

Abstract—The paper is devoted to the utilization of DEMO

enterprise ontology (Design & Engineering Methodology for

Organizations) for refactoring purposes in software

development. The main contribution of the paper resides in

presentation of the method which interconnects ontological

models of business processes with information system features

implementation. Also, it allows the evaluation of their relevancy

for enterprise. In contrast to other methods based on best

practices, the proposal uses ontological description of business

processes defined upon the theory in DEMO methodology. This

makes the proposal unique compared to other approaches.

Moreover, it provides a clear differentiation of features which

are important for performing tasks by employees in company.

I. INTRODUCTION

ENERALLY, information systems (IS) provide

information for task execution of many entities living

in enterprise. Nevertheless, development of information

systems is very prone to errors and challenges during its

whole lifecycle. As a company develops in time and changes

its internal rules and roles, information systems may tend to

get old and some features do not fit to company needs. This

fact often leads to refactoring, whereas developers are not

able to satisfy user requirements due to limitations of the

current implemented solution.

 There are many techniques adopted by agile approaches

how to gather and define user requirements for refactoring of

information systems. Rational Unified Process uses Use

Cases and scenarios to control the development process to

ensure that requirements are always in first place (Use Case-

driven approach). This technique visualizes a relationship

only between an actor and the system without any other

context (e.g. transactions, non-functional requirements) and

this technique fits well for bigger information systems.

Requirements gathering process in current methodologies

(Scrum, Kanban) still relies on a one-way confirmation and

inherently cannot provide instant automated feedback during

software development. These methodologies have only one

kind of feedback – user acceptance testing, in most cases

performed manually by testers. BDD (Behavior-Driven

Development) technique allows to get automatic feedback

and works well with a declarative approach. Using

a declarative approach to describe business contracts can be

found in [7] and authors use finite automata theory to

simplify a relationship between elements. In another paper,

authors use XML as a data source and brings a new

extension to Courteous Logic Programs [8]. There are also

attempts to use a semantic driven approach for user

requirements verification [11]. However, this approach lacks

the necessary verification. Some research tries to define a

link between data mining and business process management

[9]. This paper specifically points to the fact that constraints

are described by a declarative process model. Authors also

state that is possible to discover this model based on event

data. However, if all states are not presented on the model

(typically if unknown information system is being built

without best practices), the correct technique is still missing

to determine all states in small and middle size systems. A

fully ontological approach can be found in [10] to access

generic data source. In comparison, the DEMO methodology

utilizes theoretical foundations to describe business

processes, which makes this approach unique compared to

the above mentioned approaches because they are mostly

based on best practices.

The combination of BDD technique and DEMO

methodology allows to link ontological descriptions of

business processes directly to production code with the

possibility of testing automation in a continuous integration

process. Interconnection of information system features and

coordination or production acts makes possible to determine

which features of the information system can be removed,

newly implemented, or refactored according to ontological

descriptions derived upon DEMO methodology. Thanks to

this fact, a new method is presented. It identifies features of

information systems which are important for the execution

of coordination and production acts performed by employees

in companies.

II. TRANSACTIONS IN DEMO METHODOLOGY

DEMO methodology [3] defines an organization as

a composition of people (social individuals) that perform

two kinds of acts – production and coordination acts. The

result of successfully performing a production act is a

G

 Identification of Business Relevant Features in Information

Systems
 Jiri Matula, Jaroslav Zacek

University of Ostrava,

Faculty of Science, Dvorakova 7,

Ostrava 701 03, Czech Republic

Email: {jiri.matula,

jaroslav.zacek}@osu.cz}

Position papers of the Federated Conference on

Computer Science and Information Systems, pp. 153–159

DOI: 10.15439/2017F366

ISSN 2300-5963 ACSIS, Vol. 12

c©2017, PTI 153

production fact. An example of a production fact may be that

the package that has been delivered has been paid, or offered

service has been accepted. All realization issues are fully

abstracted out. Only the facts as such are relevant, not how

they are achieved. The result of successfully performing

a coordination act is a coordination fact. Examples of

coordination acts are requesting and promising a production

fact. Coordination and production acts and facts are arranged

into a transaction pattern.

Fig. 1 Basic transaction pattern. Source: [3]

Transaction pattern states that there are always two roles

in a transaction, initiator (customer) and executor (producer).

Initiator is someone who has a request and executor is

responsible for fullfilling initiator needs. More detailed

explanation of transaction pattern is depicted in the Fig. 2.

