysis methods to detect issues from simple ones, like

regular expression based searches to very complex algorithms.

Nowadays, the market leading static analysis tools use very

advanced algorithms to detect issues, for example symbolic

execution[9]. Symbolic execution have become more and more

important in the modern software development [10]. The

complexity of the analysed language also can influence the

algorithms, for example the analysis of a language which has

pointers could be harder than others which do not have [11].

Clang is an open source compiler for C/C++/Objective-C.

It is built on the top of the LLVM compiler infrastructure. It

is a rapidly evolving project which is supported by Apple and

Google. Clang is getting more and more popular.

One of the advantages of Clang is its modular architecture.

One can use the parser as a library to build tools. The

popularity of this compiler also implies that it is well tested.

Clang has been applied in many different static analysis tasks:

finding semantic mistakes in the usage of STL [5], searching

for semantic differences in source code according to different

C++ standards [12], improving static analysis with function

summaries [13], finding move semantics related bugs [14],

detecting uses of uninitialized memory in C and C++ [15],

customizable style validation [16], speed-up special operations

[17] etc.

III. THEORETICAL ISSUES

The following theoretical issues will be addressed in this

paper. To get a deeper view on these, the next subsections will

summarize the problems. All of them are related to include

hierarchy and the usage of header files, but each of them is

different.

A. Internal STL hierarchy

1) Motivation: C++ is a standardized language [3]. The first

official standard released in 1998. Three improved C++ stan-

dards was released later and the next one comes in 2017. The

language is continuously evolving to meet the expectations.

The C++ Standard is a very long and formal paper and defines

the element of the C++ language and the Standard Template

Library provided features, but there are subtle opportunities

for the compiler and library implementations.

Also, there are some weaker points in the Standard. In C++,

to modularize our program, the header inclusion can be used

which comes from the C language. Header inclusion happens

during the preprocessing stage of the compilation. The include

preprocessor directive provides header inclusion. When the

preprocessor reaches out an include directive, it opens the

given file and copies its content to the place of directive. Also,

this process can be recursive. At the end of preprocessing of

a translation unit, the preprocessed source file is ready that

contains all data which is necessary for the compiler. For

example, if there is an include for vector header, preprocessor

will copy the content of vector header to the place of include

[18]. This mechanism increases the build time intensively [19].

Standard Template Library uses header inclusion to separate

headers into different files. The Standard defines for each

STL header file what it has to provide, for example vector

standard header has to provide a data structure called vector.

The developers can include these files, if they would like

to use their features. Some standard headers need to use a

symbol from another standard header file. It is possible, but

this mechanism results that, the features of included header

file are available by including the other one.

It would be okay, the different modules have to be connected

in some cases, for example map uses features of utility.

However, it could lead issues later.

The main problem is that the C++ Standard does not define

exactly which standard headers must include the other ones. It
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depends on the developers of current STL library implemen-

tation because they create the hierarchy of the library. Thus,

the hierarchy of STL implementations could be different. It is

not a problem when the standard headers are used correctly,

but the compilers do not check it comprehensively. Therefore

it can be the root cause of portability problems.

Easy to write code that compiles with an implementation

but fails with another. These unportable codes should result

in compilation error with every STL implementation, but the

compiler does not know that is wrong. It finds the used

definitions and does not check how they can be reached.

2) Examples: This problem appears when the developers

try to take advantages of hierarchy, that is not well defined.

In the next examples, the problem will be highlighted more

obviously and how easy to commit this kind of mistake.

In this case, the compiler have to be upgraded, that requires

to upgrade the used STL implementation also. We used g++

5.3 with libstdc++ STL implementation. Here is a simple pro-

gram that compiles and works fine. For example, see Listing

1, there is an include directive for algorithm header, but in the

main function a variable with type std::vector<int> is

constructed.

