
Abstract—Mutation  testing  of  object-oriented  programs

differs from that of standard (traditional) mutation operators

in accordance to the number of generated mutants and ability

of tests to kill mutants. Therefore, outcomes of cost reduction

analysis  cannot  be  directly  transferred  from  a  standard

mutation to an object-oriented one. Mutant sampling is one of

reduction  methods  of  the  number  of  generated  and  tested

mutants.  We  proposed  different  mutant  sampling  criteria

based on equivalence partitioning in respect to object-oriented

program features. The criteria were experimentally evaluated

for object-oriented and standard mutation operators applied in

C#  programs.  We  compared  results  using  a  quality  metric,

which combines mutation score  accuracy  with mutation cost

factors. In result, class random sampling and operator random

sampling  are  recommended  for  OO  and  standard  mutation

testing,  accordingly.  With  a  reasonable  decline  of  result

accuracy, the mutant sampling technique is easily applicable in

comparison to other cost reduction techniques.

I. INTRODUCTION

AULT detection ability of a test suite can be measured

with assistance of mutation analysis [1]. After seeding a

fault into a program, its mutated variant - a  mutant is run

against tests. If any test detects a changed behavior of the

mutant, it is called to be killed by the test suite. Capability of

a test suite to reveal faults introduced through mutations is

expressed  by a  mutation score (MS).  It  is  calculated as a

ratio between the number of killed mutants and the number

of  all  non-equivalent  mutants.  A  mutant  is  said  to  be

equivalent with  the  original  program  if  its  behavior  is

identical and none test case can kill it.

F

Faults injected automatically into a program are specified

with  so-called  mutation  operators.  Standard  (traditional)

operators introduce simple changes in typical expressions of

general purpose languages.  According to experiments with

thousands of mutants on several C# programs [2], standard

mutation operators are not sufficient in dealing with flows in

object-oriented  program  structures.  Such  flows  can  be

served by OO and other specialized mutation operators. 

The major drawback of the mutation method is its high

cost because of executing many mutants against many tests.

There are many approaches trying to lower the mutation cost

that are based on decreasing a number of considered mutants

[1], [3], such as mutant sampling, selective mutation, higher

order  mutation,  mutant  clustering,  etc.  However,  due  to

different  characteristic  of  object-oriented  mutation,  their

benefits  could  be  not  necessarily  as  promising  as  for

standard  mutation  operators.  For  example,  mutation  score

accuracy for  mutation operator  selection was worse  about

few  to  10% for  OO  operators  in  comparison  to  standard

ones [4].

Therefore,  we  undertake  research  on  cost  reduction

techniques  with  OO  operators  applied  to  C#  programs,

including mutant sampling. In mutant sampling, test runs are

performed on a random subset of mutants  [5]. The subset

includes R% of all mutants, where  R is a parameter of the

method (sampling degree). In the opposite to other mutant

selection  approaches  [6],  none  of  mutation  operators  is

discarded.  Apart  from  this  simple  sampling  method,  we

proposed  and  experimentally  investigated  five  other

sampling  criteria  based  on  an  equivalence  partitioning

according  to  OO program structure.  The sampling  results

were evaluated using a quality metric [4] that approximates

a  tradeoff  between  the  mutation  score  accuracy  and  the

mutation cost in terms of mutant number and test number. A

unified  investigation  process  was  used,  which  helps  to

compare  results  of  different  programs  and  different  cost

reduction  methods,  as  mutant  selection  [4] and  mutation

clustering [7]. The main contributions of the paper are:

- proposal and evaluation of different sampling criteria,

- comparison of sampling in regard to OO and standard

mutation operators,

- quality analysis of mutant sampling results based on the

quality  matric  that  concerns  an  impact  of  a  number  of

mutants and a number of tests, 

Evaluation of Mutant Sampling Criteria in Object-Oriented

Mutation Testing 

Anna Derezińska
Warsaw University of Technology

Institute of Computer Science

Nowowiejska 15/16, 00-665

Warsaw, Poland

Email: A.Derezinska@ii.pw.edu.pl

Marcin Rudnik
Warsaw University of Technology

Institute of Computer Science

Nowowiejska 15/16, 00-665

Warsaw, Poland

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1315–1324

DOI: 10.15439/2017F375

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1315



 
 

 

- preformation of comprehensive experiments on mutant 

sampling with C# programs. 

This paper is organized as follows: the next Section 

describes mutant sampling methodology. Section III 

presents details about an experimental set-up and results of 

the experiments carried out. The final sections present 

related work and conclusions.  

II. MUTANT SAMPLING  

In this section, we present methodology on which 

experiments were based: different criteria of mutant 

sampling, a flow of the investigation process, and how 

results are evaluated with a quality metric. 

A. Mutant Sampling Criteria 

Mutant sampling was proposed by Acree [8] and Budd 

[9]. In a simple mutant sampling approach, a subset of 

mutants is randomly chosen from a defined set of mutants 

[5]. It will be referred as the first sampling criterion.  

While taking into account a structure of an object-

oriented program, different sampling criteria can also be 

proposed. The idea behind these sampling criteria is to 

divide a set of all mutants into disjoint partitions, i.e. 

equivalence classes. Then, random selection refers not to 

the whole mutant set, as in the fully random sampling, but 

some mutants are selected from each partition. In this way, 

each partition is represented in a reduced set of mutants. 

The criteria differ in the way such partitions are constituted. 

This general idea is analogous to the equivalence 

partitioning-based testing [10], in which selection of tests 

from different partitions assures a test coverage for all 

partitions. In this paper, the following sampling criteria 

have been investigated (R denotes a sampling degree): 

1. fully random - R% of mutants is randomly chosen from 

the set of all mutants, 

2. class random - random selection of mutants is equally 

distributed for all classes, i.e. for each class R% of its 

mutants is chosen, 

3. file random - random selection of mutants is equally 

distributed for all files of the source code, for each file 

R% of its mutants is chosen, 

4. method random - random selection of mutants is equally 

distributed for all methods of the source code, for each 

method R% of its mutants is chosen, 

5. mutation operator random - random selection of mutants 

is equally distributed for all mutation operators, i.e. for 

each operator R% of mutants generated by this operator 

are randomly chosen, 

6. namespace random - random selection of mutants is 

equally distributed for all namespaces of the source code, 

for each namespace R% of its mutants is chosen. 