White rectangles represents coordination acts, white rounded

rectangle is used for coordination fact. Production act is

depicted as grey rectangle. Gray rounded rectangles stands

for production fact. The lifespan of every transaction has

three phases – order (proposition), execution and result

phase.

In the order phase, the initiator and the executor work to

reach an agreement about the intended result of the

transaction, i.e., the production fact that the executor is

going to create as well as the intended time of creation. In

the execution phase, this production fact is actually brought

about by the executor. In the results phase, initiator accepts

or rejects result (production fact) of the transaction [3].

According to DEMO methodology, it is possible to

analyze gathered text descriptions of business processes of a

company and extract transactions which represent

ontological essence of the enterprise [6]. These transactions

can be served as a source of information for revising features

during refactoring process and they also form the theoretical

basis which is implemented using BDD technique.

Consequently, these specifications can be executed via DSL

languages (Domain Specific Language) like Cucumber,

Behat, etc.

III. CONVERSION OF TRANSACTIONS TO BDD SCENARIOS

The BDD technique which has been developed from the

test-driven development technique utilizes principles of user

stories and test-driven development approach [2]. User

stories typically follow this recommended template.

As a <type of user>, I want <some goal> so that

 <some reason>.

Fig. 3 User story template. Source: [1]

At the same time, user stories technique is the foundation

stone for the BDD testing scenario template, which is

observable from a comparison of user story template above

and BDD scenario template below.

Fig. 2 Detailed view of transaction pattern. Source: [3]

154 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017

Feature [title]

In order to [benefit]

As [role]

I want [feature]

Scenario: [title]

Given [context]

And [some more context]

...

When [an event occurs]

And [a further event]

…

Then [outcome]

And [another outcome]

...

Scenario: [title]

…

Fig. 4 Standard BDD scenario template

Fig. 5 Composition of BDD scenario

A previously mentioned fact is that user stories are part of

BDD scenario template give an opportunity to apply

modified version template into a BDD template scenario. In

the context of user stories in the form of transactions,

proposed modified version of template for BDD scenario

looks as following.

As an <initiator/executor>, I perform a

coordination/production act in <transaction> so that

<result of transaction>.

Fig. 6 Modified template for user story. Adapted from: [4]

The role has been replaced for executor or initiator who

takes a part in the transaction. Scenarios describe the

business situation with the aim to fulfil business goals

denoted as outcomes of transactions. All scenarios must

respect user story given in the feature description.

Modified template structure starts with a feature title

which is linked to related transaction unique ID. After

feature identification, it is necessary to perform the next step

– the outcome of the transaction – which is going to be

fulfilled when the transaction is completed. So far, context

for coordination/production act is defined and follows

a transformation text description of coordination or

production act into the form of BDD scenarios. The scenario

part should have covered all possible situations during the

execution of the coordination/production act. All

transformed coordination/production acts into BDD

scenarios must have its reference in gathered text

descriptions of business processes. Every

coordination/production act must result in

coordination/production fact.

Feature [title] – [transaction ID]

In order to [coordination/production fact]

As [initiator/executor]

I want to perform coordination/production act in

[transaction]

Scenario: [title]

Given [context]

And [another context]

...

When [an event occurs]

And [another event]

...

Then [result – coordination/production fact]

...

Scenario: [title]

…

Fig. 7 Modified BDD scenario template. Adapted from: [5]

As an explanatory case is used a company where the

messenger (executor) delivers packages to their customers.

A company (initiator) usually comes with a request to

perform a delivery. The initiator and executor performs

coordination and production acts in order to deliver a

package. These coordination and production acts are

expressed in the scenario part of the modified BDD

template. Messenger’s daily schedule includes the list of the

addresess where is necessary to make a delivery. The

messenger picks the closest customer and asks about his

availbility. When customer approves the delivery, the

messenger plans a route to the destination and delivers a

package. According to proposed concept the BDD scenario

looks as following:

Feature Package delivery – T01

In order to deliver a package.

As messenger (executor)

I want to plan route to destination

Scenario: Planning route to destination

Given I have a list of addresses scheduled for

today

When I choose the closest address for the delivery

Then I can find the optimum route to destination

via Google Maps

Fig. 8 Example of BDD scenario according to modified template

JIRI MATULA, JAROSLAV ZACEK: IDENTIFICATION OF BUSINESS RELEVANT FEATURES IN INFORMATION SYSTEMS 155

BDD methodology itself does not strictly recommend how

to specify user story for feature description. For the modified

approach only one proper definition exists of user story

represented by complement transaction composed into BDD

scenario. This determines context for the scenarios given in

feature description.