# i n c l u d e <a l g o r i t h m>

i n t main ( ) {
s t d : : v e c t o r<i n t > v ;

}

Listing 1: Vector from algorithm

Next step is upgrading our compiler to g++ 6.1, the STL

implementation is also updated. The new compiler fails to

compile the code because it does not find vector in std

namespace.

e r r o r : ’ v e c t o r ’ i s n o t a member o f ’ s t d ’

Listing 2: Compiler error

How this situation could happens? The hierarchy of libstdc++

STL implementation has been changed. Till this version

algorithm included random, that included vector, so if one

includes algorithm, the vector header also can be used.

In the next example, compiler is switched with another and

this also results in switching one STL implementation with

another. At the beginning, Clang compiler is used with libc++

STL implementation. Another interesting example can be seen

in Listing 3, which is very simple, it just includes algorithm

header and uses std::shared_ptr through this header.

# i n c l u d e <a l g o r i t h m>

# i n c l u d e ” myc la s s . h ”

i n t main ( ) {
s t d : : s h a r e d p t r <MyClass> x ;

}

Listing 3: Header memory from header algorithm

It compiles and works with Clang using libc++ STL, but

we change the compiler to g++ 6.1 with libstdc++ STL.

It results a compilation error, because std::shared_ptr

class template cannot be found.

e r r o r : ’ s h a r e d p t r ’ i s n o t a member o f ’ s t d ’

Listing 4: Compiler error

The root cause of this error has been that we have changed

the used STL implementation to another one. In libc++,

algorithm header includes memory because some imple-

mented algorithms use smart pointers from memory header.

In the libstdc++ implementation, the algorithms do not use

smart pointers so algorithm does not include memory header

necessarily.

3) Clarification: As a short summary for the problem, the

include hierarchy in STL implementations could be different

and it can be changed by time. It could be annoying, if the code

that compiles with a specific compiler, does not compile with

a different compiler that uses another STL implementation.

To avoid this problem no one should take advantage of the

include dependencies of the used STL implementation.

B. Legacy style C header include

For backward compatibility with C language, the C++ has to

provide features of C standard library. It means, almost every

C standard header file is available through their appropriate

C++ version, for example, features of stdlib.h is available by

cstdlib. The main difference between these header files is that

the C++ version brings functions into the std namespace.

On the other hand, the original C header files can be

included, but the C++ standard formulates them as deprecated.

It does not require, that these headers have to be available by

definition at all times. The C headers are accessible only, if

the build environment contains a C compiler beside the C++

compiler, for example gcc and g++. It is possible, the C++

compiler is only a C++ compiler and does not care about

C, that implies the C standard header files are not available

certainly. Since the C++ only requires the C++ version of C

standard header files, a short example can be seen in Listing

5.

# i n c l u d e < s t d l i b . h>

i n t main ( ) {
a b o r t ( ) ;

}

Listing 5: C header usage

C. Unused header files

The unused header files are not really an issue because they

do not cause any compilation error. By definition a needless

include does not contain any declaration or definition, that is

used somewhere in the source code. That means, these kind

of includes safely can be removed without affecting the build

procedure [20].

BENCE BABATI, NORBERT PATAKI: ANALYSIS OF INCLUDE DEPENDENCIES IN C++ SOURCE CODE 151



However, the deletion of unnecessary header files is a build

process optimization because unused include files can highly

increase the build time [21]. Just for clarification, in the next

sample in Listing 6 depicts how an unused header looks like.

a . h :

vo id f o o b a r ( ) ;

main . cpp :

# i n c l u d e ” a . h ”

i n t main ( ) {
}

Listing 6: Unused header

These problems often occur in big C/C++ projects. Meyers

devoted an item for the STL-related header files but no tool

was mentioned to detect the misusage [6]. We have analysed

many open-source projects and all of them contains at least

one of mentioned problems, so we have developed a tool.

IV. THE TOOL

A. Technical background

The previously described problems can appear from time to

time, and it often results in a compiler error that must be fixed.