It should be stressed that the fifth criterion, mutation 

operator random, is not equivalent to the selective mutation 

[6]. In the mutant sampling according to this criterion, we 

use subsets of mutants generated by each considered 

mutation operator; whereas in the selective mutation all 

mutants generated by specified operators are used and 

mutants of remaining operators are discarded. 

B. Investigation Process 

The experiment under concern investigates influence of 

the sampling criteria and their parameter, i.e. an amount of 

percentage of chosen mutants, on mutation results. 

A prerequisite of the investigation process is generation 

of all first order mutants for a given program using a 

considered set of mutation operators. This set of all mutants 

will be denoted as MAll. Afterwards, all mutants are run 

against all tests from a given pool (TAll). Mutation results 

are referred as positions in a mutant execution matrix, 

where a pair <mutant m, test t> evaluates to an outcome 

whether the mutant m was killed by the test t or not. 

After having tested all mutants with all tests, we can 

determine a reference mutation score (a ratio of killed 

mutants to nonequivalent). This measure called here 

original mutation score MSorig= MS (MAll, TAll) is calculated 

using the mutant execution matrix. The value of MSorig is 

treated as the most accurate MS of the process but obtained 

in the most costly way - using many mutants and tests. 

C. Minimal Test Sets 

A research question is whether mutant sets reduced by 

sampling are efficient in assessing the quality of all tests. 

Therefore, using a concept of minimal test sets we refer 

results of reduced sets to those of all possible mutants. 

Minimal test sets have the same ability of killing mutants 

and its notion can be explained in the following way.  

Let assume that MX is a subset of all considered mutants 

MX
  MAll that satisfies the following condition: if all tests 

from a given test pool TAll are used, this subset determines 

the maximal mutation score MSXmax= MS (MX, TAll). 

However, it could be possible to obtain the same mutation 

score using a smaller number of tests than |TAll| (where |S| 

states for the cardinality of set S). A subset of all tests Tj 
  

TAll  is a minimal test set in accordance to MX if evaluation 

of mutation results of tests from this set gives the maximum 

mutation score MSXmax = MS (MX, Tj). Moreover, this test 

set includes the minimal number of tests, i.e. none of its 

tests could be omitted. In further steps of the process, we 

investigate if such minimal test sets are able to kill mutants 

from the whole mutant set MAll. 

In general, many different minimal test sets for MX  can 

exist giving the same mutation score. All minimal test sets 

can be effectively generated using the prime implicant of a 

monotonous Booolean function [11]. 

D. Process Steps 

After a mutant execution matrix has been evaluated, 

results for different sampling criteria and different sampling 

1316 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



 
 

 

degree R are calculated. The following steps are executed 

for a given pair of parameters (criterion, R): 

C1) Based on a given sampling criterion and a selected 

sampling degree R, a subset of all mutants is determined: 

MC1  MAll. This subset includes all mutants (if R=100%) 

or a proper subset (for a lower sampling degree).  

Then, we can calculate the mutation score that would be 

obtained running mutants from this subset against all tests 

from the considered test pool: MSC1max= MS (MC1, TAll). 

This mutation score will be called the maximum mutation 

score for the set MC1. 

C2) According to the maximum mutation score for the 

set MC1 we create a collection L that includes minimal 

subsets of tests sufficient to obtain MSC1max. The collection 

contains all minimal test sets determined by MC1 or a 

limited number of such tests. A maximal cardinality of the 

collection - TestSetLimit is an experiment parameter.  

C3) Mutation scores are calculated for each minimal test 

set comprised in collection L and the set of all mutants MAll: 

MSC3j= MS(MAll,Tj),where  Tj L, j=1..|L|. 

C4) An average mutation score is determined taking into 

account mutation results of all components of L calculated 

in the previous step. We also compute an average number of 

tests over all minimal test sets included in L. 

D) The steps C1)-C4) are repeated many times with the 

same sampling parameters in order to get different random 

statistics. Using average values obtained in consecutive 

steps C4), the final average mutation score MSavg and the 

average test number NTavg are calculated over the number of 

sampling repetition runs. 

Finally, the whole process is recalculated for other values 

of sampling parameter R and other sampling criteria.  

All average values mentioned in the process description 

are calculated as an arithmetic average. 

It should be noted that the process described in this 

section requires generating and running all mutants against 

all tests from a given test suite. However, the process is for 

research purposes. In a practical mutant sampling, only a 

subset of mutants is run against tests. Furthermore, not all 

mutants have to be generated. It is possible to generate a 

randomly selected subset of mutants according to a given 

sampling criterion. Moreover, this facility can be easily 

incorporated into existing mutation tools.  

E. Metric-Based Quality Evaluation 

Comparison of different approaches to cost reduction of 

mutation testing should take into account a tradeoff between 

benefits and possible shortcoming of a method. Benefits can 

relate to a lower number of mutants that have to be 

generated and run in tests. Another advantage could be a 

reduced number of tests used in test runs of mutants. 

However, application of cost reduction methods can cause 

decline of mutation score adequacy in comparison to the 

one obtained using all mutants and more tests. Therefore, 

we proposed a quality metric [4] that can be adjusted for 

balancing these factors in study on cost reduction.  

The metric depends on three components (Eq. 1). Each 

component is a normalized variable multiplied by a weight 

coefficient. The whole metric is a normalized sum of the 

components. Assuming a given sampling criterion, values 

of variables and the whole metric are normalized over their 

data set calculated for all values of a sampling parameter R. 