BDD scenarios can be validated against production code.

They ensure that production code follows activities in

company business processes. Also, BDD scenarios are

executable and its verification is possible with every

upcoming change of information system within continuous

integration. The example from Behat framework for the

previous BDD scenario is depicted in the Fig. 9.

Feature: Package delivery – T01

In order to deliver a package.

As messenger

I want to plan route to destination

Scenario: Planning route to destination

#features/planning.feature:6

Given I have list of addresses for scheduled for today

#FeatureContext::iHaveListOfAddressesForScheduledF

orToday()

When I choose the closest address for the delivery

#FeatureContext::iChooseTheClosestAddressForTheDe

livery()

Then I can find the optimum route to destination via

Google Maps

#FeatureContext::iCanFindTheOptimumRouteToDesti

nationViaGoogleMaps()

1 scenario (1 passed)

3 steps (3 passed)

0m 0.01s (9.55Mb)

Fig. 9 Output from Behat testing framework after execution of story

derived from DEMO transaction

IV. METHOD FOR IDENTIFICATION OF BUSINESS RELEVANT

FEATURES

DEMO transactions and BDD scenarios are foundation

stones for the proposed method which evaluates relevancy of

information systems features. Each step of the method in the

list below will be explained in this chapter.

The method includes following tasks:

1. Identification of transactions according to DEMO

methodology.

2. Convert identified transactions into the form of

BDD scenarios.

3. Map BDD scenarios to current implementation of

features.

4. Identify supported and unsupported coordination

and production acts by the information system.

5. Identify features of IS to be removed or refactored

due to inconsistency to its ontological description.

As an explanatory case is used a brief description of

existing company in the Fig. 10.

The company supply of electricity for customers and offers

“smart measuring” service which makes them a possibility

to monitor the consumption of electricity online. Customers

have provided the information system which reports

electricity consumption and savings for each period

(T01). Measuring devices broadcast consumption data. This

data is stored to database (C01).

At the beginning, a client contacts the company and

salesman gives to a potential customer a detailed overview

about offered services (C02). When a client signs a

contract (T02), contract details are entered into the IS

(C03). Consequently, manufacturing of devices is requested

(C04). The device manufactory department has their own

employees and stock of material. Upon the contract, device

arrangements are complemented (T03). Once devices are

prepared to expedition, the service department is notified

about necessity of installation contracted devices (C05).

Firstly, installation place is examined by technician who will

decide whether installation is feasible (C06). After that,

installations of appliances are planned (T04). Planning of

appliance installation is a complex process which considers

availability of company cars (C07), booking of

accommodation (C08), customer confirmation and skills of

technicians (C09). The manager also assigns a specific task

to technicians if the customer is available. Once the device

is installed (T05), a customer signs the montage sheet

(C10). When the installation of devices is confirmed (C11), a

new client is entered to information system (C12) and

contracted services starts to be billed (T06).

Fig. 10 Text description of company business processes

In the first step of procedure, several transactions have

been identified. In the Fig. 10, bold text refers to production

facts and blue italic to coordination and production acts.

Each transaction consists of coordination and production

acts.

• T01 – Consumption of electricity is reported for

each period.

• T02 – Client signed contract.

• T03 – Devices arrangements are complemented.

• T04 – Appliance installation is planned.

• T05 – Contracted devices are installed.

• T06 – Services started to be billed.

The second step requires conversion of transactions to

BDD scenarios. The case example for the transaction T04 is

depicted in the Fig. 11.

156 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017

Feature Package delivery – T04

In order to plan the appliance installation

As manager

I want to assign task to the technician

Scenario Outline: Task planning

Given manager has chosen <date>

And car is available on <date>

And technician has no others task on <date>

When customer confirmed availability on <date>

Then task is assigned to technician

Examples:

| date |

| 2017-05-06 |

| 2017-05-07 |

Fig. 11 Converted coordination act defined in the transaction T04

(Gherkin DSL language syntax)

In the third step, converted transactions into BDD

scenarios are mapped to production code. This is usually

done via frameworks like Cucumber, Behat and the others.

Authors recommend to follow instructions for the chosen

framework.