To detect these kind of problems, a new tool was created to

statically analyse the source code. The targeted problems are

related to each translation unit and its include hierarchy, so

translation units can be processed separately from each other.

The tool is based on Clang library and takes advantage of

its libraries, for example. use its abstract syntax tree, which

is created from the analyzed source. The main advantage of

using Clang is the proper C++ parser that follows the C++

standard.

B. Conceptual problems

We have faced some interesting problems, which require to

solve them in order to create a usable, handy tool.

a) Mandatory includes: Almost every standard header

uses features from another ones, but it is not well documented.

Among the used includes, there are many which are required

to be included. That means, it must include them to implement

functionality defined by the standard. This mechanism can

help us to filter out a lot of false positive results because a

header file cannot be implemented without include another

one. This kind of required relation is transitive such as the

header inclusion. For example, map has to include utility,

because std::map’s insert member function returns a

pair of iterator and bool, that means, the insertion succeeded

if first member of std::pair is an iterator to the newly

inserted element and the second member’s value is true. If it

is not, the first contains an iterator to an element with equal

key and the second is false.

p a i r < i t e r a t o r , bool> i n s e r t ( c o n s t v a l u e &);

Listing 7: std::map::pair

b) Private headers: To determine the exact location in

terms of header of a given class or function template definition

may be very hard. In theory, the expectation is that the standard

header files contain the definition for data structures, functions

and other programming units but in practice they do not. The

C++ Standard specifies that the vector header has to provide

definition for vector type, but it does not specify that the

definition of vector has to be placed in vector header. As

previous examples depict that the header inclusion mechanism

is transitive, so if a.h includes b.h and b.h includes c.h, then

the a.h also includes c.h.

However, the definitions may be separated into different

header files and these headers are included in the standard

header. This mechanism fulfills the requirements of C++

Standard, because if one includes vector in the source file

and vector includes vector.h that contains the definition for

vector class template, then vector class can be accessed

through vector header.

In some STL implementations header inclusion is used. That

makes hard to determine the symbols real place because during

the analyses the tool searches for a symbol, that it comes

from a.h, but we need that information which Standard header

functionality is implemented in this header. For example, in

libstdc++ the implementations mainly are in other ”internal”

header files, those are included by standard headers, e.g:

algorithm includes stl algo.h and stl algobase.h, which

contain the implementation of algorithms. So, need to track

these includes, to find their belonging standard header.

The tool can catch these internal headers, because they

are not defined by user, so they come from the system and

are not standard header files. In the dependency graph, the

belonging relation between the header file is marked with a

different kind of edge. For more precise result the belonging

relation in the graph should be corrected in analysing stage

that requires deep knowledge from the C++ Standard. This

mechanism can be used to determine which standard header

file’s functionality implemented in a system header. For ex-

ample, vector header has to provide std::vector, but it is

implemented in vector impl.h file, then the tool has to know

that the vector impl.h file implements a part of functionality

of vector header, so it belongs to the vector header.

c) Unused header indirect usage: The deletion of need-

less includes can cause problems indirectly, because they do

not contain any used declaration, but it can include other

header file that contains a declaration, which is used. In this

case, the tool has to detect dependencies between include files

and before a header file is suggested to be removed, it should

check this header file’s include dependencies and add the used

ones, if is not included by another header file.

d) Knowledge from C++ standard: The tool requires

information from the C++ Standard. Some of them are not

must have dependencies, but they can help to improve the

process. Many kinds of knowledge are required from standard,

to make analysis more precise.

• Header files: the tool has to determine whether a header

file is C or C++ standard file or it is not. The sys-
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tem header pragma usually helps to determine, that is

user defined or not, but more precise decision is nec-

essary. To be able to select standard header files, some

knowledge is required from the C++ Standard. Those

nodes which are standard header files should be marked

in the graph.

• Mandatory includes, this is a list of headers which have

to be included for each standard header file.