))(*)(*)(*(),,( MMTTMSMSMTMS ZIWZIWSIWIWWWEQ 

 (1) 

The weight coefficients WMS, WT, WM  determine an 

impact of particular variables into the quality measure. The 

sum of coefficients must be equal to 1. A normalization 

function is denoted by I(). Three variables approximate the 

following measures: 

─ SMS  - a loss of mutation score adequacy in an 
experiment, 

─ ZT  - a cost decrease due to a reduced number of tests 
required for killing mutants in an experiment, 

─ ZM - a cost decrease due to a reduced number of mutants 
considered in an experiment. 

The variables in mutant sampling experiments were 

calculated according to the following formulae (Eq. 2). 

origavgMS MSMSS /
  (2) 



 





 



0

|)|/|(|1

0

|)|/(1

1 AllC

M

Allavg

T

MM
Z

TNT
Z

       otherwise

otherwise

 0|| if

 0 if

1 



C

avg

M

NT

 

Where symbols MSavg, MSorig, NTavg, TAll, MC1 and MAll  

have the same meaning as in the process description. 

While examining quality results with respect to different 

sampling criteria and different sampling degree R, we are 

looking for a “good randomization mode”. The idea behind 
this notion is selection of promising sampling criteria and 

values of R towards generalization of results. For a given 

sampling criterion, we can analyze the quality metric as a 

function of a parameter R and observe maxima of the 

function. A good randomization mode should meet two 

following requirements: 

Unambiguous maximum - we would like to avoid two 

situations: first - when increase in the number of randomly 

selected mutants (increase in R) gives the quality measure 

of the same high value (close to 1), and second - when there 

are several local maxima. The first situation would imply 

that taking more mutants we do not benefit in the mutation 

testing process. The second case corresponds to an 

ambiguous situation, where a quality measure does not 

monotonously depend on a sampling degree.  

ANNA DEREZINSKA, MARCIN RUDNIK: EVALUATION OF MUTANT SAMPLING CRITERIA IN OBJECT-ORIENTED MUTATION TESTING 1317



 
 

 

Repeatability - the maximum should be independent of a 

program. It means that quality metric EQ calculated for a 

given sampling criterion should reach its maximum within 

the similar range of parameter R for each project.  

III. RESULTS AND DISCUSSION 

In this section we describe the experimental set-up and 

discuss outcomes of our mutant sampling experiments.  

A. Experimental Set-up 

Experiments were conducted on the following open-source 

C# programs corresponding to different software 

engineering tools:  

1. Enterprise Logging. 
2. Castle (modules Castle.Core, Castle.DynamicProxy2, 

CastleMicroCernel and Castle.Windsor).  
3. Mono Gendarme.  

The programs were companioned with unit tests. The 

tests were partially originated from the source projects and 

partially developed in order to improve code coverage. The 

basic complexity measures of the programs, the number of 

code lines and the number of classes and interfaces, as well 

as obtained coverage results are summarized in Table I. 

The experiments were conducted using the CREAM tool 

(CREAtor of Mutants) devoted to mutation testing of C# 

programs [12],[13]. Apart from the support of the typical 

mutation testing process, the third version of the tool 

facilities experiments on cost reduction methods [4]. The 

tool is extended with a wizard that assists in performing 

experiments on mutation operator selection, mutant 

sampling and mutation clustering. Having created all 

mutants and performed all test runs, the mutation results 

are evaluated according to a given investigation process. 

Then the quality metrics are calculated and analyzed.  

The experiments have been performed and their results 

evaluated under to the following assumptions: 

─ Mutation operators - in experiments first-order mutants 
were created with use of all object-oriented (18) and all 
standard (8) mutation operators implemented in CREAM 
v.3, including all standard mutation operators proposed 
to be selective [6].  

─ Covered mutants - only mutants covered by tests were 
taken into account in evaluation of the mutation score. 
CREAM has an option to generate only covered mutants 
if required. We checked that none of uncovered mutant 
of these programs was killed by any tests from TAll. 

─ Independent analysis for mutation operator categories- 
evaluation of experiment results was performed 
independently for object-oriented and standard mutation 
operators. In the OO analysis, the set MAll corresponds to 
all mutants of a given program generated with all OO 
operators. In the latter case, all standard mutation 
operators are considered.  

─ Sampling criteria - experiment results were evaluated 
independently for six sampling criteria (Sec. II.A). 

─ Sampling parameter - for every sampling criterion, 
parameter R was equal to 5%, 10%, 15%, …, 100% in 
consecutive experiments. 

─ TestSetLimit - the number of minimal test sets considered 
in each collection L was bounded by 15 sets (see step C2 
in Sec. II.B). 

─ Sampling repetition number - for a given program, a 
selected sampling criterion and a given sampling 
parameter R, each sampling was repeated 10 times 
(compare point D in Sec. II.B). 

─ Quality metric coefficients - quality metric was 
calculated with weight coefficients WMS, WT, WM equal to 
0.6, 0.2, 0.2, if not stated elsewhere. These values are 
interpreted in the following way: mutation score accuracy 
amounts to 60% in the quality metric whereas the 
number of mutants and the number of tests amounts per 
20% each (Sec. II.C). 

─ Normalization - metric variables SMS , ZT , ZM, and the 
whole quality metric were normalized over the data set 
calculated for each sampling parameter value, i.e. 5%, 
10%, 15%, …100%. 

During a preliminary step, all mutants were generated 

and run with all tests. The basic outcome of the mutation 

testing of the subjects is given in Table II. Mutants that 

were not killed might be equivalent, i.e. not to be killable by 

any tests, although CREAM tries to prevent from 

generating equivalent mutants. After manual examination 

some mutants were determined being equivalent. The last 

column shows the original mutation score MSorig (i.e. 

covered mutants not recognized as equivalent divided by 

killed mutants). Those values were used as a reference in 

evaluation of mutant sampling.  