/**

 * @Given car is available on :date

 */

public function carIsAvailableOn($date)

{

assertEquals(true,

 $this->carpark->

hasAvailability($date));

}

/**

 * @Given technician has no others task

 * on :date

 */

public function

technicianHasNoOthersTaskOn($date)

{

assertEquals(true, $this->

technician->isAvailable($date));

}

/**

 * @When customer confirmed availability

 * on :date

 */

public function

customerConfirmedAvailability($date)

{

assertEquals($date,

$this->order->installDate);

}

/**

 * @Then task is assigned to technician

 */

public function

taskIsAssignedToTechnician()

{

 assertEquals(true, count(

$this->technician->tasks) > 0);

}

Fig. 12 Example of mapping of modified BDD scenarios to production

code (Behat framework implementation)

The fourth step identifies supported (green) and

unsupported (red) coordination and production acts by the

information system. Unsupported coordination/production

act means that it has no reference to any BDD scenarios

which have been successfully mapped in the previous step.

Result of the fourth step is depicted in the Fig. 13.

The company provides supply of electricity for customers

and offers “smart measuring” service which makes it

possible for them to monitor their consumption of electricity

online. Customers have provided the information system

which reports electricity consumption and savings for

each period (T01). Measuring devices broadcast

consumption data. This data is stored to database and

verified (C01).

At the beginning, a client contacts the company and

salesman gives to a potential customer a detailed overview

about offered services (C02). When a client signs

a contract (T02), contract details are entered into the IS

(C03). Consequently, manufacturing of devices is requested

(C04). The device manufactory department has their own

employees and stock of material. Upon the contract, device

arrangements are complemented (T03). Once devices are

prepared to expedition, the service department is notified

about necessity of installation of the contracted devices

(C05). Firstly, installation place is examined by technician

who will decide whether installation is feasible (C06). After

that, installations of appliances are planned (T04).

Planning of appliance installation is a complex process

which considers availability of company cars (C07),

booking of accommodation (C08), customer confirmation

and skills of technicians. Manager also assigns a concrete

task to technicians (C09). Once the device is installed

(T05), a customer signs the prepared montage sheet (C10).

When the installation of devices is confirmed (C11), a new

client is entered to information system (C12) and contracted

services starts to be billed (T06).

Fig. 13 Differentiation of supported and unsupported

coordination/production acts

Unsupported acts are listed for further investigation of

whether such acts could be automated or supported by

information systems. Thereby, highly relevant information is

JIRI MATULA, JAROSLAV ZACEK: IDENTIFICATION OF BUSINESS RELEVANT FEATURES IN INFORMATION SYSTEMS 157

discovered for development of future features to support

business processes in the company.

Summary of unsupported coordination/production acts:

• Request for device manufacturing.

• Providing information about offered services to

customer.

• Accommodation booking process.

• Notification about appliance installation.

• Making decision whether installation is feasible.

• Checking availability of cars in a company car

park.

• Preparation of montage sheet to be signed by

a customer.

The fifth step involves the identification of feature

specifications (user story, use case, etc.) which are not

included in any transaction. In other words, they have no

reference to user stories (coordination/production acts)

mentioned in mapped BDD scenarios. These features are

candidates to be either refactored or removed from the

information system. Unfortunately, this should be consulted

with product owner, or domain expert. Some functionalities

might be foundation elements for the information system, for

example user administration. Features which are included in

coordination/production acts defined in BDD scenario are

linked by identification number from the text description.

Feature specifications might differ from project to project.

Presented case uses user scenarios technique. The example is

depicted below.

• UC 1 Appliance installation evidence.

US 1.1 Customers [C12, C09]

US 1.2 Reporting from installation [C01]

• UC 2 Device management

US 2.1 Data broadcast testing [C01]

US 2.2 Remote reset [ref is missing]

• UC 3 Planning of appliance installations

US 3.1 Task planning [C03]

US 3.1.1 Customer confirmation [ref is

missing]

US 3.1.2 Technician skill evidence [ref is

missing]

US 3.2 Technician utilization overview [C09]

• UC 4 Announcements

US 4.1 News board [ref is missing].

US 4.2 Personal messages [ref is missing]

Fig. 14 Identification of business irrelevant features

V. DISCUSSION AND FUTURE RESEARCH

Ontological nature of transactions presumes an existence

of essential business processes. Hence, the proposed method

is suitable especially for development of software products

which supports business processes in companies. Once the

transactions became a part of BDD scenarios, it involves the

developer or analyst to understand purpose why the feature

is implemented. Also, it sets boundaries for the BDD

scenarios which are consequently linked to the existing

essence of the business.

The most important benefits of proposed approach:

1. Text descriptions for derivation of transactions are

humanly-readable, hence there is no problem to

have descriptions validated by employees in

company.

2. The method detects instantly which coordination

and production acts are supported by information

system.

3. Also, it finds useless feature which is possible to

remove or not maintain anymore.