• Symbols: Symbols that are provided by standard header

files. This is a very large data collection and it has

collisions if we just check for names, for example in case

of function overloading. These symbols are used during

the visiting of AST to correct edges of these internal

headers in the graph. This is not mandatory but it results

in a more precise analysis.

C. High-level overview

In this part, a high-level overview will be depicted, how

the tool works and solves any issues. The tool analyses the

source code, thus execution of the code is not required. Also, it

needs to known the exact compiler arguments for the analysis,

for instance macro definitions. The build procedure usually

has many different parts, such as compilation, linking etc. To

follow this convention, the analysis can be separated into three

stages.

a) Preprocessing: First of them is preprocessing, when

the tool collects information about the include hierarchy. The

preprocessor is used for this task. In Clang, the compilation

process is very customizable, so someone can attach to the

preprocessor with callbacks. When the preprocessor catches

an include directive, the tool receives a callback to this event.

The header inclusion uses deep first search, so all information

about the include hierarchy of the processed translation unit

can be collected.

During the preprocessing a dependency graph is building

up that can be mapped to the origininal include hierarchy.

The nodes of the graph are the files and the directed edges

mean include relation between the two endpoints, the source

node includes the destination node. Also the nodes contains

additional information, that may be needed later, for example.

user defined header or not, part of Standard Template Library

or not, etc. In this graph, the relations between headers are

clear, we know for each file which other files includes and

which other files are included it.

Another important data is collected in this stage, macro

usage only can be gathered right here. With the macro usage

information the proper nodes are extended in the graph. At

the end of the preprocessing, this graph can be considered as

definitive, no one will extend the graph with any new node or

directed edge, but extra information can be added to nodes in

the next stage.

b) Analyzing: The second stage is the analyses of AST

and extract the necessary information from. After the pre-

processing, the dependency graph is done for a while, but

it may change in this stage. Right now, the preprocessed

source code has to be analyzed. The Clang will do every

parsing related task, for example tokenization, parsing, etc

and it builds up the abstract syntax tree from the source

code. Through Clang libraries, we just take advantage of its

architecture by creating visitor for abstract syntax tree. The

visitors support the walking on AST. Thus, using visitors,

all kind of declaration, expression or etc can be catched in

the code. After AST visiting, the graph is done and is not

be changed later. An example graph is depicted in Figure 1.

For reference, the circle nodes are STL related headers and

the rectangles are user defined or other system headers in the

graph.

c) Visitors: Two different visitors were used for different

purposes. One of them is for catching every usage place in

the user files of every possible function, class, typedef, macro

etc. A few number of properties is used from used symbols,

but the most important one is the location to know where

the symbol is and where it comes from. For each usage, the

corresponding node in the graph will be extended with what

symbol is used and where. Catching all symbols is necessary

to produce feasible output.

Another visitor is capturing definitions only from system

headers. This functionality is necessary to properly detect pri-

vate headers in the STL implementation. It watches definitions

of function, class, typedef etc. and if they are not in standard

header file, but their file is included by standard headers,

then corrections should be made in the graph. In case private

files will behave as standard header in the graph, because

they really implements features of standard header. This kind

of private header mapping and validation can be important

because popular STL implementations use private headers to

modularize their structure.

d) Graph analyzers: The last stage is the graph analysis.

The dependency graph is complete right now, the different

analysers can start their work to walk over the graph. The

graph analysers no not depend on each other, just visiting

the given graph. Every previously described issues are im-

plemented as a graph analyser, because they just seek after

erroneous parts in the graph independently from each other.

The Figure 2 depicts how the architecture looks like.

Different analyzers use different graph walking algorithms

to detect the targeted issue. STL internal hierarchy analyzer

walks over nodes which belongs to user defined files, checks

the used symbols and searches for routes between their headers

and the usage place. If there is no valid route, it creates a report

for that header file where the definition is placed. At the end,

it aggregates the results and removes duplicates.