A. Evaluation of Mutant Sampling Results 

Evaluation of results stored in the mutant execution 

matrix was performed according to the investigation process 

presented in Sec. II.B. Experiment results are given in three 

tables (Table III, Table IV, Table V) for each considered 

project, accordingly. They present average mutation scores 

obtained for different sampling criteria and different values 

of the parameter. A mutation score was computed as 

TABLE I. 

PROGRAM METRICS 

No LOC Classes & 

Interfaces 

Line 

coverage 

[%] 
with 

tests 

without 

tests 

with 

tests 

without 

tests 

1 87552 57885 991 587 82 

2 54496 41288 724 493 77 

3 51228 25692 907 171 87 

Sum 193276 124865 2622 1251  

1318 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



 
 

 

percentage of killed mutants versus all generated mutants 

MAll. Mutants were killed using minimal sets of test cases 

determined for randomly selected subset of mutants. The 

mutation scores given in the tables are average values 

calculated over all random runs MSavg (p. D in Sec. II.B). 

Due to brevity reasons, only results for selected R values are 

shown in the tables.  
Analyzing the mutation results in dependence of the 

random sampling degree R, we can observe that even a 

small decline in number of mutants (R=95%) resulted in the 

lowering of the mutation score. However, when numbers of 

selected mutants are considerably high, deviation of the 

mutation score from the original value is quite small.  

We calculated quality metric EQ, which took into 

account not only the mutation score but also two remaining 

quality factors (number of mutants and number of tests). In 

general, values of the quality metric are small for the low 

number of selected mutants (low R) because the mutation 

score is inaccurate. On the other hand, the quality is also 

not maximal (lower than 0.99) for the highest R, as in this 

case the number of mutants is the biggest. The tradeoff 

between the quality factors is represented by the maxima of 

the quality results.  

Quality metric flow in dependence of increase in the 

sampling parameter R is presented in the Appendix. The 

results of object-oriented mutation operators are shown in 

Fig.1-Fig. 6, and of standard operators in Fig. 7 - Fig. 12. 

For each kind of mutation operators, six diagrams are 

shown, which correspond to different sampling criteria. 

Three lines in any diagram represent different subject 

programs. In respect to the sampling parameter, the 

diagrams cover subsets of results, i.e. parameter R varies 

from 20% to 75% for OO operators, and from 15% to 60% 

in case of standard operators. The selected scopes of the 

parameter give a chance to observe maxima of the quality 

metric and consequently interpret the results.  

Based on the idea of “a good randomization mode” 
introduced in Sec. II.C, we specify its requirements in a 

quantitative way: 

Unambiguous maximum - we discard situations when EQ 

is of the same high value (>0.9975) for the increase in R or 

there are several local maxima for EQ above 0.99. 

Repeatability - Maximum of quality metric EQ (equal 1) 

calculated for a given sampling criterion should be similar 

for each project, i.e. the appropriate value of parameter R 

should be the same or differ only ±5% of mutants.  

Taking into account the above requirements, we analyzed 

the results independently for the object-oriented and 

standard mutation operators.  

For OO operators, selection of mutants in a fully random 

way (1) or according to namespace (6) does not meet both 

requirements. The first requirement is also not fulfilled for 

the file random (2) and mutation operator random (5) 

criteria. Only the remaining two criteria, class random and 

TABLE III. 

AVERAGE MUTATION RESULTS (MS IN [%]) OF MUTANT SAMPLING FOR ENTERPRISE LOGGING 

R 

[%] 

(1) Fully random (2) File random (3) Class random (4) Method 

random 

(5) Operator 

random 

(6) Namespace 

random 

OO St OO St OO St OO St OO St OO St 

5 27.7 50.5 22.4 47.1 20.1 46.4 18.8 41.4 27.2 49.3 28.6 49.5 

10 37.8 57.9 34.7 54.4 34.3 54.2 29.7 51.0 36.0 56.7 35.6 56.2 

20 44.7 63.2 44.0 61.3 44.0 61.5 41.2 60.7 45.6 62.8 46.7 63.0 

30 51.2 65.6 49.0 64.4 49.2 64.8 46.9 64.2 50.0 65.9 50.6 65.4 

40 53.7 67.2 52.8 67.3 53.1 66.4 50.3 66.0 53.8 67.5 54.0 66.9 

50 55.8 68.4 55.3 68.1 55.9 68.5 54.2 67.5 56.4 68.4 56.3 68.4 

60 57.7 69.3 57.0 68.7 56.8 68.7 55.4 68.2 57.6 69.2 57.7 69.0 

70 59.1 70.0 57.9 69.3 57.9 68.9 56.2 68.4 58.9 69.8 59.1 70.0 

80 60.1 70.3 58.9 69.6 58.5 69.3 56.9 68.9 60.0 70.2 59.8 70.2 

90 60.9 70.6 59.4 69.8 59.2 69.5 57.4 69.1 60.9 70.6 60.7 70.5 

95 61.5 70.8 59.6 70.1 59.2 69.7 57.4 69.2 61.3 70.8 61.2 70.6 

100 61.8 70.9 61.8 70.9 61.8 70.9 61.8 70.9 61.8 70.9 61.8 70.9 

 

TABLE II. 

MUTATION RESULTS 

No, 

operator 

type 

Generated 

covered 

mutants 

Killed 

mutants 

Equivalent 

mutants 

Mutation 

score 

(MSorig) [%] 

1 OO 1341 558 438 61.8 

1 Stand. 1683 1151 60 70.9 

2 OO 1208 701 143 65.8 

2 Stand. 2379 1611 60 69.6 

3 OO 998 478 143 55.9 

2 Stand 4153 3009 79 73.9 

 

ANNA DEREZINSKA, MARCIN RUDNIK: EVALUATION OF MUTANT SAMPLING CRITERIA IN OBJECT-ORIENTED MUTATION TESTING 1319



 
 

 

method random (3,4), meet both requirements of the “good” 
mode. Comparing these two criteria we have found that the 

class random criterion gave better results. For all projects, 

its quality value was maximal for the same lower sampling 

degree R=40%. In case of method random the maximal EQ 

were calculated for higher number of mutants: R=50-55% 

for different projects.  