4. Production code base, respectively features are

linked to ontological description of business

processes.

5. Instant feedback through automated testing.

Contrary, the method does not work well with the

development of software which is not going to support

business processes. Another problem is the fact that

companies evolve over time and change their business

processes. Therefore, text descriptions need to be updated as

development goes on. Consequently, it is necessary to

propagate modifications into scenarios and information

system to avoid technical debts. Unfortunately, this will

always stay up to responsibility of the company and software

developers.

The identification of feature relevance is one of the most

challenging part in the refactoring process, especially for

applications with huge technical debt, which desire radical

refactoring where is hardly possible to save all existing

features in order to settle technical debt quickly. In addition,

relevancy of features for business intentions is critical in

terms of further investments for already existing information

systems. Authors also work as software developers and due

to their experience, irrelevant features are not something that

rarely occur in the implementation of any information

system.

The presented method also discovered another important

finding. The action model defined in DEMO methodology

represents internal business rules for coordination and

production acts. Such business rules should be reflected in

the information systems. The example of action model

definitions is depicted below.

on stated T02(M,Y)

if <installation is feasible> ≥ accept T02(M,Y)

€not <installation is feasible> ≥ reject T02(M,Y)

fi

if <some other condition> ≥ reject T02(M,Y)

€not <some other condition> ≥ state T03(M)

fi

no

Fig. 15 Action model example

158 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017

These definitions are also executable. Nevertheless, the

question remains whether it is also possible to include them

into BDD scenarios and verify during software testing. This

will be an objective of further research.

VI. CONCLUSION

The main contribution of the paper resides in presentation

of method which interconnects ontological models of busi-

ness processes directly to information system features im-

plementation and allows to evaluate their relevancy for en-

terprise, whereby it provides a clear differentiation of fea-

tures which are or not important for performing tasks by em-

ployees in enterprise. This method could help to reduce the

technical debt of current information systems and identify

main endpoints and interfaces that are candidates for refac-

toring.

ACKNOWLEDGMENT

The paper was supported by the grant provided by Min-

istry of Education, Youth and Sport Czech Republic, refer-

ence no. SGS15/PRF/2017.

REFERENCES

[1] M. Cohn, User stories applied: for agile software development.
Boston: Addison-Wesley, 2004, pp. 31–41.

[2] J. F. Smart, BDD in action: Behavior-Driven development for the

whole software lifecycle. New York: Manning Publications Company,
2014, pp. 3–32.

[3] J. L. G. Dietz, Enterprise ontology: theory and methodology. New
York: Springer, 2006, pp. 16–31.

[4] J. Zacek, J. Matula, and F. Hunka, Context definition for BDD
scenarios upon DEMO methodology, 2nd International Conference on

Theory and Practice, Sia Pacific Institute of Advanced Research,
2016, pp. 164–169, ISBN 9780994365613.

[5] J. Matula, J. Zacek, and F. Hunka, Relevant User Stories by Using
DEMO Analysis, Proceedings of the 11th Scientific Conference

Internet in the Information Society, University of Dabrowa Górnicza,
Cieplaka, 2016. pp. 21 –30. ISBN 9788365621009.

[6] S. J. H. Van Kervel, Ontology driven enterprise information systems
engineering, 2012.

[7] M. Pesic and W. M. Van der Aalst, A declarative approach for flexible
business processes management, Business Process Management

Workshops, Springer Berlin Heidelberg, 2006, pp. 169–180.
[8] B. N. Grosof, Y. Labrou, and H. Y. Chan, A declarative approach to

business rules in contracts: courteous logic programs in XML,
Proceedings of the 1st ACM conference on Electronic commerce,

1999, pp. 68– 77.
[9] M. de Leoni, F. M. Maggi, and W. M. van der Aalst, An alignment-

based framework to check the conformance of declarative process
models and to pre-process event-log data, Information Systems, 2015,

pp. 258–277.
[10] M. G. Skjæveland, M. Giese, D. Hovland, E. H. Lian, and A. Waaler,

Engineering ontology-based access to real-world data sources, Web
Semantics: Science, Services and Agents on the World Wide Web,

2015, pp. 112–140.
[11] G. Gigante, F. Gargiulo, and M. Ficco, A semantic driven approach

for requirements verification, Intelligent Distributed Computing VIII,
2015, pp. 427–436.

JIRI MATULA, JAROSLAV ZACEK: IDENTIFICATION OF BUSINESS RELEVANT FEATURES IN INFORMATION SYSTEMS 159