In details, during the walking on nodes, the nodes are

marked as valid or invalid flag, this flag indicates that using

symbols from this file would be okay or not. The user-defined

files always are valid, because we try to detect issues related to

Standard Template Library. We can determine the routes from

usage location to the location of definition of the symbol. If

only routes are available which do not contain non standard

header file, then the usage of this symbol could be marked an

invalid.

For example: in main.cpp, std::vector is used in the
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Fig. 1: Dependency graph

Fig. 2: Graph analyzers

declaration of function foo and the std::vector definition

comes from vector header, so the routes from main.cpp to

vector header are searched from in the include hierarchy

graph. This seems to be reasonable because main.cpp includes

directly vector header.

main . cpp :

# i n c l u d e <v e c t o r>

vo id foo ( c o n s t s t d : : v e c t o r<i n t>& v ) ;

Listing 8: Vector usage sample

There may be multiple include directive paths to a file. In

this case, we have to aggregate them to set the flag correctly.

The used rule for aggregation is that, if there is a flow from a

file that is included by user-defined file or it is a user-defined

file then this inclusion is valid, otherwise it is not. In the next

example in Listing 9, the problem is explained.

main . cpp :

# i n c l u d e <map>

# i n c l u d e ” myheader . h ”

. . .

s t d : : p a i r <i n t , i n t > p ;

. . .

myheader . h :

# i n c l u d e <u t i l i t y >

. . .

Listing 9: Multiple path inclusion

In this example, there are two include directives for map

and myheader.h in main.cpp file, but somewhere in the file

the std::pair is used as type of variable. In myheader.h

file, there is only one include directive for utility. Just for

reference std::pair is defined in utility. However, map

and myheader.h file include utility too. Two paths exist

in the graph from main.cpp to utility that contain the

std::pair definition. In this example the node of utility

should be marked as valid because it is included through an

user header too.

D. Output format

The combination of functionalities results in a powerful

tool that can be used to analyse source codes for detecting

portability issues and unnecessary includes, which increase the

compilation time. The tool at the end of the analysis need to

aggregate the results of three kind of analysis. The program
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has many filenames with used symbol names and usage place,

header files that are not used. The result of the analysis is

three lists, which contain header files:

• header files to be added as include and a file for each,

where you should be add

• header files which proposed to be removed and a file for

each, where they are right now

• C style standard header files with their current location,

e.g. stdlib.h

For example, check Listing 10 for sample code and Listing

11 for the output.

main . cpp :

0 # i n c l u d e < s t d l i b . h>

1 # i n c l u d e <a l g o r i t h m>

2

3 i n t main ( ) {
4 / / works w i th g++ 5 . 3

5 s t d : : v e c t o r<i n t > v ;

6 a b o r t ( ) ;

7 }

Listing 10: Sample

Add t h e s e i n c l u d e f i l e s :

v e c t o r ( main . cpp )

Remove t h e s e i n c l u d e f i l e s :

a l g o r i t h m ( main . cpp )

Swap t h e s e C i n c l u d e f i l e s wi th

t h e i r C++ v e r s i o n :

s t d l i b . h ( main . cpp )

Listing 11: Output of analysis

V. RESULTS

We have developed the described tool and the comprehen-

sive testing has been started. The tool finds all mistakes that

are presented in this paper as examples. All mentioned features

are implemented and the tool is able to detect portability issues

and needless includes.

During the development the tool was tested on open-source

projects to verify the prototype of software. Quite popular

open source projects were used for this testing. Different

characteristics projects were selected for testing purposes,

some of them are library and some of them are standalone

application that provides solution for a given problem. Their

programming style differs from each other, that makes the

testing more complete. However, the size of projects is not

so large, about many ten or hundred thousand lines of code,

but enough to analyse them with our tool. Every found bug

required to check manually to verify if it is really a bug that

process takes much time. The complete list of the analysed

projects:

• Tinyxml2, https://github.com/leethomason/tinyxml2

• Json for Modern C++, https://github.com/nlohmann/json

• Bloaty, https://github.com/google/bloaty

• Guetzli, https://github.com/google/guetzli

• Yaml-cpp, https://github.com/jbeder/yaml-cpp

• Flatbuffers, https://github.com/google/flatbuffers

• Orc, https://github.com/apache/orc

To analyze projects, the tool requires exact compiler in-

vocations for each translation unit. These are stored in a

json formatted file called compilation database1. Compilation

database contains a section for each translation unit that

describes how it was originally compiled. The sections have

three fields:

• directory: directory of file

• command: the exact build command

• file: name of the compiled file

For instance, see Listing 12.