It appears that using mutant sampling as a cost reduction 

method of OO mutation testing, we should select 40% of 

mutants that could be generated for each class.   

Examining the results for standard mutation (Fig. 7 - Fig. 

12) we can observe that sampling criteria of fully random 

and namespace random do not meet both “good sampling” 
requirements, similarly as for OO operators. In addition, 

both criteria are also not fulfilled by the method random 

criterion. In case of class random the first requirement is 

not met.  

Two criteria, namely file random and mutation operator 

random, gave results consistent with the requirements. 

However, the maximum of the quality metric was in the 

range of 35-40% selected mutants for the file random 

criterion, whereas about 30-35% for the mutation operator 

random. The second case required less mutants, therefore, 

the most beneficial results for standard operators could be 

obtained while sampling mutants according to mutation 

operator criterion with the sampling degree R=30-35%.  

Reduced number of mutants and tests indicates at the 

lower complexity of mutation testing. In order to compare 

effective benefits we measured real times of mutant 

generation and test execution. In Table VI, we compare 

times of all mutants and times of sampling with parameter 

R=35% and class random criterion for OO mutation or 

R=30% and operator random in case of standard mutation 

operators, accordingly. Significant reduction in these times 

can be observed.  

With respect to the average results for all investigated 

programs, it appears that sampling about 40% of mutants 

for each class for OO operators took 32% of time to 

generate the mutants. Mutation score was declined in 15% 

in reference to all mutants and all tests (85% of MSorig). It is 

possible to use only about 10% of tests to obtain this 

mutation score.  

Mutant sampling gives better results for standard 

mutation operators than for OO. While sampling of 30% of 

mutants for each operator, the mutation score was equal to 

93% of the original one. Mutant generation time declined in 

70%. It would be possible to use only 15% of tests to obtain 

this result. 

B. Threats to validity 

The experiments were conducted on widely used, 

complex open-source programs, with 3-5 thousands of 

mutants per each. However, the conclusion validity can be 

limited by the small number of subjects. Moreover, only 

programs in C# were mutated. No detailed results are given 

for other OO languages, as Java or C++, although we could 

expect similar trends due to analogy in mutation operators.  

The original tests associated with programs had 

insufficient code coverage; therefore, additional tests were 

developed. The code coverage did not reach 100% even 

with all tests. In experiments, only mutants covered by tests 

were taken into account. The calculation of MS can also be 

influenced by equivalent mutants, although the most of 

them was identified before the result evaluation.  

The presented results depend on the coefficients WMS, WT, 

WM  of the quality metric. Therefore, the experiment 

TABLE IV. 

AVERAGE MUTATION RESULTS (MS IN [%]) OF MUTANT SAMPLING FOR CASTLE 

R 

[%] 

(1) Fully random (2) File random (3) Class random (4) Method 

random 

(5) Operator 

random 

(6) Namespace 

random 

OO St OO St OO St OO St OO St OO St 

5 34.6 51.7 24.1 48.7 22.8 47.4 25.5 38.1 33.7 52.4 32.4 51.1 

10 41.5 58.9 36.9 57.7 35.1 57.5 33.2 52.5 41.0 58.2 41.0 58.9 

20 51.1 63.6 48.1 62.8 47.6 62.9 44.0 61.4 49.1 64.0 50.3 63.8 

30 55.2 65.9 51.7 65.2 51.0 65.2 49.0 63.8 54.0 65.7 53.8 65.8 

40 57.8 67.0 57.9 66.6 57.5 66.8 54.0 65.9 57.1 67.0 58.1 66.8 

50 59.9 67.7 60.3 67.6 60.2 67.6 58.9 67.2 59.8 67.6 60.0 67.8 

60 61.7 68.3 61.4 68.2 61.3 68.0 59.9 67.6 61.6 68.2 61.6 68.3 

70 63.4 68.7 62.9 68.4 62.7 68.5 61.0 67.9 62.7 68.7 63.1 68.8 

80 64.4 69.1 63.8 68.9 63.8 68.9 61.8 68.2 63.9 69.1 64.4 69.1 

90 65.2 69.4 64.3 69.1 64.5 69.2 62.3 68.5 65.0 69.3 65.1 69.3 

95 65.5 69.4 64.9 69.3 64.7 69.3 62.5 68.4 65.3 69.4 65.4 69.4 

100 65.8 69.6 65.8 69.6 65.8 69.6 65.8 69.6 65.8 69.6 65.8 69.6 

 

1320 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



 
 

 

outcomes were recalculated for another set of weight 

coefficients. According to a new set (0.8, 0.1, 0.1), mutation 

score is a more dominant factor in the metric in comparison 

to the case discussed above. We obtained results that have 

corresponded to this interpretation. The quality measures 

were the best for the same sampling criteria as chosen above 

but for the higher sampling degree. The percent of sampled 

mutants was equal to 90-100% for OO operators and 60-

70% for standard ones. For these coefficients benefits of 

lower number of mutants or tests are very small, especially 

for object-oriented operators.  

Another factor that influenced the construct validity was 

the sampling parameter (R). The experiments covered the 

whole scope of the parameter value (from 5% to 100%) with 

a small difference (per 5%). All calculations were also 

repeated ten times for different random sampling.  

IV. RELATED WORK  

There are different methods to reduce a cost of mutation 

testing. Many of them focus on reduction of mutant number, 

including mutant sampling [1][3]. 

Experimental evaluation on mutant sampling with 22 

standard mutation operators in Mothra resulted in mutation 

score drop in 16% assuming 10% of mutants were fully 

randomly sampled [5]. Our results were different, as in the 

quality metric we took into account not only a drop in the 

mutation score but also efficiency factors. However, if we 

compare MS only, the results for standard operators applied 

for C# programs are for the first random criterion very 

similar, i.e. R=10% gives 15% decline of a mutation score. 

With the same sampling degree but for OO operators MS 

decrease is substantially bigger - about 37%.  

Other experiments have compared mutant sampling 

approaches to selective mutation of standard operators 

applied in C programs. Empirical results reported by [14] 

point at the preference of selective mutation over the fully 

random one. The opposite is claimed in [15], in which two 

sampling modes were considered: fully random - called here 

one-round random, and two-round random (first a mutation 

operator is selected than a mutant within this operator). The 

results showed that random sampling methods can be as 

effective as those based on operator selection, but are more 

stable and predictable. The results of this comparison 

cannot be simply applied to OO operators. It is known that 

standard operators can generate much more mutants and 

many of them can be surplus, but there are less tests killing 

such mutants or the tests are not adequate to kill OO 

mutants [4], [16].  

An approach that would be an alternative to selective 

mutation and mutant sampling was also discussed in [17], 

but it was only illustrated by simulation results. Moreover, 

assumptions behind the idea were more suitable to standard 

mutation operators than object-oriented. 

Mutant sampling method was also beneficially applied in 

VHDL description [18]. The sampling criterion was similar 

to the mutation operator sampling, but the percentage of 

selected mutants was independently established for each 

operator. 

Sun [19] explored mutant reduction based on a program 

structure and different strategies of path analysis. 

Experiments on C programs showed that the best strategies 

were more effective than the random selection technique 

preserving a sufficiently high mutation score. However, 

some other strategies did not outperform random approach.   

All discussed above results were devoted to standard 

mutation operators.  

Before the experiments with CREAM were conducted, to 

the best of our knowledge, no results of OO sampling were 

performed, and no cost reduction on mutation of C# 

programs was investigated. Experiments following the 

TABLE V. 

AVERAGE MUTATION RESULTS (MS IN [%]) OF MUTANT SAMPLING FOR MONO GENDARME 

R 

[%] 

(1) Fully random (2) File random (3) Class random (4) Method 

random 

(5) Operator 

random 

(6) Namespace 

random 

OO St OO St OO St OO St OO St OO St 

5 20.1 48.2 16.0 45.7 15.3 45.4 15.0 39.6 20.8 47.6 21.0 48.3 

10 31.5 57.9 27.0 56.9 25.9 57.4 21.7 54.3 29.3 57.1 29.5 58.2 

20 39.2 65.5 38.2 64.9 38.6 65.6 30.1 64.2 38.4 65.4 38.5 65.2 

30 44.0 68.6 40.9 68.2 42.0 68.1 34.2 68.2 43.1 68.7 43.6 68.8 

40 46.8 70.3 45.7 70.3 45.7 70.2 42.6 70.1 46.6 70.2 47.2 70.3 

50 49.0 71.4 49.1 71.6 48.8 71.7 47.1 71.3 48.3 71.5 49.2 71.3 

60 50.9 72.2 50.4 72.3 49.8 72.4 48.3 72.2 51.1 72.3 50.6 72.2 

70 52.4 72.8 51.3 72.8 51.4 72.8 49.9 72.6 52.4 72.8 52.3 72.9 

80 53.9 73.2 52.2 73.2 51.7 73.2 51.2 73.0 53.7 73.3 53.8 73.2 

90 54.9 73.6 53.1 73.5 52.9 73.5 51.6 73.3 54.8 73.6 54.6 73.6 

95 55.4 73.7 52.8 73.6 52.9 73.6 52.0 73.4 55.4 73.7 55.4 73.7 

100 55.9 73.9 55.9 73.9 55.9 73.9 55.9 73.9 55.9 73.9 55.9 73.9 

ANNA DEREZINSKA, MARCIN RUDNIK: EVALUATION OF MUTANT SAMPLING CRITERIA IN OBJECT-ORIENTED MUTATION TESTING 1321



 
 

 

similar process were developed for selective mutation and 

mutant clustering of C# programs [4], [7]. 

Experiments on mutant sampling on 8 Java classes were 

conducted by Bluemke [22]. Fully random sampling with 

the sampling degree ranged from  60% to 10% were 

examined. Randomly sampling 60% or 50% of mutants in 

Java programs gave significant reduction in the cost of 

testing with acceptable mutation score and code coverage 

decline. This result has been averaged on all kinds of 

mutation operators. No quality measures were considered.  

Java program were also a target of experiments reported 

by Ma [23]. The weak mutation technique, in which 

intermediate program results are taken into account, was 

combined with mutant clustering, in with a mutant is 

selected among a group of mutants of similar behavior. 

Only selected mutants were completely executed to obtain 

the strong mutation results. The number of mutants was 

significantly reduced. However, the experiments were 

limited to simple programs and only several standard 

mutation operators. Hence, no data about object oriented 

mutation were given.  

Object oriented mutation operators for C++ has been 

recently investigated in experiments reported by Delgado-

Perez [24]. They considered also random selection of 

operators, but not mutant sampling. 

Our study differs also from those of other authors in 

application of the quality metric that takes into account not 

only a drop in mutation score but also efficiency measures - 

numbers of mutants and numbers of tests. The metric 

applied in experiments was proposed in [4], and used also 

in other experiments reported in [7].  

Other metrics to mutation testing quality were discussed 

by Ester-Botaro in [25]. Some of them were an extension of 

a effectiveness metric previously proposed by one of the 

authors. They discuss quality of mutant and operators in 

order to omit those of a low quality. However, these metrics 

do not evaluate a cost of a mutation testing process.  

Another approach has been recently investigated in [26], 

where mutation adequacy score was estimated taking into 

account several object-oriented metrics, which capture the 

structural complexity of a program.  

V. CONCLUSION 

The empirical study presented in this paper confirms the 

tendency that OO mutation operators undergo different 

characteristics than standard operators and therefore may 

require slightly different methods of cost reduction. 