[

{
” d i r e c t o r y ” : ” / tmp ” ,

”command ” : ” c l a n g ++ / tmp / main . cpp ” ,

” f i l e ” : ” / tmp / main . cpp ”

}
]

Listing 12: Compilation database

These can be produced by capturing the build execution

of project or can be generated by some build systems.

There are a few software products that can capture build

flow and some build systems can generate it by default,

e.g. CMake can generate compilation database if you pass

CMAKE_EXPORT_COMPILE_COMMANDS parameter.

For testing purposes, to make this process easier, an executor

script has been developed that parses compilation database

json files and analyses every source file that with our analyzer

tool. It analyses the source files with given compiler options

and writes the output of tool into files on the disk. It makes

analysing of projects and evaluating the results easier.

The previously described issues were searched for, porta-

bality problem caused by taking advantage of internal STL

hierarchy, unused header files, legacy C header file usage. In

this the test phase, several open-source projects were analysed

by our tool. The libc++2 STL implementation was used to

analyse projects. The results of analyses are depicted on Table

I. The first column means the STL internal hierarchy usages,

second means unused header count, and the third one means

the C header usage in legacy style.

TABLE I: Results

STL Unused C

Tinyxml2 0 0 1

Json for Modern C++ 0 3 0

Bloaty 3 9 14

Guetzli 2 4 34

Yaml-cpp 1 16 2

Flatbuffers 0 3 7

Orc 4 8 20

1https://clang.llvm.org/docs/JSONCompilationDatabase.html
2https://libcxx.llvm.org/
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As it can be seen, the hits by different issues are not same.

The STL internal hierarchy usage issue were found in a few

number of cases. Unused headers and C header usage have

been found in a large number. The distribution of hits is not

equal for each projects, some of them has many unused header

and some of them has any other issues. To conclude this

section, real issues were found in real open source projects,

that proves that the tool can catch them. However, there were

some false positive reports, but they have been fixed in the

software and not counted in results.

VI. RELATED WORK

The analysis of C++ programs is quite popular these days,

thus this is not the first tool which target to analyse the include

dependency in any kind of way.

One of them is Include-what-you-use (IWYU) [22] tool

from Google that is an open source project 3. It analyses

the include hierarchy as well, but it is different in regards of

purpose of the tool compared to our. It generally suggests to

include header file which provides the symbols that one uses

in the source files. It aims to detect places where one does

not include the header file which provides the given symbol.

The similarity with our tool is both of them can detect unused

headers but it comes from behaviour of the tools.

However, our tool tries to find several kind of portability

issues along with unused headers in the include dependency.

VII. CONCLUSION

In this paper we have introduced subtle issues in the C++

Standard Template Library that cause portability issues. To

overcome this kind of portability problem, we have created

a tool to detect portability issues in the include hierarchy of

Standard Template Library. Deep knowledge is required from

the C++ Standard about the STL header files to detect this

kind of mistakes, mainly how they include each other and

what they need to provide by definition.

This tool is based on Clang library that is the most appro-

priate technique to create new kind of analysis tools for C

and C++ nowadays. It is a command line tool, so it analyzes

the source code and prints out the result, where one can fix

and improve the implementation. Also, it is able to determine

whether a header file is not used in a translation unit. It is

implemented as an extra feature with minimal cost, but it is

very useful feature of this tool. The tool has some impressive

results, it is tested on open source projects.
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