Moreover, the benefits of the methods previously studied 

for standard operators are lower in case of OO ones, 

probably due to a lower number of generated and 

unnecessary mutants.  

Using the sampling approach, we can achieve some 

lowering the number of mutants and tests but also obtaining 

a relative decrease in mutation score accuracy. For the 

selected tradeoff, the mutation score was about 93% of that 

obtained with all mutants and all tests using standard 

operators, and about 85% for object oriented ones. 

Comparison of mutant sampling of C# programs with 

other “do fewer” methods, such as selective mutation [4] 

and mutant clustering [7], does not support one definite 

leading method. The number of mutants and tests was lower 

for mutant sampling than for selective mutation and similar 

to those of clustering. On the other hand, the mutation 

accuracy was lower than in those methods. However, all 

differences are about few percent and could also be treated 

as a measurements’ deviation. Moreover, sampling methods 

are superior because of their stability and simple 

implementation. Mutant clustering is computationally 

expensive, whereas selective mutation, especially in respect 

to object-oriented operators, is not so decisive and can 

depend on a program [4], [16]. 

The lessons learned is that instead of fully random 

sampling we would recommend to use different sampling 

criteria: class random for object-oriented operators and 

mutation operator random for standard ones. Both criteria 

can be easily implemented and both were the best for 

different tunings of the impact factors in the quality metric. 

The percentage of selected mutants depends on the 

preferred tradeoff between mutation score decline and the 

efficiency measures (number of mutants and number of 

tests). For the ratio 6:2:2 of these three components the 

suggested sampling degree is about 40% for object oriented 

operators and 30-35% for standard ones. 

It should be noted, that in practice, the number of 

mutants could be not the most important cost factor. Overall 

time of mutation testing is also strongly influenced by the 

number of tests to be performed. Therefore, comparing a 

process quality we should take into account different 

factors, as in the quality metric applied in the paper. 

Concerning C# programs, improvement in mutation 

testing efficiency is provided by code mutation at level of  

the Common Intermediate Language of .NET. Another tool 

TABLE VI. 

BENEFITS OF MUTANT GENERATION TIME AND TEST EXECUTION TIME 

FOR MUTANT SAMPLING  

R [%] Time of mutant 

generation (including 

compilation) [h:min:sec] 

Time of test execution 

[h:min:sec] 

All Sampling All Sampling 

1 OO 06:26:11 01:48:39 06:32:37 00:09:09 

2OO 05:37:44 01:49:31 07:14:14 00:31:16 

3OO 03:49:32 01:23:41 02:02:29 00:11:24 

1 St 07:22:44 02:12:04 11:45:39 00:20:15 

2 St 10:36:60 03:10:19 15:44:19 01:29:15 

3 St 13:53:39 04:09:13 09:43:36 13:53:39 

 

1322 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



 
 

 

[27], which satisfies this requirement and is tidily coupled 

with the MS Visual Studio, gives promising results and can 

be further enriched with some cost reduction methods.  

APPENDIX: QUALITY METRIC IN DEPENDENCE ON THE 

SAMPLING PARAMETER R  

Legend: “- - -“ dashed line Enterprise Logging,  

“….”dotted line  Castle, “___” solid line  MonoGendarme. 

 

Fig.  1 OO mutation operators, fully random sampling 

 

 

Fig.  2 OO mutation operators, file random sampling 

 

Fig.  3 OO mutation operators, class random sampling 

 

Fig.  4 OO mutation operators, method random sampling 

 

Fig.  5 OO mutation operators, operator random sampling 

 

Fig.  6 OO mutation operators, namespace random sampling 

 

Fig.  7 Standard mutation operators, fully random sampling 

 

Fig.  8 Standard mutation operators, file random sampling 

 

Fig.  9 Standard mutation operators, class random sampling 

ANNA DEREZINSKA, MARCIN RUDNIK: EVALUATION OF MUTANT SAMPLING CRITERIA IN OBJECT-ORIENTED MUTATION TESTING 1323



 
 

 

 

Fig.  10 Standard mutation operators, method random sampling 

 

Fig.  11 Standard mutation operators, operator random sampling 

 

Fig.  12 Standard mutation operators, namespace random sampling 

REFERENCES 

[1] Y. Jia and M. Harman, “An analysis and survey of the development of 
mutation testing,” IEEE Transactions on Software Engineering, vol. 
37, no.5, pp. 649—678, Sept-Oct. 2011, 
https://dx.doi.org/10.1109/TSE.2010.62 

[2] A. Derezińska and A. Szustek, “Object-Oriented testing capabilities and 
performance evaluation of the C# mutation system,” in Proc. CEE-SET 
2009, Szmuc, T., Szpyrka, M., Zendulka, J. Eds., LNCS, vol. 7054, 
2012, pp. 229–242, https://dx.doi.org/10.1007/978-3-642-28038-2_18 

[3] M. P. Usaola and P. R. Mateo, “Mutation testing cost reduction 
techniques: a survey,” IEEE Software, vol. 27, no. 3, pp. 80–86, May-
June 2010, https://dx.doi.org/10.1109/MS.2010.79 

[4] A. Derezińska and M. Rudnik, ”Quality evaluation of Object-Oriented 
and standard mutation operators applied to C# programs,” in Proc. 
TOOLS Europe 2012, C.A. Furia, S. Nanz Eds., LNCS, vol. 7304, 
Springer Berlin Heildelberg, 2012, pp. 42–57, 
https://dx.doi.org/10.1007/978-3-642-30561-0_5 

[5] A. P. Mathur and W. E Wong, “Reducing the cost of mutation testing: 
an empirical study,” J. of Systems and Software, vol. 31, no. 3, pp. 
185–196, Dec. 1995, http://dx.doi.org/10.1016/0164-1212(94)00098-0 

[6] J. Offut, G. Rothermel, and C.Zapf, “An experimental evaluation of 
selective mutation,” in Proc. 15th International Conference on 
Software Engineering, IEEE Comp. Soc. Press, 1993, pp. 100–107, 
https://dx.doi.org/10.1109/ICSE.1993.346062 

[7] A. Derezińska, “A quality estimation of mutation clustering in C# 
programs,” in New Results in Dependability and Computer Systems W. 
Zamojski et al. Eds., AISC vol. 224, Springer, Switzerland, 2013, 
pp.183-194, https://dx.doi.org/10.1007/978-3-319-00945-2_11 

[8] A. T. Acree, “On Mutation,”, Ph.D. thesis, Georgia Institute of 
Technology, Atlanta, GA, 1980. 

[9] T. A. Budd, “Mutation analysis of program test data,” Ph.D. thesis, Yale 
University, New Haven, CT, 1980. 

[10] G. J. Myers, The Art of Software Testing, John Wiley & Sons, 1979, 
3rd. ed 2011 

[11] M. Kryszkiewicz, “Fast algorithm finding minima in monotonic Boolean 
functions,” Warsaw Univ. of Technology, ICS Res Rep. 42/93, 1993. 

[12] A. Derezińska and A. Szustek, “Tool-supported mutation approach for 
verification of C# programs,” in Proc. International Conference on 
Dependability of Computer Systems, W. Zamojski, et al. Eds., pp. 261–
268, 2008, https://dx.doi.org/10.1109/DepCoS-RELCOMEX.2008.51 

[13] CREAM, http://galera.ii.pw.edu.pl/~adr/CREAM/ 
[14] E. F. Barbosa, J.C. Maldonado, and A.M.R. Vincenzi, “Toward the 

determination of sufficient mutant operators for C,” Softw. Test. Verif. 
and Reliab. vol. 11, pp. 113–136, June 2001, 
https://dx.doi.org/10.1002/stvr.226 

[15] L Zhang, S-S., Hou, J-J. Hu, T., Xie, and H. Mei, “Is operator-based 
mutant selection superior to random mutant selection?” in Proc. 32nd 
International Conference on Software Engineering, ICSE 2010, 2010, 
pp. 435–444, https://dx.doi.org/10.1145/1806799.1806863 

[16] J. Hu, N. Li, and J. Offutt, “An analysis of OO mutation operators,” in 
Proc. of 4th International Conference Software Testing Verification 
and Validation Workshops, 6th Workshop on Mutation Analysis, IEEE 
Comp. Soc., 2011, pp. 334–341, 
https://dx.doi.org/10.1109/ICSTW.2011.47 

[17] K. Adamopoulos, M. Harman, and R. M. Hierons, “How to overcome 
the equivalent mutant problem and achieve tailored selective mutation 
using co-evolution,” GECCO’04, LNCS, vol. 3103, pp. 1338-1349. 
Springer, 2004, https://dx.doi.org/10.1007/978-3-540-24855-2_155 

[18] M. Scholive, V. Beroulle, C. Robach, M. L. Flottes, and B. Rouzeyre, 
“Mutation sampling technique for the generation of structural test data,” 
in Proc. of the Conference on Design, Automation and Test in Europe, 
DATE’05, vol. 2, pp.1022 – 1023. IEEE Comp. Soc., 2005. 

[19] C. Sun, F. Xue, H. Liu, and X. Zhang, “A path-aware approach to 
mutant reduction in mutation testing,” Information and Software 
Technology, vol. 81, pp. 65-81, Jun. 2017, 
https://dx.doi.org/10.1016/j.infsof.2016.02.006 

[20] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortes, “Mutation 
testing on an object-oriented framework: An experience report,” 
Information and Software Technology, 53(10), pp. 1124—1136, Oct. 
2011, https://dx.doi.org/10.1016/j.infsof.2011.03.006 

[21] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid, “Operator-based 
and random mutant selection: better together,” in 28th IEEE/ACM 
Conference on Automated Software Engineering, Palo Alto, USA, 
2013, pp. 92-102, https://dx.doi.org/10.1109/ASE.2013.6693070 

[22] I. Bluemke and K. Kulesza, “Reduction of computational cost in 
mutation testing by sampling mutants,” in New Results in Dependability 
and Computer System, W. Zamojski at al. Eds., Springer, 2013, pp. 41-
51, https://dx.doi.org/10.1007/978-3-319-07013-1_9 

[23] Y.-S. Ma and S.-W. Kim, „Mutation testing cost reduction by clustering 
overlapped mutants,” J. of Systems and Software, vol. 115, pp. 18-30, 
May 2016, http://dx.doi.org/10.1016/j.jss.2016.01.007 

[24] P. Delgado-Perez, S. Segura, and S. Media-Bulo, „Assessment of C++ 
object-oriented mutation operators: A selective mutation approach,” 
Softw TestVerif Reliab., 2017, https://dx.doi.org/10.1002/stvr.1630 

[25] A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo, J. J. Dominguez-
Jimenez, and A. Garcia-Dominguez, “Quality metrics for mutation 
testing with application to WS-BPL compositions,” Softw Test Verif 
Reliab, vol. 25, no. 5-7, pp. 536-571, Aug.-Nov. 2015, 
https://dx.doi.org/10.1002/stvr.1528 

[26] M. Moghadam and S. Babamir, “Mutation score evaluation in terms of 
object-oriented metrics,” 4th International eConference on Computer 
and Knowledge Engineering (ICCKE), 2014, Mashhad, Iran 2014, pp. 
775–780, https://dx.doi.org/10.1109/ICCKE.2014.6993419 

[27] A. Derezińska and P. Trzpil, “Mutation testing process combined with 
Test-Driven Development in .NET Environment,” in Theory and 
Engineering of Complex Systems and Dependability, W. Zamojski et 
al. Eds., AISC vol. 365, Springer, pp. 131-140, 2015, 
https://dx.doi.org/10.1007/978-3-319-19216-1_13 

1324 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


